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Back to linear algebra I

• If A is symmetric, that is
Aᵀ = A,

then it is diagonalizable.

• This means that there are Q orthogonal, and Λ diagonal, such that

A = QᵀΛQ, Qᵀ = Q−1, Λ = diag{λ1, . . . , λn}.

• In this case, the action w = Av can be described as follows:

◦ ṽ = Qv is a change of basis.
◦ v̄ = Λṽ is a scaling in this new basis.
◦ w = QᵀΛv̄ is returning to the original basis.

• If, in addition, A is positive, that is

vᵀAv > 0,

then all its eigenvalues are positive λi > 0.



Back to linear algebra II
Why do we care about this? If A ∈ Rn×n is symmetric:

• With this we can define almost any function of a matrix via

f(A) = Qᵀf(Λ)Q, f(Λ) = diag{f(λ1), . . . , f(λn)}.

• Solution of ODEs:

ẏ(t) = Ay, t > 0 y(0) = y0 =⇒ y(t) = exp(tA)y0.

• Theory of iterative schemes: To solve Ax = f we can use a
two-layer implicit scheme

B
xk+1 − xk

α
+Axk = f

with SPD preconditioner B. The analysis of such schemes can be
reduced to that of the explicit one

vk+1 − vk

α
+ Cvk = g

where

vk = B1/2xk, C = B−1/2AB−1/2, g = B−1/2f .

• ...



Spectral theory 101
Question: What happens in infinite dimensions? In particular, for

differential operators?

A (the?) basic partial differential operator that expresses diffusion is the
Laplacian

−∆ = −
n∑
i=1

∂2

∂x2
i

• Integration by parts shows that −∆ is positive∫
Ω

−∆vv dx =

∫
Ω

|∇v|2 dx > 0, ∀v ∈ C∞0 (Ω).

• One can show that (−∆)−1 : L2(Ω)→ L2(Ω) is compact:
◦ There exist {λk, ϕk}k∈N ⊂ R+ × L2(Ω) such that:

−∆ϕk = λkϕk, ϕk|∂Ω = 0

and {ϕk}k∈N is an orthonormal basis of L2(Ω).
◦ This means that if w ∈ L2(Ω), then it has the following

representation

w =
∞∑
k=1

wkϕk wk =

∫
Ω

wϕk dx.



The spectral fractional Laplacian I

• In addition, if w is sufficiently nice, then we have that

−∆w =

∞∑
k=1

wkλkϕk, wk =

∫
Ω

wϕk dx

which is an analogue of the matrix case:

◦ The term wk is a change of basis.
◦ Multiplication by the eigenvalue λk is a diagonal scaling.
◦ The outer sum is returning to the original basis.

• We can now define functions of −∆. For instance, if s ∈ (0, 1) and
w is sufficiently nice,

(−∆)sw =

∞∑
k=1

wkλ
s
kϕk,

Questions: Why do we care? What is the domain of this operator? What
is its range?



The spectral fractional Laplacian II

• The heat equation

∂tu−∆u = 0, u|t=0 = v

smoothens and smears the initial condition v. This could be used,
for instance, in image denoising. However, the effect of −∆ is too
strong. Thus, it can be weakened by

∂tu+ (−∆)su = 0, u|t=0 = v.

• Some special cases of random walks also lead to the fractional heat
equation�.

• Models in phase transition�: fractional Allen Cahn (α = 0,
β ∈ (0, 1)) and Cahn Hilliard (α, β ∈ (0, 1)) equations

∂tu+ (−∆)α
(
ε2(−∆)βu+ F ′(u)

)
= 0,

�Valdinoci 2017

�Ainsworth and Mao 2017, Antil and Bartels 2018



The spectral fractional Laplacian III

• Original, noisy, regularized images for L2 and H−1 fidelity terms.

• Top: s = 0.42

• Bottom: s = 0.35

• Stolen from �.

�Antil, Bartels 2017



Spectral theory 102

• Let L be a symmetric second order elliptic operator, i.e.,

Lw = −∇·(a∇w) + cw

with a ∈ L∞(Ω,Sd+) uniformly positive definite and 0 ≤ c ∈ L∞(Ω).

• In a similar way we can define Ls0, the fractional powers of L
supplemented with homogeneous Dirichlet (or Neumann) boundary
conditions.

• From now on, and for simplicity only, we will only deal with the
Laplacian. Everything that we will say applies to Ls0.



Goal

• Given a suitable f find u such that

(−∆)su = f

in the sense described above.

• Where’s the catch? The domain Ω can be quite general, so the
spectrum of −∆ is not readily available.



Domain, range, and regularity I

• Because of the way that we defined the fractional Laplacian we have

(−∆)s : Hs(Ω)→ H−s(Ω)

where

Hs(Ω) =

{
w =

∞∑
k=1

wkϕk :

∞∑
k=1

λsk|wk|2 <∞

}
• It turns out that

Hs(Ω) =


Hs(Ω), s ∈

(
0, 1

2

)
,

H
1/2
00 (Ω), s = 1

2 ,

Hs
0(Ω), s ∈

(
1
2 , 1
)
,

where the zero subindices mean “zero boundary values”.

• The fact that the domain has fractional Sobolev regularity reinforces
the idea that we are taking fractional order derivatives.



Domain, range, and regularity II

If we wish to develop a rigorous numerical approximation of u, then we
must understand its regularity.

• From the definition it follows that, if f ∈ Hr(Ω), then
u ∈ Hr+2s(Ω), for all r ∈ R.

• If r ≥ −s this means that, at least for ω b Ω,

u ∈ Hr+2s(ω).

• What about near the boundary? For x ∈ Ω̄ let dist(x, ∂Ω) be the
distance of x to ∂Ω:

◦ If s 6= 1
2

then� there is a smooth function v such that

u(x) ≈ v(x) + dist(x, ∂Ω)min{1,2s}

◦ If s = 1
2

then we have the exceptional case�

u(x) ≈ v(x) + dist(x, ∂Ω) |log dist(x, ∂Ω)| .

�Caffarelli, Stinga 2016

�Costabel, Dauge 1993
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Direct discretization

Given f ∈ H−s(Ω),

f =

∞∑
k=1

fkϕk : (−∆)su = f =⇒ uk = fkλ
−s
k

Algorithm:

• Compute a “sufficiently large” number of eigenpairs {λk, ϕk}Nk=1.

• Compute the Fourier coefficients fk.

• Find the solution: uk = fkλ
−s
k .

But

• How to choose N?

• VERY time consuming!

• Error analysis?



Error analysis I

The eigenpairs can only be computed approximately (read, via finite
elements). The error analysis in this case is as follows�:

• Let X be a Hilbert space and A be a positive definite self-adjoint
operator on X.

• Let {Xh}h>0 be a family of closed subspaces of X and Ah is a
positive definite bounded self-adjoint operator on Xh.

• Inverse estimate: There is ε : R+ → R+ with limh→0 ε(0) = 0 such
that

‖Ah‖ .
1

ε(h)

• Approximability: If Ph is the orthogonal projection onto Xh

‖(A−1
h Ph −A−1)f‖X . ε(h)‖f‖X

• In this case, for s ∈ (0, 1), we have

‖(A−sh Ph −A−s)f‖X . ε(h)s‖f‖X

�Matsuki, Ushijima 1993



Error analysis II
In our case:

• X = L2(Ω), Xh is a (piecewise linear) finite element space,
A = −∆, and Ah = −∆h.

• Since Xh consists of piecewise polynomials

‖Ah‖ .
1

h2
, =⇒ ε(h) = h2.

• For f ∈ L2(Ω) we have

u = (−∆)−1f ∈ H2(Ω) ∩H1
0 (Ω)

and, if uh ∈ Xh is its finite element approximation:
uh = (−∆h)−1Phf , then Aubin–Nitsche duality yields

‖u− uh‖L2(Ω) . h2|u|H2(Ω) . h2‖f‖L2(Ω)

• The previous theory then gives

‖(−∆)−sf − (−∆h)−sPhf‖L2(Ω) . h2s‖f‖L2(Ω).

We still need to compute (−∆h)−s!
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Computing the discrete spectrum
Evaluating the eigenvalues of −∆h is time consuming: MTT, Lanczos, ...
Best uniform rational approximation (BURA)�: Assume we need to solve

Asu = f

where A is a rescaled version of (−∆h)s so that its spectrum lies in (0, 1].

• Let rs be analytic on (0, 1] and, for some constant ε > 0 satisfies

sup
t∈(0,1]

|rs(t)− t1−s| ≤ ε,

then, for every γ ∈ R and F ∈ RN we have

‖(rs(A)−A1−s)F‖Aγ ≤ ε‖F‖Aγ

• The previous result implies that, if ur = rs(A)A−1f , then

‖ur − u‖Aγ ≤ ε‖f‖A−1

• Taking into account the discretization error, then (γ = 0)

‖u− uh,r‖L2(Ω) . h2s + ε.

• Question: What is a suitable rs?
�Harizanov, Lazarov, Margenov, Vutov 2016



BURA
• We choose rs as the best uniform (m, k)-approximation to t1−s.
• Apply a partial fraction decomposition to t−1rs(t):

t−1rs(t) =

m−k−1∑
j=0

bjt
j +

c0
t

+

p1∑
j=1

cj
t− dj

+

p2∑
j=1

Bjt+ Cj
(t− Fj)2 +D2

j

where k = p1 + 2p2.
• To compute ur = A−1rs(A)f we need to evaluate

A−1rs(A)f =

m−k−1∑
j=0

bjAjf + c0A−1f +

p1∑
j=1

cj(A− djI)−1f

+

p2∑
j=1

(BjA+ CjI)((A− FjI)2 +D2
jI)−1f

• How do we choose m and k? This is classical in rational
approximation. For the optimal choice we have m = k and

ε . 42−s| sinπ(1− s)|e−2π
√

(1−s)k

so that, for this choice, the error decays exponentially in the
polynomial degree.



Outlook

To solve
(−∆)su = f

with BURA we must:

• Solve O(| log h|) problems of the type (−∆h + cI)w = g.

• Embarrassingly parallelizable.

• Error estimate
‖u− uh,r‖L2(Ω) . h2s.

Questions:

• Other norms?

• Other types of problems? Time-dependent? Nonlinear?

• Stability? It is known that rational approximations are very sensitive
to numerical rounding.
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The Balakrishnan formula

• Notice that, for λ > 0 and θ ∈ (0, 1)

sinπθ

π

∫ ∞
0

tθ−1(λ+ t)−1 dt = λθ−1.

• Functional calculus then says that, if X is a Hilbert space and A is a
self-adjoint and positive operator on X:

Aθ = AAθ−1 = A
sinπθ

π

∫ ∞
0

tθ−1(A+ tI)−1 dt.

• Let X = L2(Ω) and A = −∆, then

(−∆)−s = (−∆)−1(−∆)1−s

= (−∆)−1(−∆)
sinπ(1− s)

π

∫ ∞
0

t1−s−1(tI −∆)−1 dt

=
sinπs

π

∫ ∞
0

t−s(tI −∆)−1 dt

where we used the previous formula with θ = 1− s.



Numerical scheme

Using

(−∆)−s =
sinπθ

π

∫ ∞
0

t−s(tI −∆)−1 dt,

we can formulate the following game plan to devise a numerical scheme�:

• Step 1: Use a quadrature for the t variable:

(−∆)−sf ≈ sinπs

π
k

J∑
j=0

t−sj (tjI −∆)−1f

• Step 2: Use standard finite element methods on the same mesh to
approximate

wj ∈ H1
0 (Ω) : tjwj −∆wj = f in Ω,

i.e., wj = (tjI −∆)−1f .

• Step 3: Gather all contributions.

�Bonito, Pasciak 2015



Step 1: Sinc quadrature

• Change of variable: Let t = ey to get

u = (−∆)−sf =
sin(πs)

π

∫ ∞
−∞

e(1−s)y(eyI −∆)−1f dy.

• Quadrature: Given N ∈ N, define k = 1/
√
N , yj = jk and the

quadrature approximation

uN = QNf =
sin(πs)

π
k

N∑
j=−N

e(1−s)yj (eyjI −∆)−1f.

• Exponential convergence: Let s ∈ [0, 1) and r ∈ [0, 1]. If f ∈ Hr(Ω),
then

‖u− uN‖Hr(Ω) . e−c
√
N‖f‖Hr(Ω).



Steps 2 and 3: Finite element approximation and
parallelization

• Let Xh be a finite element space over Ω, and assume that the mesh
is quasiuniform.

• wjh ∈ Xh are the finite element solutions of

(eyjI −∆)w = f.

• These can be solved independently (embarrassingly parallelizable)
and then gathered to obtain

uNh =
sin(πs)

π
k

N∑
j=−N

e(1−s)yjwjh



Error analysis

For simplicity, assume that Ω is convex.

• For r ≤ 2s define

α? =
1

2
(α+ min{1− r, α}) , σ = max{2α? − 2s, 0}.

If f ∈ Hσ(Ω) then

‖u− uNh ‖Hr(Ω) . h2α? | log h|‖f‖Hσ(Ω).

• Setting r = s we get

‖u− uNh ‖Hs(Ω) . h2−s‖f‖H2−2s(Ω),

which is “optimal” in order 2− s and regularity f ∈ H2−2s(Ω).
However, this requires u ∈ H2(Ω), which is not generic!



Outlook

To solve
(−∆)su = f

with the Balakrishnan formula we must:

• Solve O(| log h|) problems of the type (eyI −∆)w = f .

• Embarrassingly parallelizable.

• Error estimate

‖u− uNh ‖Hs(Ω) . h2−s‖f‖H2−2s(Ω),

Questions:

• Other types of problems? Time-dependent? Nonlinear?

• Lower regularity on f? How can we capture the boundary
singularities of u?
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(−∆)1/2: The Dirichlet to Neumann operator I
• Let u : Rn → R.

• Extend it harmonically to Rn+1
+

−∆U = 0, in Rn1
+ , U(·, 0) = u

• The Dirichlet to Neumann map is

DtN : u 7→ −∂yU(·, 0).



(−∆)1/2: The Dirichlet to Neumann operator II
The Dirichlet to Neumann map

DtN : u 7→ −∂yU(·, 0).

has the following properties:

• DtN2 = −∆: Indeed, since −∆x′,yU = −∆x′U − ∂2
yU = 0,

DtN2 u = ∂y (∂yU(·, 0)) = −∆x′U(·, 0) = −∆x′u.

• DtN is positive: Since U is harmonic

0 = −
∫
Rn+1

+

∆UU dxdy =

∫
Rn+1

+

|∇U|2 dxdy +

∫
Rn
∂yUU dx.

On the other hand∫
Rn
uDtNudx = −

∫
Rn
∂yUU dx > 0.

Thus, we define

DtN = (−∆x)
1
2 , (−∆x)

1
2u = ∂νU .
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The α-harmonic extension I

The previous extension property can be generalized to any s ∈ (0, 1)�

• s ∈ (0, 1) and α = 1− 2s ∈ (−1, 1).

• ∂ναU = − limy↓0 y
α∂yU = dsf on Ω× {0}.

• ds = 2αΓ(1− s)/Γ(s).

�Caffarelli, Silvestre 2007; Cabré, Tan 2010; Capella et al. 2011; Stinga, Torrea 2010–2012; Molčanov, Ostrovskĭı 1969



The α-harmonic extension II

Fractional powers of −∆ can be realized as a generalization of the
Dirichlet to Neumann operator:

∂2
yyU +

α

y
∂yU + ∆xU = 0 in C

U = 0 on ∂LC
∂ναU = dsf on Ω× {0}

⇐⇒ (−∆)su = f in Ω

u = U(·, 0).

Here:

• C = Ω× (0,∞).

• α = 1− 2s ∈ (−1, 1).

• ∂ναU = − limy↓0 y
α∂yU =

dsf .

• ds = 2αΓ(1− s)/Γ(s).



The α-harmonic extension III

Why does this make sense?

• For λ > 0 and g ∈ R consider the ODE:
ψ′′ +

1− 2s

y
ψ′ − λψ = 0, in (0,∞),

− lim
y↓0

y1−2sψ′ = ds, lim
y↑∞

ψ(y) = 0.

• This is a Bessel equation with solution

ψ(y) = Csλ
−s
(√

λy
)s
Ks(
√
λy)

where Ks is the modified Bessel function of the second kind.

• It is well known that Ks(z) = az−s + o(z−s), with a > 0 as z ↓ 0.
Thus

ψ(y) = csλ
−s
(√

λy
)s (

a(
√
λy)−s

)
→ acsλ

−s, y ↓ 0.

• Choosing Cs appropriately we get ψ(0) = λ−s.



The α-harmonic extension IV

• Recall that

f =

∞∑
k=1

fkϕk ∈ H−s(Ω), (−∆)su = f, =⇒ u =

∞∑
k=1

λ−sk fkϕk

• Applying separation of variables to the extension problem�

u(x) =

∞∑
k=1

ukϕk(x) =⇒ U(x, y) =

∞∑
k=1

ukϕk(x)ψk(y),

where the functions ψk solve

ψ′′k +
α

y
ψ′k = λkψk, in (0,∞), ψk(0) = 1, lim

y→∞
ψk(y) = 0.

so that, as before,

ψk(y) = cs

(√
λky

)s
Ks(

√
λky),

�Capella et al. 2011



Weak formulation
• Multiply ∇·(yα∇U) by a test function φ and integrate over the

cylinder C to obtain a possible weak formulation∫
C
yα∇U · ∇φdxdy = ds

∫
Ω

fφ(x, 0) dx, ∀φ ∈
◦
H1
L(yα, C),

• Where the energy space is

L2(yα, C) =

{
w :

∫
C
|w|2yα dxdy <∞

}
◦
H1
L(yα, C) =

{
w ∈ L2(yα, C) : ∇w ∈ L2(yα, C), w|∂LC = 0

}
.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
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α = −1
α = 1
α = 0

The weight yα is degenerate (α > 0) or singular(α < 0)!



Muckenhoupt weights

For every a, b ∈ R, with a < b,

1

b− a

∫ b

a

|y|α dy · 1

b− a

∫ b

a

|y|−α dy . 1

which means yα belongs to the Muckenhoupt class A2.
This condition, essentially, means that yα behaves like a constant at
every scale!
Since yα ∈ A2:

• The Hardy-Littlewood maximal operator is continuous on L2(yα, C).

• Singular integral operators are continuous on L2(yα, C).

• L2(yα, C) ↪→ L1
loc(C).

• H1(yα, C) is Hilbert and C∞b (C) is dense.

• Traces on ∂LC are well defined.



Weighted Sobolev spaces

• Weighted Poincaré inequality:∫
C
yα|w|2 dxdy .

∫
C
yα|∇w|2 dxdy ∀w ∈

◦
H1
L(yα, C).

• Surjective trace operator trΩ :
◦
H1
L(yα, C)→ Hs(Ω).

• Lax-Milgram ⇒ existence and uniqueness for every f ∈ H−s(Ω).
Also

‖U‖2◦
H1
L(yα,C) = ‖u‖2Hs(Ω) = ds‖f‖2H−s(Ω).

We will discretize the α-harmonic extension!

U ∈
◦
H1
L(yα, C) :


∇·(yα∇U) = 0 in C
U = 0 on ∂LC
∂ναU = dsf on Ω× {0}



Advantages and disadvantages

Advantages:

• Implementation requires standard numerical PDE components.

• It is very flexible as we will see later.

Disadvantages:

• One extra dimension! We have efficient solvers, and we will see later
how to minimize the effect of y.

• Singular/degenerate weight yα? The weight yα ∈ A2 for which
there is a very well developed theory.
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Solution representation

• Recall that we found, via separation of variables

u(x) =

∞∑
k=1

λ−sk fkϕk(x) =⇒ U(x, y) =

∞∑
k=1

λ−sk fkϕk(x)ψk(y),

• The pairs {λk, ϕk}∞k=1 are the eigenpairs of the Laplacian.

• The ψk are

ψk(y) = cs

(√
λky

)s
Ks(

√
λky),

where Ks is the modified Bessel function of the second kind.

• The function ψk satisfies, as y →∞,

ψk(y) ≈
(√

λky
)s−1/2

e−
√
λky.

• The function ψk satisfies, as y → 0,

ψ′k(y) ≈ y−α, ψ′′k (y) ≈ y−α−1,



Global Sobolev Regularity�

• Compatible data: Let f ∈ H1−s(Ω), which means that f has a
vanishing trace for s < 1

2 .

• Space regularity:

‖∆xU‖2L2(yα,C) + ‖∂y∇xU‖2L2(yα,C) = ds‖f‖2H1−s(Ω)

• Regularity in extended variable y: If s 6= 1
2 and β > 2α+ 1 then

‖∂yyU‖L2(yβ ,C) . ‖f‖L2(Ω).

If s = 1
2 , then

‖U‖H2(C) . ‖f‖H1/2(Ω).

• Elliptic pick-up regularity: If Ω convex, then

‖w‖H2(Ω) . ‖∆xw‖L2(Ω) ∀w ∈ H2(Ω) ∩H1
0 (Ω).

Under this assumption, we further have

‖D2
xU‖L2(yα,C) . ‖f‖H1−s(Ω).

�Nochetto, Otárola, AJS 2015



Analytic Regularity�

• Behavior of ψ(z) = csz
sKs(z) near z = 0:∣∣∣∣∣ d`

dz`
ψ(z)

∣∣∣∣∣ ≤ Cds`!z2s−`,

where ds = 21−2sΓ(1− s)/Γ(s).

• Behavior of ψ(z) for z large:∣∣∣∣∣ d`

dz`
ψ(z)

∣∣∣∣∣ ≤ Cε,s`!ε−`zs−`− 1
2 e−(1−ε)z

• Global regularity of U : If 0 ≤ ν̃ < s and 0 ≤ ν < 1 + s, then there
exists κ > 1 such that

‖∂`+1
y U‖L2(ωα+2`−2ν̃,γ ,C) . κ`+1(`+ 1)! ‖f‖H−s+ν̃(Ω),

‖∇x∂`+1
y U‖L2(ωα+2(`+1)−2ν,γ ,C) . κ`+1(`+ 1)! ‖f‖H−s+ν(Ω),

‖∆x∂
`+1
y U‖L2(ωα+2(`+1)−2ν,γ ,C) . κ`+1(`+ 1)! ‖f‖H1−s+ν(Ω),

with weight ωβ,γ(y) = yβeγy, 0 ≤ γ < 2
√
λ1.

�Banjai, Melenk, Nochetto, Otárola, AJS, Schwab 2018
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Domain truncation

The domain C is infinite. We need to consider a truncated problem.

Theorem (exponential decay)
For every Y > 0

‖U‖ ◦
H1
L(yα,Ω×(Y ,∞))

. e−
√
λ1Y /2‖f‖H−s(Ω).

Let v solve 
∇·(yα∇v) = 0 in CY = Ω× (0,Y ),

v = 0 on ∂LCY ∪ Ω× {Y },
∂ναv = dsf on Ω× {0}.

Theorem (exponential convergence)
For all Y > 0,

‖U − v‖ ◦
H1
L(yα,CY )

. e−
√
λ1Y /4‖f‖H−s(Ω).



Finite element method I: Mesh

Let TΩ = {K} be triangulation of Ω (simplices or cubes)

• TΩ is conforming and shape regular.

Let TY = {T} be a triangulation of CY into cells of the form

T = K × I, K ∈ TΩ, I = (a, b).

Uyy ≈ y−α−1 as y ≈ 0+ so we consider anisotropic elements

Shape regularity condition
does NOT hold!



Finite element method II: Spaces

We only require that if T = K × I and T ′ = K ′ × I ′ are neighbors

|I|
|I ′|
≈ 1,

This weak condition allows us to consider anisotropic meshes
Define

V(TY ) =
{
W ∈ C0(C̄Y ) : W|T ∈ P1(K)⊗ P1(I), W|ΓD = 0

}
with ΓD = ∂LC ∪ Ω× {Y }, and

U(TΩ) = trΩ V(TY ) =
{
W ∈ C0(Ω̄) : W|K ∈ P1(K), W|∂Ω = 0

}
.

Here P1 = P1 if K is a simplex and P1 = Q1 if is a “brick”.



Finite element method III: Discrete problem

• Galerkin method for the extension: Find VTY ∈ V(TY ) such that∫
CY

yα∇VTY∇W dxdy = ds

∫
Ω

fW (x, 0) dx, ∀W ∈ V(TY ).

• Define
UTΩ = VTY (·, 0) ∈ U(TΩ).

• A trace estimate and Cèa’s Lemma imply quasi-best approximation:

‖u−UTΩ
‖Hs(Ω) . ‖v−VTY ‖ ◦H1

L(yα,CY )
= inf
W∈V(TY )

‖v−W‖ ◦
H1
L(yα,CY )

We reduced the error analysis to a question of approximation theory
in weighted spaces. Usually we set W = Πv ∈ V(TY ) where Π is a
suitable interpolation operator.



The quasi-interpolation operator

We introduce an averaged interpolation operator Π�

Πφ(z) = Qmz φ(z).

where Qmz φ is an averaged Taylor polynomial of φ of degree m.
Notice that:

• This is defined for all polynomial degree m and any element shape
(simplices or rectangles).

• We do not go back to the reference element — This is important for
anisotropic estimates.

If the mesh is rectangular and Cartesian If R and S are neighbors

hiR/h
i
S . 1, i = 1, N.

�Durán, Lombardi 2005; Dupont, Scott 1980; Sobolev 1950



Error estimates on rectangles�

Theorem
If $ ∈ Ap(RN ), and φ ∈W 1

p ($,SR)

‖φ−Πφ‖Lp($,R) .
N∑
i=1

hiR‖∂iφ‖Lp($,SR).

If φ ∈W 2
p ($,SR)

‖∂j(φ−Πφ)‖Lp($,R) .
N∑
i=1

hiR‖∂i∂jφ‖Lp($,SR),

‖φ−Πφ‖Lp($,R) .
N∑

i,j=1

hiRh
j
R‖∂i∂jφ‖Lp($,SR).

• Directional estimates: note the products of the form
hiRh

j
R‖∂i∂jφ‖Lp($,SR).

• Estimates on simplicial elements, different metrics and applications.
�Nochetto, Otárola, AJS 2016



Error estimates. Quasiuniform meshes

On quasiuniform meshes hT ≈ hK ≈ hI for all T ∈ TY , then

Theorem (error estimates)
The following estimate holds for all ε > 0

‖∇(v − VTY )‖L2(yα,CY ) . hK‖∂y∇x′v‖L2(yα,C) + hs−εI ‖∂yyv‖L2(yβ ,C)

. hs−ε‖f‖H1−s(Ω).

Consequently,
‖u− UTΩ‖Hs(Ω) . hs−ε‖f‖H1−s(Ω).

• This is suboptimal in terms of order (only order s− ε)
• Is it sharp?



Numerical experiment. Quasiuniform mesh

Let Ω = (0, 1) and f = π2s sin(πx), then

U =
21−sπs

Γ(s)
sin(πx)ysKs(πy)

If s = 0.2, then
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The energy error behaves like DOFS−0.1 ≈ h0.2, as predicted!



Error estimates. Graded meshes
We use the principle of error equilibration. We use a graded mesh on
(0,Y )

yj = Y
(
j
M

)γ
, j = 0,M, γ > 1

Uyy ≈ y−α−1 =⇒ energy equidistribution for γ > 3/(1− α).

Theorem (error estimates�)
If f ∈ H1−s(Ω) and Y ≈ | log #TY |,

‖u−UTΩ
‖Hs(Ω) = ‖∇(U−VTY )‖L2(yα,C) . | log #TY |s#T

− 1
n+1

Y ‖f‖H1−s(Ω),

or equivalently

‖u− UTΩ
‖Hs(Ω) . | log TΩ|sT −1/n

Ω ‖u‖H1+s(Ω).

• This is near optimal in terms of regularity of u ∈ H1+s(Ω) and
almost linear decay rate in h.

• This is suboptimal in terms of total number of degrees of freedom

#TY ≈ #T
1+ 1

n

Ω � #TΩ with respect to the degrees of freedom in
Ω.

�Nochetto, Otárola, AJS 2015



Numerical experiment

Experimental rates for circle and s = 0.3 and s = 0.7.
Set Ω = D(0, 1) ⊂ R2, f = j2s

1,1J1(j1,1r)(A1,1 cos(θ) +B1,1 sin(θ)).
With graded meshes:
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The experimental convergence rate −1/3 is optimal!
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Diagonalization I

• Discretization in y: Let GM be an arbitrary mesh in (0,Y ) with
M = #GM and let Sr(0,Y ;GM ) be a FE space of polynomial
degree r in y.

• Define
Vr
M (CY ) = H1

0 (Ω)⊗ Sr(0,Y ;GM ).

FE in y, continuous in x.

• Semidiscrete solution: UM ∈ Vr
M (CY ) satisfies∫

CY

yα∇UM∇φ dxdy = ds

∫
Ω

fφ(x, 0) dx ∀φ ∈ Vr
M (CY ).

• Exponential convergence: Let f ∈ H−s+ν(Ω) for 0 < ν < s. If
Y ≈M , the mesh GM is geometric towards y = 0, and the
polynomial degree r grows linearly from y = 0, then there exists
b > 0 such that

‖∇(U − UM )‖L2(yα,C) . e−bM‖f‖H−s+ν(Ω).



Diagonalization II

• Eigenvalue problem: Let M = dimSr(0,Y ;GM ) and (µi, vi)
M
i=1 be

the (normalized) eigenpairs of

µ

∫ Y

0

yαv′(y)w′(y) dy =

∫ Y

0

yαv(y)w(y) dy ∀w ∈ Sr(0,Y ;GM ).

• Representation: If UM (x, y) =
∑M
j=1 Uj(x)vj(y) with Uj ∈ H1

0 (Ω),
then

aµi,Ω(Ui, V ) = dsvi(0)

∫
Ω

fV dx ∀V ∈ H1
0 (Ω),

where aµi,Ω are the singularly perturbed bilinear forms

aµi,Ω(U, V ) :=

∫
Ω

(µi∇xU∇xV dx+ UV ) dx



Tensor product discretization

• Ritz projections: Πiu ∈ Sq0(TΩ) satisfies

aµi,Ω(u−Πiu, v) = 0 ∀ v ∈ Sq0(TΩ),

where Sq0(TΩ) ⊂ H1
0 (Ω) is the FE space of piecewise polynomials of

degree ≤ q over TΩ.

• Discrete solution: Let Uh,M ∈ Sq0(TΩ)⊗ Sr(0,Y ;GM ) satisfy∫
CY

yα∇Uh,M∇V dx dy = ds

∫
Ω

fV (x, 0) dx, ∀V ∈ Sq0(TΩ)⊗Sr(0,Y ;GM )

and note that it can be represented as follows

Uh,M (x, y) =

M∑
i=1

ΠiUi(x)vi(y).

• Parallelization: This corresponds to solving M decoupled elliptic
problems with the singularly perturbed bilinear form aµi,Ω for
i = 1, . . . ,M.



Tensor P1-FEM
• Assume that f ∈ L2(Ω) where Ω ⊂ R2 is a polygon with corners c.
• The solution to

−∆xw = f, in Ω w = 0, on ∂Ω =⇒

‖w‖H2
β(Ω) . ‖f‖L2(Ω), |w|2H2

β(Ω) =

∫
Ω

∏
c

|x′ − c|2β |D2w|2 dx.

• This type of singularity can be captured by using a graded mesh in
Ω: Let TΩ be graded towards the re-entrant corners so that, if
N = #TΩ and h = N−1/2, for any w ∈ S1

0(TΩ)

N‖w −Πw‖2L2(Ω) . ‖w‖
2
H1(Ω), N2‖w −Πw‖2L2(Ω) . ‖w‖

2
H2
β(Ω).

• With this construction we obtain that, if GMη is a suitably graded

radical mesh
{
yi =

(
i
M

)η
Y
}M
i=0

, with ηs > 1 and

M ≈ N 1
2 = (#TΩ)

1
2 , the discrete solution Uh,M satisfies

‖u− trΩ Uh,M‖Hs(Ω) ≤ h‖f‖H1−s(Ω)

and

dimV1,1
h,M (TΩ,GM ) ≈ h−3 log | log h| ≈ N1+ 1

2

Ω log logNΩ.



Sparse grid FEM

• Complexity of tensor product: N
1+ 1

2

Ω is suboptimal.

• To overcome this we use a sparse grid space. Let

V1,1
L (CY ) =

∑
`,`′≥0, `+`′≤L

S1
0(T `

Ω)⊗ S1(0,Y ;G2`
′

η ),

where T `
Ω and G2`

′

η are nested meshes of levels ` and `′ graded
towards corners c of Ω and y = 0, respectively.

• We have the error estimate: Let 1 < ν < 1 + s, η(ν − 1) ≥ 1, and
Y ≈ | log hL|. If f ∈ H−s+ν(Ω), then UL ∈ V1,1

L (CY ) satisfies

‖U − UL‖L2(yα,C) . hL| log hL| ‖f‖H−s+ν(Ω),

dimV1,1
L (CY ) . NΩ log logNΩ.

• The complexity of sparse grids is quasi-optimal in terms of NΩ.



hp-FEM in y and P1-FEM in Ω

• Graded geometric mesh: Let GMσ =
{

Y σM−i
}M
i=1

with σ < 1.

• Data regularity: f ∈ H1−s(Ω) and Ω ⊂ R2 is a polygon with corners
c.

• FE space: V1,r
h,M (TΩ,GMσ ) is the space of piecewise polynomials of

degree one over TΩ and piecewise polynomials of degree r growing
linearly from 1 over GMσ .

• Error estimates: Let TΩ be a suitably graded mesh towards the
re-entrant corners c. If Y ≈ | log h| and Uh,M ∈ V1,r

h,M (TΩ,GMσ ) is
the Galerkin solution, then

‖∇(U − Uh,M )‖L2(yα,C) . h‖f‖H1−s(Ω)

dimV1,r
h,M (TΩ,GMσ ) ≈ h−2| log h|2 ≈ NΩ| logNΩ|

• Complexity: This is quasi-optimal in terms of NΩ.



hp-FEM in y and Ω

• Data regularity: The domain Ω ⊂ R2 and f are analytic.

• Graded mesh in Ω: The mesh TΩ is anisotropic and graded towards
∂Ω so that it resolves the smallest scale µM of the singularly
perturbed problems originating from the diagonalization.

• Graded mesh in y: Let GMσ =
{

Y σM−i
}M
i=1

with σ < 1.

• Error estimate: If Y ≈M , r grows linearly from y = 0, then the
Galerkin solution Uh,M ∈ Sq0(TΩ)⊗ Sr(GMσ ) and the total number
NΩ,Y of degrees of freedom satisfy

‖∇(U − Uh,M )‖L2(yα,C) .M2e−bq + e−bM

NΩ,Y ≈ q2M3.

• Exponential rate of convergence: If q ≈M , then

‖∇(U − Uh,M )‖L2(yα,C) . e−b
′N

1/5
Ω,Y .



Numerical experiment. Performance of tensor FEMs

• Data: Ω L-shaped domain in R2; f = 1; s = 3/4.

• Error: It is always measured in the energy space Hs(Ω).
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• Conclusions: Both sparse grid FEM and hp-FEM reduced
substantially the DOFs relative to tensor FEM and deliver
quasi-optimal complexity.
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Outlook I

• PDE approach. The extension converts the nonlocal problem into a
local PDE problem in one higher dimension. This is very flexible:

◦ Parabolic problems� Details .
◦ Stationary� Details and time dependent� Details obstacle problems.

• We have a complete and quasi-optimal a priori error analysis over
anisotropic meshes. The complexity, in terms of total degrees of
freedom, is:

◦ P1 − P1-elements: suboptimal complexity and linear rate for Ω
convex and compatible data. Extension to non-convex domains.

◦ Sparse tensor P1 − P1-elements: quasi-optimal complexity and linear
rate for Ω polygonal with compatible data.

◦ hp-elements: quasi-optimal complexity and exponential rate for
analytic but incompatible data.

◦ We also have multigrid methods� Details , a posteriori error
estimators� Details .

�Nochetto, Otárola, AJS 2016

�Nochetto, Otárola, AJS 2015

�Otárola, AJS 2016

�Chen, Nochetto, Otárola, AJS 2016

�Chen, Nochetto, Otárola, AJS 2015



Outlook II

Questions:

• Adaptivity: Convergence and optimality is still open (issue is
anisotropic meshes and lack of shape regularity).

• 3d-computations: A virtual implementation of extended variable is
open.

• Theory and implementation of 3d hp-FEM are open.
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Adaptivity

Adaptivity is motivated by:

• Computational efficiency: extra n+ 1-dimension.

• The a priori theory requires:

• Regularity of the datum: f ∈ H1−s(Ω).
• Regularity of the domain: Ω is C1,1 or a convex polygon.

• If one of these conditions is violated, the solution U may have
singularities in Ω which lead to fractional regularity.

• Quasiuniform refinement of Ω would not result in an efficient
solution technique.

• We need anisotropic a posteriori error estimators.



Adaptive Loop

We consider an almost standard adaptive loop:

SOLVE→ ESTIMATE→ MARK→ REFINE

except for the statements in red below:

• SOLVE: Finds the Galerkin solution VTY .

• ESTIMATE: Computes a star-indicator Ez′ for every node z′ ∈ Ω.

• MARK: For θ ∈ (0, 1) choose a minimal subset of nodes M:

E2
M =

∑
z′∈M

E2
z′ ≥ θ2E2

T .

• REFINE: Given a set of marked nodes M
◦ Refine the cells K 3 z′ for all z′ ∈M to get T̃Ω.

◦ Create an anisotropic mesh {yj}Mj=1 so that grading yj = Y
(
j
M

)γ
holds.

◦ The refined mesh is T̃Y = T̃Ω × {Ĩ} with Ĩ = [yj−1, yj ].
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Isotropic a posteriori error indicators

• Residual error indicator: If we were to integrate by parts the discrete
problem over an element T ∈ TY , we would get∫

T

yα∇V∇W =

∫
∂T

yαW∇V ·ν −
∫
T

∇·(yα∇V )W

Since α ∈ (−1, 1), the boundary integral is meaningless for y = 0.

• Alternative error indicators: Residual indicators are not the only
possibility:

◦ Local problems on stars: E2
z =

∫
Sz
yα|∇Z|2 (Z solution of a

BVP in Sz).
◦ Zienkiewicz-Zhu estimators.
◦ Hypercircle estimators.

• Local problems on stars: We prove for all nodes z ∈ N

E2
z . ‖∇(v − V )‖2L2(yα,Sz) . E

2
z + osc(yα, V, f, Sz)

2



Numerical Experiment with Isotropic Refinement

• Set CY = (0, 1)× (0, 4) and u = sin(πx)

• Experimental convergence rates:
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• The error decays like (#TY )−(1−|α|)/4 as in uniform/isotropic
refinement!

• Does adaptivity help?
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Anisotropic Error Estimation

• Anisotropic a posteriori error estimator: we need to distinguish the
behavior on the extended variable y from the rest.

• The theory of a posteriori error estimation (and adaptivity) on
anisotropic discretizations is still in its infancy.

• Cylindrical stars: We propose an error estimator based on solving
local problems on sets Cz′ = Sz′ × (0,Y ) as depicted in red in the
figure:



An Ideal A Posteriori Error Estimator

• Local space: For z′ ∈ Ω a node, let Cz′ = Sz′ × (0,Y ) and define

W(Cz′) =
{
w ∈ H1(yα, Cz′) : w = 0 on ∂Cz′ \ Ω× {0}

}
.

• Local star indicator: The error indicator ηz′ ∈ W(Cz′) is given by∫
Cz′

yα∇ηz′∇w dxdy = ds

∫
Ω

fw(x, 0) dx−
∫
Cz′

yα∇V∇w dxdy,

for every w ∈ W(Cz′).

• Global error estimator:

ETΩ =

(∑
z′

E2
z′

)1/2

, Ez′ = ‖∇ηz′‖L2(yα,Cz′ ).



Anisotropic a posteriori error analysis

• Efficiency: For every node z′ ∈ Ω we have

Ez′ ≤ ‖∇e‖L2(yα,Cz′ ).

• Data oscillation: If fz′|K = 1
|K|
∫
K
f dx for every element K ⊂ Sz′ ,

then

oscTΩ
(f)2 =

∑
z′

oscz′(f)2, oscz′(f)2 = dsh
2s
z′ ‖f − fz′‖2L2(Sz′ )

• Reliability:
‖∇e‖2L2(yα,CY ) . E

2
TΩ

+ oscTΩ(f)2.

• Computable estimator: Restrict W(Cz′) to a discrete subspace

{W ∈ W(Cz′) : W |T ∈ P2(K)⊗ P2(I),∀T = K × I}

P2(K) = Q2(K) for rectangles, P2(K) = P2(K)⊕ B3(K) for
simplices.



Numerical experiment I

• Ω is the standard L-shaped domain in 2d.

• f = 1 which, for s < 1
2 , is incompatible with the problem and

creates a boundary layer.

• Experimental error and estimator: error computed against a very fine
discrete solution.
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• Optimal decay rate: We get DOF−1/3 for all s.



Numerical experiment II: Meshes

• Meshes: For s < 1/2 the solution exhibits a boundary layer.

s = 0.2 s = 0.8

• Question: Is there any theory on anisotropic adaptive
approximation�?

Back

�Cohen Mirebeau 2010–2012, Petrushev 2007–2009
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Multilevel methods

If you do not diagonalize, How do you solve the equations?
We use multilevel methods.

• We have a sequence of nested meshes T0 � T1 � · · · � TJ which
induces a sequence of nested FE spaces

V0 ⊂ V1 ⊂ · · · ⊂ VJ = V.

• Introduce the space macro and micro decomposition

V =

J∑
k=0

Vk =

J∑
k=0

Mk∑
j=1

Vk,j .

• Define a multigrid algorithm as a standard SSC� over this
decomposition.

• This setting allows for point and line smoothers.

�Xu 1992



Properties of the decomposition

Lemma (stability and inverse inequality)
Let v ∈ V and v =

∑N
i=1 vi be the line decomposition of v. Then we

have the norm equivalence

N∑
i=1

‖vi‖2L2(yα,C) . ‖v‖
2
L2(yα,C) .

N∑
i=1

‖vi‖2L2(yα,C).

Moreover, for every K ∈ TΩ we have

‖∇v‖L2(yα,K×(0,Y )) . h−1
K ‖v‖L2(yα,K×(0,Y )).

In both inequalities the hidden constant is independent of J and depends
on yα only through C2,yα .

• The proof relies fundamentally on the fact that yα ∈ A2.



Convergence rate�

Theorem (convergence of multigrid)
The contraction rate of the multigrid algorithm is

δ ≤ 1− 1

1 + CJ

where the constant C is independent of the mesh size, and it depends on
yα only through C2,yα .

Back

�Chen, Nochetto, Otárola, AJS 2015
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Space-time fractional parabolic problem

Let T > 0 be some positive time. Given f : Ω→ R and u0 : Ω→ R find
u such that

∂γt u+ (−∆)su = f in Ω× (0, T ] u|t=0 = u0 in Ω.

Here γ ∈ (0, 1].
For γ = 1 this is the usual time derivative, if γ < 1 we consider the
Caputo derivative

∂γt u(x, t) =
1

Γ(1− γ)

∫ t

0

∂ru(x, r)

(t− r)γ
dr = [I1−γ∂ru(x, ·)](t),

where Iσ is the Riemann-Liouville fractional integral of order σ.

Nonlocality in space and time!
We will overcome the nonlocality in space using the Caffarelli-Silvestre

extension.



Extended evolution problem
The Caffarelli-Silvestre extension turns our problem into a quasistationary
elliptic problem with dynamic boundary condition

−∇· (yα∇U) = 0, in C, t ∈ (0, T ),

U = 0, on ∂LC, t ∈ (0, T ),

ds∂
γ
t U +

∂U
∂να

= dsf, on Ω× {0}, t ∈ (0, T ),

U = u0, on Ω× {0}, t = 0.

Connection: u = U(x, 0), α = 1− 2s.
Nonlocality just in time!

Weak formulation: seek U ∈ V such that for a.e. t ∈ (0, T ),
∫

Ω

∂γt U(x, 0)φ(x, 0) dx+ a(w, φ) =

∫
Ω

fφ(x, 0) dx,

U|t=0 = u0

for all φ ∈
◦
H1
L(yα, C), where

a(w, φ) =
1

ds

∫
C
yα∇w · ∇φdxdy.



Discretization

• As in the elliptic case C is infinite, but we have exponential decay.

• This allows us to consider a truncated problem.

• In doing so we commit only an exponentially small error

I1−γ‖trΩ(U − v)‖2L2(Ω) + ‖∇(U − v)‖2L2(0,T ;L2(yα,CY )) . e−
√
λ1Y .

• For γ = 1�, we consider backward Euler:

◦ We initialize by setting V 0(x, 0) = u0.

◦ For k = 0, . . . ,K − 1, we find V k+1 ∈
◦
H1
L(yα, CY ) solution of

τ−1(V k+1(·, 0)−V k(·, 0),W (·, 0))L2(Ω)+a(V k+1,W ) = (fk+1,W (·, 0))L2(Ω),

for all W ∈
◦
H1
L(yα, CY ), where fk+1 = f(tk+1).

◦ Unconditional stability:

‖V τ (·, 0)‖2`∞(L2(Ω))+‖V
τ‖2
`2(
◦
H1
L

(yα,CY ))
. ‖u0‖2L2(Ω)+‖f

τ‖2`2(H−s(Ω)).

�For γ < 1 see Nochetto, Otárola, AJS 2016



Error estimates for fully discrete schemes�

Discretization in time and space: stability + consistency yield

• Error estimates for U : s ∈ (0, 1) and γ ∈ (0, 1)

[I1−γ‖trΩ(vτ − V τTY
)‖2L2(Ω)(T )]

1
2 . τθ + | log #TY |2s#T

−(1+s)
n+1

Y

‖vτ − V τTY
‖
`2(
◦
H1
L(yα,CY ))

. τθ + | log #TY |s#T
−1
n+1

Y .

• Error estimates for u: s ∈ (0, 1) and γ ∈ (0, 1)

[I1−γ‖uτ − Uτ‖2L2(Ω)(T )]
1
2 . τθ + | log #TY |2s#T

−(1+s)
n+1

Y

‖uτ − Uτ‖`2(Hs(Ω)) . τθ + | log #TY |s#T
−1
n+1

Y ,

where θ < 1
2 .

Back

�Nochetto, Otárola, AJS 2016



Outline

A posteriori error analysis

Multilevel methods

Time dependent problems

Elliptic obstacle problem

Parabolic obstacle problem



Formulation

• Given f ∈ H−s(Ω) and an obstacle ψ ∈ Hs(Ω) ∩ C(Ω̄) with ψ ≤ 0
on ∂Ω.

• Find u ∈ K such that

〈(−∆)su, u− w〉 ≤ 〈f, u− w〉 ∀w ∈ K

where
K := {w ∈ Hs(Ω) : w ≥ ψ a.e. in Ω}.

• Nonlinear and (because of (−∆)s) nonlocal problem!

• Use the Caffarelli-Silvestre extension.



Thin obstacle problem

• We convert the fractional obstacle problem into a thin obstacle
problem.

• The restriction U > ψ only applies when y = 0 (thin obstacle).



Truncation

• The domain C is infinite.

• The energy of the solution decays exponentially in y.

• We truncate the cylinder CY = Ω× (0,Y ) and consider a truncated
problem.

• In doing this we only commit an exponentially small error

‖∇(U − V)‖L2(yα,CY ) . e−
√
λ1Y /8.



Discretization

Discretize the truncation over an anisotropic mesh.

Theorem (�)
If U is the exact solution and VTY the discrete solution, then

‖U − VTY ‖ ◦H1
L(yα,C) . | log(#TY )|s(#TY )−1/(n+1),

where C depends on the Hölder moduli of smoothness of U and V,
‖f‖H−s(Ω) and ‖ψ‖Hs(Ω).

• Optimal regularity in Ω�: u ∈ C1,s.

• This implies that ∂αν U(·, 0) ∈ C0,1−s.

• For y “small” use that�: s ≤ 1
2 ⇒ V ∈ C

0,2s(CY ) and
s > 1

2 ⇒ V ∈ C
1,2s−1(CY ).

• For y “big” use� V ∈ H2(yβ , CY ) with β > 1 + 2α.

Back

�Nochetto, Otárola, AJS 2015

�Caffarelli, Salsa and Silvestre 2008

�Allen, Lindgren, and Petrosyan 2014

�Nochetto, Otárola, AJS 2015
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Formulation

• Define the energy

J (v) =
1

2
‖v‖2Hs(Ω) + 1K(v).

• We will study the (sub)gradient flow

ut + ∂J (u) 3 f u|t=0 = u0.

• Equivalently we have the evolution variational inequality

(ut, u− φ)L2(Ω) + 〈(−∆)su, u− φ〉 ≤ (f, u− φ)L2(Ω) ∀φ ∈ K.

• Or the complementarity conditions

min {ut + (−∆)su− f, u− ψ} = 0.



The Caffarelli-Silvestre extension and truncation

• We will again overcome the nonlocality with the Caffarelli-Silvestre
extension and consider

(Ut(·, 0), (U − φ)(·, 0))L2(Ω) +
1

ds

∫
C
yα∇U∇(U − φ) dxdy ≤

(f, (U − φ)(·, 0))L2(Ω)

for all φ ∈
◦
H1
L(yα, C) with φ(·, 0) ∈ K.

• We consider, again, a truncated problem over CY :

‖(U −V)(·, 0)‖L∞(0,T ;L2(Ω)) + ‖U −V‖
L2(0,T ;

◦
H1
L(yα,CY ))

. e−
√
λ1Y /8



Time discretization

• The energy J is convex and lower semicontinuous =⇒ ∂J is
maximal monotone.

• We use the implicit Euler method:(
V k+1 − V k

τ
(·, 0), (V k+1 − φ)(·, 0)

)
L2(Ω)

+
1

ds

∫
CY

yα∇V k+1∇(V k+1−φ) dx dy ≤
(
fk+1, (V k+1 − φ)(·, 0)

)
L2(Ω)

for all φ ∈
◦
H1
L(yα, C) with φ(·, 0) ∈ K.



Time discretization

The general theory of graident flows� yields:

• If u0 ∈ K and f ∈ L2(0, T ;L2(Ω))

‖(V − V )(·, 0)‖L∞(0,T ;L2(Ω)) + ‖V − V ‖
L2(0,T ;

◦
H1
L(yα,CY ))

. τ1/2.

• If u0 ∈ K ∩H2s(Ω) and f ∈ BV (0, T ;L2(Ω))

‖(V − V )(·, 0)‖L∞(0,T ;L2(Ω)) + ‖V − V ‖
L2(0,T ;

◦
H1
L(yα,CY ))

. τ.

These estimates are sharp!

�Nochetto, Savaré, Verdi 2000



Space discretization I: Minimal regularity

• Discretize in space using finite elements over an anisotropic mesh
TY .

• If the discrete initial condition V 0
TY

satisfies

‖∇V 0
TY
‖L2(yα,CY ) . ‖u0‖Hs(Ω).

then�

‖(V − VTY )(·, 0)‖L∞(0,T ;L2(Ω)) + ‖V − VTY ‖L2(0,T ;
◦
H1
L(yα,CY ))

.

τθ + ‖V −ΠV‖1/2
L2(0,T ;

◦
H1
L(yα,CY ))

.

where θ ∈ {1/2, 1} depends on the smoothness of f and u0

• No regularity assumptions!

�Otárola, AJS 2016



Space discretization II: Analysis with regularity

• Under certain conditions we have that�

ut, (−∆)su ∈ logLip((0, T ], C1−s(Ω̄)) s ≤ 1

3
,

ut, (−∆)su ∈ C
1−s
2s ((0, T ], C1−s(Ω̄)) s >

1

3
.

• With this regularity�

‖(V − VTY )(·, 0)‖L∞(0,T ;L2(Ω)) + ‖V − VTY ‖L2(0,T ;
◦
H1
L(yα,CY ))

.

τ + | log #TY |s

#T
− 1
n+1

Y +
#T

− 1+s
n+1

Y

τ1/2


+ ‖V −ΠV‖

L2(0,T ;
◦
H1
L(yα,CY ))

Back

�Caffarelli and Figalli 2013

�Otárola, AJS 2016
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