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Back to linear algebra |

If Ais symmetric, that is
AT = A

then it is diagonalizable.

e This means that there are Q orthogonal, and A diagonal, such that
A=QTAQ, QT=Q', A=diag{\i,...,\n}.
e In this case, the action w = Av can be described as follows:

o v = Qv is a change of basis.
o v = AV is a scaling in this new basis.
o w = QTAV is returning to the original basis.

e If, in addition, A is positive, that is
viAv > 0,

then all its eigenvalues are positive \; > 0.



Back to linear algebra Il
Why do we care about this? If A € R™*"™ is symmetric:
e With this we can define almost any function of a matrix via

e Solution of ODEs:

y(t)=Ay, t>0 y(0)=yo — y(t) = exp(tA)yo.

e Theory of iterative schemes: To solve Ax = f we can use a
two-layer implicit scheme

k41 _ ok
BE X | Axk =¥
o
with SPD preconditioner B. The analysis of such schemes can be

reduced to that of the explicit one

k+1 k

v —V

Y ¥ yovh=g
[0

where

vk = BY?xF  C =B '?AB Y% g=B'Y%.



Spectral theory 101
Question: What happens in infinite dimensions? In particular, for
differential operators?

A (the?) basic partial differential operator that expresses diffusion is the
Laplacian
n
82
A=Y
p 0x;

e Integration by parts shows that —A is positive
/ —Avvdx = / |Vol?dz >0, Yo e C5°(Q).
Q Q
e One can show that (—A)~!: L%(Q) — L?(2) is compact:
o There exist {\x, ox trew C RT x L?(Q) such that:

—Apr = Ak, Prlo =0

and {@x }ren is an orthonormal basis of L?(Q).
o This means that if w € L*(Q), then it has the following
representation

oo
w = Zwmpk wg = / wey dx.
k=1 Q2



The spectral fractional Laplacian |

e In addition, if w is sufficiently nice, then we have that

—Aw = Zkangk, WE = / WPk dx
k=1 Q

which is an analogue of the matrix case:

o The term wyg is a change of basis.
o Multiplication by the eigenvalue A\ is a diagonal scaling.
o The outer sum is returning to the original basis.

e We can now define functions of —A. For instance, if s € (0,1) and
w is sufficiently nice,

(=A)°w = Z WEAL Pk,
k=1

Questions: Why do we care? What is the domain of this operator? What
is its range?



The spectral fractional Laplacian |l

e The heat equation
Oyu — Au =0, Ujp—g = V

smoothens and smears the initial condition v. This could be used,
for instance, in image denoising. However, the effect of —A is too
strong. Thus, it can be weakened by

u+ (—A)°u=0, Ujp—g = V.

e Some special cases of random walks also lead to the fractional heat
equation®.

e Models in phase transition®: fractional Allen Cahn (o =0,
B € (0,1)) and Cahn Hilliard (o, 8 € (0,1)) equations

Ou+ (=A)* (e2(—A)Pu+ F'(u) =0,

8 \aidinoci 2017
& pinsworth and Mao 2017, Antil and Bartels 2018



The spectral fractional Laplacian Il

Original, noisy, regularized images for L? and H~! fidelity terms.
Top: s =0.42
Bottom: s = 0.35

Stolen from &.

8 Antil, Bartels 2017

or



Spectral theory 102

e Let £ be a symmetric second order elliptic operator, i.e.,
Lw = —-V-(aVw) + cw

with a € L>=(Q,S%) uniformly positive definite and 0 < ¢ € L>°(1).

e In a similar way we can define L§, the fractional powers of £
supplemented with homogeneous Dirichlet (or Neumann) boundary
conditions.

e From now on, and for simplicity only, we will only deal with the
Laplacian. Everything that we will say applies to L.



Goal

e Given a suitable f find u such that
(-A)u=f

in the sense described above.

e Where's the catch? The domain €2 can be quite general, so the
spectrum of —A is not readily available.



Domain, range, and regularity |

e Because of the way that we defined the fractional Laplacian we have
(—A)° :H*(Q) = H*(Q)
where
H*(Q) = {w = wepr: Y Awgl* < oo}
k=1 k=1
e It turns out that
(@), se (0,1,
H*(Q) = { H*(Q), s=
H3(Q),  se(31),

where the zero subindices mean “zero boundary values”.

e The fact that the domain has fractional Sobolev regularity reinforces
the idea that we are taking fractional order derivatives.



Domain, range, and regularity Il

If we wish to develop a rigorous numerical approximation of u, then we
must understand its regularity.

e From the definition it follows that, if f € H"(Q2), then
u € H"T25(Q), for all r € R.

e If r > —s this means that, at least for w € ,
u € H 2 (w).

e What about near the boundary? For z € ) let dist(x, ) be the
distance of  to 0

o If s # % then® there is a smooth function v such that
u(x) & v(z) + dist(z, 9Q) ™2

o lfs= % then we have the exceptional case?

u(x) = v(zx) + dist(z, Q) |log dist(z, 9N)| .

B Caffarelli, Stinga 2016
& Costabel, Dauge 1993
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Direct discretization

Given f € H™*(Q),
F=Y for: (“A)u=f=  u=Ff\’
k=1

Algorithm:
e Compute a “sufficiently large’ number of eigenpairs {\x, o }o_;.
e Compute the Fourier coefficients fj.
e Find the solution: u = fi A, *.
But
e How to choose N7
e VERY time consuming!

e Error analysis?



Error analysis |

The eigenpairs can only be computed approximately (read, via finite

elements). The error analysis in this case is as follows

E:
Let X be a Hilbert space and A be a positive definite self-adjoint
operator on X.

Let {Xp}r>o be a family of closed subspaces of X and A, is a
positive definite bounded self-adjoint operator on Xj,.

Inverse estimate: There is € : Ry — R with limp_,0£(0) = 0 such
that
1Al =
hll E(h)

Approximability: If Py is the orthogonal projection onto X,
(AR Po =AY fllx S () fllx
In this case, for s € (0,1), we have

(A Pr = A7) flix S e(h)’[1 Flix

& \atsuki, Ushijima 1993



Error analysis [l
In our case:

e X =L?*(Q), X}, is a (piecewise linear) finite element space,
A= 7A, and Ah = 7Ah.
e Since X}, consists of piecewise polynomials

1
Al S = =i
e For f € L*(Q2) we have
u=(—A)"f € H3() N H(©)

and, if up € Xp, is its finite element approximation:
up = (—Ap)"1 Py f, then Aubin—Nitsche duality yields

u—unllrz) S A |ulm2) S P2 fll 2
e The previous theory then gives
[(=A)*f = (=An) " Pufllrzi) S PN 2

We still need to compute (—Ay)~*!
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Computing the discrete spectrum

Evaluating the eigenvalues of —Ay, is time consuming: MTT, Lanczos, ...
Best uniform rational approximation (BURA)&: Assume we need to solve

Au=1~

where A is a rescaled version of (—Ap)*® so that its spectrum lies in (0, 1].
e Let 7, be analytic on (0, 1] and, for some constant € > 0 satisfies

sup [r(t) — 17| <,
te(0,1]

then, for every v € R and F € RY we have
[(rs(A) = AT*)F[|lav < el|F|l 4
e The previous result implies that, if u, = r,(A)A~!f, then
[, —ullar < elff[ 4
e Taking into account the discretization error, then (v = 0)
= unpllL2 ) S h* +e.

o Question: What i itable 1-,?

& Harizanov, Lazarov, Margenov, Vutov 2016



BURA

e We choose 7, as the best uniform (1m, k)-approximation to t'=*
e Apply a partial fraction decomposition to ¢~ 1r(t):

m kot L2 Bit+C
th+ Z Z )7+ D7

where k = p1 + 2ps.
e To compute u, = A~ 17 (A)f we need to evaluate

m—k—1
ATl (A= > b A+ AT 1f+Zc] (A—d;7)™
Jj=0 Jj=1
D2
+) (BjA+CI)(A—F;I)* + D) 'f
Jj=1

e How do we choose m and k? This is classical in rational
approximation. For the optimal choice we have m = k and

e <42 %|sin7(l — s)|e 2TV A9k

so that, for this choice, the error decays exponentially in the
polynomial degree.



Outlook

To solve
(A u=f
with BURA we must:
e Solve O(|logh|) problems of the type (—Ap + cI)w = g.
e Embarrassingly parallelizable.
e Error estimate
=l L2y S h*.
Questions:
e Other norms?
e Other types of problems? Time-dependent? Nonlinear?

e Stability? It is known that rational approximations are very sensitive
to numerical rounding.
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The Balakrishnan formula
e Notice that, for A > 0 and 6 € (0,1)

sin w6 /oo =T 4 )~ de = A0,
0

™

e Functional calculus then says that, if X is a Hilbert space and A is a
self-adjoint and positive operator on X:

sin 76

AP = AA = A

/ N A+ t7) 7 de.
0

o Let X = L?(Q2) and A = —A, then
(8)~ = (&) (-a)=
— (—a) I (—a)Snmd =) /Oo £ — A) dt
0

™

sinms

/ t5(tT — A)"tdt

™ 0

where we used the previous formula with § =1 — s.



Numerical scheme

Using i
sinm

(—A)™* = /OOO t5(tT — A) "t dt,

™

we can formulate the following game plan to devise a numerical scheme®:

e Step 1: Use a quadrature for the t variable:

sin s

J
kY (6T - A)7 S

Jj=0

(-A)*f =~

™

e Step 2: Use standard finite element methods on the same mesh to
approximate

wj € H& (Q) : tjwj — ij = f in Q,

i.e., w; = (ILJI — A)ilf.
e Step 3: Gather all contributions.

Fponito, Pasciak 2015



Step 1: Sinc quadrature

e Change of variable: Let t = €Y to get

= (—A) " f = sin(7s)

™

/ =W (VT — A) "L dy.

e Quadrature: Given N € N, define k = 1/\/N y; = jk and the
quadrature approximation

. N
uN = QN f = Mk 3 0w — A)y
™

j=—N

e Exponential convergence: Let s € [0,1) and r € [0,1]. If f € H"(Q),
then
lu =M@ £ NI f o).

~



Steps 2 and 3: Finite element approximation and
parallelization

e Let X} be a finite element space over €2, and assume that the mesh
is quasiuniform.

e w) € X, are the finite element solutions of
(eI - A)w = f.

e These can be solved independently (embarrassingly parallelizable)
and then gathered to obtain

_ sin(7s) . Z (1=9)y; 4



Error analysis

For simplicity, assume that  is convex.
e For r < 2s define

1
=g (a + min{l — r,a}), o = max{2a, — 2s,0}.

If f € () then
lu = up a0y S B> [1og B[ f|lae -
e Setting r = s we get
lu = up s @) S B2 fll2-20 ),

which is “optimal” in order 2 — s and regularity f € H2725().
However, this requires u € H?(£2), which is not generic!



Outlook

To solve
(&) u=f
with the Balakrishnan formula we must:
e Solve O(|log h|) problems of the type (e¥Z — A)w = f.
e Embarrassingly parallelizable.

e Error estimate

= up s @) S 775N fllme-2s @),

Questions:
e Other types of problems? Time-dependent? Nonlinear?

e Lower regularity on f? How can we capture the boundary
singularities of u?
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(—A)'/2: The Dirichlet to Neumann operator |
o Letu:R"” — R.

e Extend it harmonically to RT‘I
—AU =0, inRY, U(-0)=u
e The Dirichlet to Neumann map is

DtN : u — —0,U(-,0).

A yeRT
—AU =0
' e R?

U =u on R™



(—=A)'/2: The Dirichlet to Neumann operator I

The Dirichlet to Neumann map
DtN : u — —0,U(-,0).

has the following properties:
e DtN? = —A: Indeed, since —Ap U = =Apld — 352/1 =0,

DtN?u = 9, (3,U(-,0)) = —A U(-,0) = —Aru.

e DtN is positive: Since U is harmonic

0=— AUU dz dy = / |VU|? dz dy +/ d,UU dz.
Ry H Ry R™
On the other hand
/ uDtNudz = — O,UU dxz > 0.
n R"L

Thus, we define

N

DtN = (—A,)?7, (—A,)7u=d,U.
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The a-harmonic extension |
The previous extension property can be generalized to any s € (0, 1)5/

Yy
U : div(y*VU) =0

ui(-Ayu=f

Q

e se(0,1)anda=1-2s€ (—1,1).
o Jyald = —limy o y*0,U = dsf on Q x {0}.
e d, =2°T'(1 —s)/I'(s).

E/Caffarelli, Silvestre 2007; Cabré, Tan 2010; Capella et al. 2011; Stinga, Torrea 2010-2012; MolZanov, Ostrovskil 1969



The a-harmonic extension Il

Fractional powers of —A can be realized as a generalization of the
Dirichlet to Neumann operator:

02U + %ayu +AU=0 inC

U=0 on 0,.C — (“A)u=finQ
Opeld = d f on 2 x {0}
u=1U(-0).

Here: 0s.
e C =0 x(0,00).
e a=1-2s¢€(—1,1).
o Jyold = —limy o y*O,U =
ds f.
e d, =2°T(1 —s)/I'(s).




The a-harmonic extension Il

Why does this make sense?
e For A > 0 and g € R consider the ODE:

1-2

¢”+TS¢’7A1/;:0, in (0, 00),
—limy' 2%y’ = d,, lim =0.
lim y Y =d, moolﬁ(y)

e This is a Bessel equation with solution
bly) = CA™ (Viy) Ko(VAy)

where K is the modified Bessel function of the second kind.

e It is well known that K (z) = az™® 4+ o(z~%), with a > 0 as z | 0.
Thus

Y(y) = csA™* (\[\g/)s (a(\f/\y)‘s) —acs A%, ylO0.

e Choosing C; appropriately we get 1(0) = A™%.



The a-harmonic extension IV

e Recall that

F= fep €HAQ), (—A)Yu=f, = u=3 A\'fig

k=1 k=1

e Applying separation of variables to the extension problem®

= Zukgok(x = U(z,y) Zukgok
where the functions ;. solve
o ) )
v+ 51/); = MWk, in (0,00), ¥ (0)=1, lim ¢.(y) =0.

so that, as before,

= (V) KoV ),

8 Capella et al. 2011



Weak formulation

e Multiply V-(y*VU) by a test function ¢ and integrate over the
cylinder C to obtain a possible weak formulation

[vevu-vodsdy=d. [ fotw0de. voe .0
c Q
e Where the energy space is
LZ(yO‘,C) = {w : / |w|2ya dxdy < oo}
c

H}(y*,C) = {w e L*(y*,C): Vw e L*(y*,C), wlo,c =0} .

ol L L L L L L L L L ,
o o0z 04 06 08 1 12 14 16 18 2

The weight y© is degenerate (« > 0) or singular(a < 0)!



Muckenhoupt weights

For every a,b € R, with a < b,

1t 1P
m/ Iylady-m/ ly[*dy S 1

which means y® belongs to the Muckenhoupt class As.

This condition, essentially, means that y® behaves like a constant at
every scale!

Since y® € Aj:

The Hardy-Littlewood maximal operator is continuous on L?(y%,C).

Singular integral operators are continuous on L?(y®,C).
L2(y*,C) = L}, (C).

H'(y~,C) is Hilbert and C;°(C) is dense.

Traces on 0r,C are well defined.



Weighted Sobolev spaces

e Weighted Poincaré inequality:
/ya|w\2dxdy§/y“\Vw\2dxdy Vwef[i(yo‘,C).
c c

e Surjective trace operator trq : ﬁi (y*,C) — H5(2).
e Lax-Milgram = existence and uniqueness for every f € H°(Q).
Also

led|1%

fr ey I

12315(9) = dSHfH]%I—S(Q)'
We will discretize the a-harmonic extension!
V-(y*VU)=0 inC

UeHiy>,C): U=0 on 9r.C
Opeld = dsf on Q x {0}



Advantages and disadvantages

Advantages:
e Implementation requires standard numerical PDE components.

e |t is very flexible as we will see later.
Disadvantages:
e One extra dimension! We have efficient solvers, and we will see later
how to minimize the effect of .
e Singular/degenerate weight y*7? The weight y* € A, for which
there is a very well developed theory.
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Solution representation

e Recall that we found, via separation of variables

2) = SN fapr(r) = Ulz,y) = ZA °* frepn()Pr(y),

The pairs {\g, i }72, are the eigenpairs of the Laplacian.

The 9y, are .
o) = es (VAky) Ko(ve),

where K is the modified Bessel function of the second kind.

The function vy, satisfies, as y — oo,

- (\/Ey)sq/z VY

The function vy, satisfies, as y — 0,

Vi) Ry, ) Ry



Global Sobolev Regularity®

e Compatible data: Let f € H'~*(Q2), which means that f has a
vanishing trace for s < 1.

e Space regularity:
18U 2y ) + 10y Vald 2 (o 0y = dsll -+ (o)
e Regularity in extended variable y: If s # % and 8 > 2« + 1 then

10y Ull L2y .c) S I fllz2()-

If s = =, then

1

21
Ul 20y S 1S vz a)-

e Elliptic pick-up regularity: If Q convex, then

lwll g2 S 1Azwl[z2) Yw € H*(Q)N Hy(Q).

Under this assumption, we further have

ID2U | r2(yo 0) S I f I[-s(q)-

& Nochetto, Otérola, AJS 2015



Analytic Regularity®
e Behavior of 1(z) = ¢s2° K4(z) near z = 0:

¢
L)

e < Cdgl)z% ",
z

where dy = 21725T'(1 — 5) /T'(s).
e Behavior of ¥(z) for z large:

d‘ .
Wﬂ’(@ <O lle s tmze (1792
P

e Global regularity of U: If 0 < v < sand 0 <v <1+ s, then there
exists k > 1 such that
Ha§+1u||L2(wa+2272f/,77C) S Hprl(g + 1! ||f||H*S+f’(Q)a
V205 T UN 2w saes1)20mi0) S ETHE+ DU flli-esv ()
<

|AL05 U 2 L+ DV Fll-ese 0,

(Wa+2(£+1)72y,~,7c)

with weight ws - () = ¥%e7,0 < v < 2V/\;.

& Banjai, Melenk, Nochetto, Otdrola, AJS, Schwab 2018
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Domain truncation

The domain C is infinite. We need to consider a truncated problem.
Theorem (exponential decay)
For every v > 0

U]l S eV fla-

HE (y*,Qx(9,00)) ~ ()

Let v solve
V- (y*Vv) =0 in Cy =2 x (0,9),

v=20 on 9rCy U x {9},
al,oc’l} = dsf on 2 x {0}

Theorem (exponential convergence)
For all v > 0,

U = vl 5 S eV f -0

Hl(ac)/\/



Finite element method |: Mesh

Let Jo = {K} be triangulation of Q (simplices or cubes)
e 7, is conforming and shape regular.
Let 9, = {T'} be a triangulation of Cy into cells of the form

T=KxI, Ke&c%, I=/ab).

Uy, ~ 1y~ 1 as y ~ 0+ so we consider anisotropic elements

0.6+

o4 Shape regularity condition
does NOT hold!

0.2

0.0



Finite element method Il: Spaces

We only require that if T = K x I and 7" = K’ x I’ are neighbors

ﬂzl
iy

This weak condition allows us to consider anisotropic meshes
Define

={W e CCy) : Wir € PL(K)®P1(I), Wir, =0}
with T'p = 0;,CUQ x {9’}, and
U(Jo) = tra V(Ty) = {W €C’(Q) : Wik € P1(K), Wipo =0} .

Here P; = Py if K is a simplex and P; = Q; if is a "brick”.



Finite element method Ill: Discrete problem

e Galerkin method for the extension: Find Vi € V(7,) such that
/ y*VVg VW dxdy = ds/ fW(z,0)dz, YW € V(7).
Cy Q

e Define
Uz, = Vz, (-,0) € U( ).

e A trace estimate and Céa's Lemma imply quasi-best approximation:

lu=Usz,|

y"‘,Cy) = Wel%}(fyy) HU_ W”I-Oli(y“,Cy)

() S llv— V%”ﬁi(
We reduced the error analysis to a question of approximation theory
in weighted spaces. Usually we set W =IIv € V(Zy) where Il is a
suitable interpolation operator.



The quasi-interpolation operator

We introduce an averaged interpolation operator IT&

g(z) = QT ¢(2).

where Q7'¢ is an averaged Taylor polynomial of ¢ of degree m.
Notice that:

e This is defined for all polynomial degree m and any element shape
(simplices or rectangles).

e We do not go back to the reference element — This is important for
anisotropic estimates.

If the mesh is rectangular and Cartesian If R and S are neighbors
Z6 Z8

hi/hiy <1, i=T1,N. .

3
hp

zZ1 z3

EDura’n, Lombardi 2005; Dupont, Scott 1980; Sobolev 1950



Error estimates on rectangles®

Theorem
Ifw e Ay(RY), and ¢ € W (w, Sg)

N
16 = T Lo (i) S D Wil 0l Lo (o,5m)-

=1

If § € W2(w, Sg)

N
10;(6 = )| oo,y S D PRl 0056 Lo (w0,5m)-

=1

N
16 =Tl o, r) S D hrhRll 0050l Lo (w,50)-

i,7=1

e Directional estimates: note the products of the form
i
h'RhR||01‘ai¢||LP(w,SR)-
e Estimates on simplicial elements, different metrics and applications.

& Nochetto, Otérola, AJS 2016



Error estimates. Quasiuniform meshes

On quasiuniform meshes hy = hy =~ hy for all T € Z, then

Theorem (error estimates)
The following estimate holds for all ¢ > 0

V(v =V )llrzecry S hxllOyVarvllLze ey +hi N0yyvllL2(ys c)
S P flle-s )

Consequently,

lu — Uz llms ) S * I flla—s)-

e This is suboptimal in terms of order (only order s — ¢)

e Is it sharp?



Numerical experiment. Quasiuniform mesh
Let @ = (0,1) and f = % sin(rz), then

21—sﬂ.s
“=T0)

sin(ma)y® Ks(my)

If s =0.2, then

The energy error behaves like DOFS™%! ~ h92 as predicted!



Error estimates. Graded meshes
We use the principle of error equilibration. We use a graded mesh on

(0,9) -
yi=2({) . 7=0M, ~>1

Uyy ~ y~ 1 = energy equidistribution for v > 3/(1 — a).

Theorem (error estimates®)

If f e H'™%(Q) and ¥ =~ |log # Ty

1

N
lu=Ug, s () = IVU=Va ) L2(ye0) S Nog #T5[*# Ty " (| f -+ ()

or equivalently

lu — Uz =) S 110g Tal* T ™ e+ c-

e This is near optimal in terms of regularity of u € H'**(Q2) and
almost linear decay rate in h.
e This is suboptimal in terms of total number of degrees of freedom

1
H Ty = #QQH" > #.9 with respect to the degrees of freedom in
Q

& Nochetto, Otérola, AJS 2015



Numerical experiment

Experimental rates for circle and s = 0.3 and s = 0.7.
Set 0 = D(0,1) CR?, f = jfflJl(jl,lr)(Am cos(8) + By 1 sin()).
With graded meshes:

Error

10° 10* 10
Degrees of Freedom (DOFs)

The experimental convergence rate —1/3 is optimal!
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Diagonalization |

Discretization in y: Let GM be an arbitrary mesh in (0,9) with
M = #GM and let S*(0,9;G™) be a FE space of polynomial
degree r in y.
Define

Vig(Cy) = Hg (@) @ §7(0,9;,6™).
FE in gy, continuous in z.

Semidiscrete solution: Uy € V%, (Cy) satisfies
/ y*VUMVodzdy = ds/ fo(x,0)dz Vo € Vi(Cy).
Cy Q

Exponential convergence: Let f € H 5T/ (Q) for 0 < v < s. If
> ~ M, the mesh GM is geometric towards y = 0, and the
polynomial degree r grows linearly from y = 0, then there exists
b > 0 such that

V(U —Un)

o) S e M| fllu-str (0)-



Diagonalization Il

e Eigenvalue problem: Let M = dim S*(0,9;GM) and (u;,v;), be
the (normalized) eigenpairs of

b e
p / Yo () (y) dy = / yopuwly)dy  Vw e ST(0,9:6M).

e Representation: If Uy (z,y) = Z;\il Uj(z)v;(y) with U; € H (),
then

au; U, V)= dS’Ui(O)/ fVdx YV € HY(Q),
Q
where a,,, o are the singularly perturbed bilinear forms

a, o(U, V) ::/ (VL UV, V dz +UV) dz
Q



Tensor product discretization
e Ritz projections: II,u € S(.7,) satisfies
ay; ou—ILu,v) =0 Yove S§(%),

where S{(7a) C H(Q) is the FE space of piecewise polynomials of
degree < q over g

e Discrete solution: Let Uy, s € S3(Z0) @ S™(0,7;GM) satisfy
/ Yy VU, MVV dzdy = ds/ fV(2,0)dx, YV € S§(Ta)@57(0,9;GM)

Cy Q

and note that it can be represented as follows

Unm(z,y) = ZHU

e Parallelization: This corresponds to solving M decoupled elliptic
problems with the singularly perturbed bilinear form a,,, o for

i=1,..., M.



Tensor P{-FEM

e Assume that f € L?(2) where Q) C R? is a polygon with corners c.
e The solution to

“Ayw=f inQ w=0, on N =
e P A N

e This type of singularity can be captured by using a graded mesh in
Q: Let 9, be graded towards the re-entrant corners so that, if
N =#9, and h = N~Y/2, for any w € S$(Ta)

Nllw — Hw”%?(ﬂ) S HwH%Il(QV N2Hw - Hw||2L2(Q) S ||w||ir§(fz)-
e With this construction we obtain that, if Qé‘/f is a suitably graded

radical mesh {y; = (ﬁ')ny}iﬂio, with s > 1 and
M~Nz = (#ﬂg)%, the discrete solution U}, ps satisfies

|u —tra Un mllms ) < Rl flla-s @)

and

1
dimV,lL’jw(fQ,gM) ~ h™3log|logh| ~ Nsll+2 log log Ng.



Sparse grid FEM

1
Complexity of tensor product: N;f? is suboptimal.

e To overcome this we use a sparse grid space. Let

Vit = Y SHT) @ 8N 0,962 ),

2,00, 00/ <L

where Zf and gge are nested meshes of levels £ and ¢’ graded
towards corners c of €2 and y = 0, respectively.

We have the error estimate: Let 1 <v <14s, n(v—1) > 1, and
v & |loghg|. If f € H™5t7(Q), then Uy, € V' (Cy) satisfies

U = ULllLz(yoc) < hrlloghrl || flla-<+v (),
dimVlL’l(Cy) < Ng loglog Ngq.

The complexity of sparse grids is quasi-optimal in terms of Nq.



hp-FEM in y and P1-FEM in Q

e Graded geometric mesh: Let GM = {Q’UM*i}j\il with o < 1.
e Data regularity: f € H'=%(Q) and Q C R? is a polygon with corners
c.

e FE space: V,ll’ﬁw(ﬁg, GM) is the space of piecewise polynomials of
degree one over 7, and piecewise polynomials of degree r growing
linearly from 1 over Qy.

e Error estimates: Let 7, be a suitably graded mesh towards the
re-entrant corners c. If 9 ~ |logh| and Up ar € V};‘}w(%,gy) is
the Galerkin solution, then

VU = Unao)llL2ec) S P a2 o)
dim V", (Z0,G3") & h™2|log h|* ~ Na|log No|

e Complexity: This is quasi-optimal in terms of Ngq.



hp-FEM in y and €2

e Data regularity: The domain Q C R? and f are analytic.

e Graded mesh in ©: The mesh .7, is anisotropic and graded towards
0 so that it resolves the smallest scale paq of the singularly
perturbed problems originating from the diagonalization.

e Graded mesh in y: Let g{,” = {D’UM_i}?il with o < 1.

e Error estimate: If % ~ M, r grows linearly from y = 0, then the
Galerkin solution Uy, v € SE(T0) ® ST(GM) and the total number
Nq,y of degrees of freedom satisfy

VU = Unni)lp2(ye 0y S M2e P + e M
NQJ/ ~ q2M3.

e Exponential rate of convergence: If ¢ &~ M, then

5

ANEYA:
HV(Z/[ — L‘T}l-x\f)HLQ((I/“‘C) S e U Naly



Numerical experiment. Performance of tensor FEMs
e Data: 2 L-shaped domain in R?; f =1; s = 3/4.

e Error: It is always measured in the energy space H*(Q2).

10°
—— tensor grid
- = =sparse grid
hp-FEM+P,-FEM
107
o
S
g
102
10 -3 1 1 L
102 104 108 108 101

degrees of freedom

e Conclusions: Both sparse grid FEM and hp-FEM reduced
substantially the DOFs relative to tensor FEM and deliver
quasi-optimal complexity.
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The Caffarelli-Silvestre extension
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Outlook |

e PDE approach. The extension converts the nonlocal problem into a

local PDE problem in one higher dimension. This is very flexible:

o Parabolic problemsﬂ

o Stationary5 and time dependenti obstacle problems.

e We have a complete and quasi-optimal a priori error analysis over
anisotropic meshes. The complexity, in terms of total degrees of
freedom, is:

o Py — Py-elements: suboptimal complexity and linear rate for 2
convex and compatible data. Extension to non-convex domains.

o Sparse tensor P1 — IP1-elements: quasi-optimal complexity and linear
rate for €2 polygonal with compatible data.

o hp-elements: quasi-optimal complexity and exponential rate for
analytic but incompatible data.

o We also have multigrid methods® , a posteriori error
estimators?

8 \ochetto, Otérola, AJS 2016

& \ochetto, Otérola, AJS 2015

& 0tsr0la, AJS 2016

& Chen, Nochetto, Otarola, AJS 2016
& Chen, Nochetto, Otérola, AJS 2015



Outlook Il

Questions:

e Adaptivity: Convergence and optimality is still open (issue is
anisotropic meshes and lack of shape regularity).

e 3d-computations: A virtual implementation of extended variable is
open.

e Theory and implementation of 3d hp-FEM are open.
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Adaptivity

Adaptivity is motivated by:
e Computational efficiency: extra n + 1-dimension.

e The a priori theory requires:

o Regularity of the datum: f € H'~*(Q).
o Regularity of the domain: Q is C'"'! or a convex polygon.

If one of these conditions is violated, the solution &/ may have
singularities in £ which lead to fractional regularity.
Quasiuniform refinement of €2 would not result in an efficient
solution technique.

We need anisotropic a posteriori error estimators.



Adaptive Loop

We consider an almost standard adaptive loop:
SOLVE — ESTIMATE — MARK — REFINE

except for the statements in red below:
e SOLVE: Finds the Galerkin solution V.
e ESTIMATE: Computes a star-indicator &,/ for every node 2’ € Q.
e MARK: For 8 € (0,1) choose a minimal subset of nodes M:

Eu= > & >6¢%.
z'eM
e REFINE: Given a set of marked nodes M
o Refine the cells K > 2’ for all 2/ € M to get %

o Create an anisotropic mesh {u]}}il so that grading y; = (ﬁ)'Y
holds.

o The refined mesh is Zy = 7, x {I} with T = [y;_1,y;].
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Isotropic a posteriori error indicators

e Residual error indicator: If we were to integrate by parts the discrete
problem over an element T € 7, we would get

/ POVVVW = [ ) WVVw— / V-(y*VV)W
T T

T
Since « € (—1,1), the boundary integral is meaningless for y = 0.
e Alternative error indicators: Residual indicators are not the only
possibility:
o Local problems on stars: &2 = [ y*|VZ|> (Z solution of a
BVP in S.).
o Zienkiewicz-Zhu estimators.
o Hypercircle estimators.

e Local problems on stars: We prove for all nodes z € N

E2SIV@=V)Za(yes,) S E2 +osc(y™,V, £, 8:)?



Numerical Experiment with Isotropic Refinement

e Set Cy = (0,1) x (0,4) and u = sin(7x)

e Experimental convergence rates:

-1

10

Error

-2

10

1‘4

0 10°
Degrees of Freedom (DOF's)

10

e The error decays like (#.7y)~(1=12)/4 as in uniform /isotropic
refinement!

e Does adaptivity help?
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Anisotropic Error Estimation

e Anisotropic a posteriori error estimator: we need to distinguish the
behavior on the extended variable y from the rest.

e The theory of a posteriori error estimation (and adaptivity) on
anisotropic discretizations is still in its infancy.

e Cylindrical stars: We propose an error estimator based on solving
local problems on sets C., = 5., x (0,9) as depicted in red in the
figure:

DB: 5531 ik
Cycle: 31

user: abnersg
Wed Mar 6 20:49:48 2014



An ldeal A Posteriori Error Estimator

e Local space: For 2z’ € Q a node, let C., = S,/ x (0,9) and define
W(C.)={we H' (y*,C.) : w=00ndC, \Qx{0}}.

e Local star indicator: The error indicator 7, € W(C,/) is given by

J

for every w € W(C,).
e Global error estimator:

1/2
5%:<Zé’z2'> o Eo =IVnllrae e

y*Vn,Vwdzdy = ds/ fw(z,0)dx 7/ y*VVVwdzdy,
Q c.

=/



Anisotropic a posteriori error analysis

e Efficiency: For every node 2’ € Q we have
€ < |Vellzagyec.h)-

e Data oscillation: If f,/x = ﬁ S5 [ da for every element K C S,
then

osca, (f)? =Y osear (f)?, oscar(f)? = dshZ | f = forlliags,,)

e Reliability:
2 2 2
IVellzzyocpy S E5, +o0sca, ()7
e Computable estimator: Restrict W(C,/) to a discrete subspace

{WeW(C,): Wip € Po(K)@Py(I),VT = K x I}

P2(K) = Q2(K) for rectangles, Po(K) = Po(K) @ Bs(K) for
simplices.



Numerical experiment |

e () is the standard L-shaped domain in 2d.

e f =1 which, for s < % is incompatible with the problem and
creates a boundary layer.

e Experimental error and estimator: error computed against a very fine
discrete solution.

Estimator

10° 10° 10* 10 10
Degrees of Freedom (DOFs) Degrees of Freedom (DOFs)

e Optimal decay rate: We get DOF /3 for all s.



Numerical experiment Il: Meshes

e Meshes: For s < 1/2 the solution exhibits a boundary layer.
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e Question: Is there any theory on anisotropic adaptive
approximation®?

& Cohen Mirebeau 2010-2012, Petrushev 2007-2009
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Multilevel methods

If you do not diagonalize, How do you solve the equations?
We use multilevel methods.

e We have a sequence of nested meshes 7 <X .77 < --- < .7 which
induces a sequence of nested FE spaces

VoCV;C---CV;=V.

Introduce the space macro and micro decomposition

J J My
V= ka = szk,gﬂ
k=0 k=0 j=1

Define a multigrid algorithm as a standard SSC# over this
decomposition.

This setting allows for point and line smoothers.

& 1092



Properties of the decomposition

Lemma (stability and inverse inequality)

Letv eV andv = Zi\il v; be the line decomposition of v. Then we
have the norm equivalence

N N

D lvilfage o) S lollzage ey < levz\ILZ(y )

i=1

Moreover, for every K € T we have

IVl 2(ye kx 00)) S b [0l L2 yo, o x (0,9))-

In both inequalities the hidden constant is independent of J and depends
on y® only through Cy ya.

e The proof relies fundamentally on the fact that y* € As.



Convergence rate?

Theorem (convergence of multigrid)
The contraction rate of the multigrid algorithm is

1
0<1—-
- 1+CJ

where the constant C' is independent of the mesh size, and it depends on
y< only through Cs yo.

& Chen, Nochetto, Otérola, AJS 2015
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Space-time fractional parabolic problem

Let T > 0 be some positive time. Given f: — R and uy : Q — R find
u such that
u+ (—A)u=finQx(0,T] ul=o=1u in Q.

Here v € (0,1].
For v = 1 this is the usual time derivative, if v < 1 we consider the
Caputo derivative

Ouot) = rr [ G ar = (o, ),

where 19 is the Riemann-Liouville fractional integral of order o.

Nonlocality in space and time!
We will overcome the nonlocality in space using the Caffarelli-Silvestre
extension.



Extended evolution problem

The Caffarelli-Silvestre extension turns our problem into a quasistationary
elliptic problem with dynamic boundary condition

V- (yVU) = 0, inc, te0,T),
U =0, on 0rC, t € (0,T),
- ou
dsatu + 6? = dsf, on ) X {0}, te (O,T),
U = up, on Q2 x {0}, t=0.

Connection: u =U(z,0), a =1 — 2s.
Nonlocality just in time!

Weak formulation: seek ¢ € V such that for a.e. t € (0,7,

/ U (z,0)8(z,0) dz + a(w, ¢) = / fo(e.0)d,
Q Q
Uji=o = uo

for all ¢ € H(y™,C), where
1

alw,0) = 5

/yan -Vodxdy.
C



Discretization

e As in the elliptic case C is infinite, but we have exponential decay.
e This allows us to consider a truncated problem.

e In doing so we commit only an exponentially small error
I jtro (U — U)||2L2(Q) + VU - U)H%Z(O,T;L2(ya,cy)) Se VA

o For~y = 15, we consider backward Euler:
o We initialize by setting V°(z,0) = uo.
o Fork=0,...,K—1, we find V¥*! ¢ H}] (y*,Cy) solution of

THVERL L 0) =V, 0), W (-, 0)) g2y +a(VEFL W) = (F*H W (-, 0)) 2o

for all W € HL(y,Cy), where f*+1 = f(tk+1),
o Unconditional stability:

T 2 T2 2 T2
IV7(5 0)[le 20y HIV ”e%ﬁi(ya,cy)) S lluollzz )+ ez = (0y)-

Fror v < 1 see Nochetto, Otérola, AJS 2016



Error estimates for fully discrete schemes®

Discretization in time and space: stability + consistency yield
e Error estimates for U: s € (0,1) and v € (0,1)
1—v T T 2 L 6 2s %
L tra(v™ = Vg ) 12(0)(T)]2 S 7° + [log # Ty # T,y

-1

T T [ s nt1

v _Vyy||22(ﬁi(ya7cy)) S0+ [log #. 7| #yy .
e Error estimates for u: s € (0,1) and v € (0,1)

—(14s)

S0+ |log# T # T, T

N|—

[ [u™ = U320y (T)]

=1
||uT — UTHp(Hs(Q)) 5 7'9 + |10g #yy|s#9yn+1’

where 0 < %

& Nochetto, Otérola, AJS 2016
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Formulation

e Given f € H™*(2) and an obstacle 1 € H*(Q) N C(Q) with ¢ <0
on 09Q.

e Find u € K such that
(=AY’ u,u —w) < (fu—w) YweK

where
K:={weH(Q): w>1ae in Q}.
e Nonlinear and (because of (—A)#®) nonlocal problem!

o Use the Caffarelli-Silvestre extension.



Thin obstacle problem

e We convert the fractional obstacle problem into a thin obstacle

problem.
x2
A
U : div(y*VU) =0
L
A
Y
| =Y
U >1Y wheny =0 L1

e The restriction U > v only applies when y = 0 (thin obstacle).



Truncation

The domain C is infinite.

The energy of the solution decays exponentially in y.

e We truncate the cylinder Cy = 2 x (0,9") and consider a truncated
problem.

In doing this we only commit an exponentially small error

IVU = V)L2yec,) S e"VMI/E,



Discretization

Discretize the truncation over an anisotropic mesh.

Theorem (&)

IfU is the exact solution and Vg, the discrete solution, then
_ o —1/( n+1)

where C depends on the Holder moduli of smoothness of U and V,
| fllez—+ () and [|¥|lms (o)

Optimal regularity in Q&: v € 5.

This implies that 9%U(-,0) € C%1=3,

e For y “small” use that®: s < % =Ve CO’QS(CD,) and
s> % =Ve Cl,zs—l(cy).

For y “big” use® V € H?(y?,Cy) with B > 1+ 2a.

& \ochetto, Otérola, AJS 2015

B Caffarelli, Salsa and Silvestre 2008
B pllen, Lindgren, and Petrosyan 2014
& Nochetto, Otérola, AJS 2015
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Formulation

Define the energy

1
T () = vl fre() T 1 ().

We will study the (sub)gradient flow

ug + 07 (u) > f Ult=0 = ug.

Equivalently we have the evolution variational inequality

(ug,u — @) 2y + (A)°u,u — @) < (f,u—9)r2) VoK.

Or the complementarity conditions

min {us + (=A)°u — f,u— ¢} =0.



The Caffarelli-Silvestre extension and truncation

e We will again overcome the nonlocality with the Caffarelli-Silvestre
extension and consider

U, 0), @ — 6)(,0)) ey + /C YUY (U — ) dady <
(f, U = ¢)(+,0))2(0)

for all ¢ € HL(y,C) with ¢(-,0) € K.
e We consider, again, a truncated problem over Cy:

U =V)(,0)[| Lo 0,1:22(0)) + IU — V”L?(O,T;ﬁi(ya,cy)) S e VhoYs



Time discretization

e The energy J is convex and lower semicontinuous =— 9.7 is
maximal monotone.

e We use the implicit Euler method:

(Vk+1 _ Vk

T

(-.0), (VA1 ¢><-7o>)

L2(Q)

1
+d7 . yavvk+1v(vk+l_¢) dz dy < (fk+17 (Vk+1 - (b)(a 0))L2(Q)
$ JCy

for all ¢ € HL(y,C) with ¢(-,0) € K.



Time discretization

The general theory of graident flows® yields:
o Ifug € K and f € L2(0,T; L?(2))

o < r1/2
L2(0,T5H , (y*,Cy)) ™~ '

1V =V)(,0)llLe 0,520 + IV =V
o If ug € KNH2(Q) and f € BV(0,T; L?(2))

IV = V) 0)llo.r522(2)) + IV =V T.

o <
L2(0,T;H (y>,Cy)) ™~

These estimates are sharp!

& Nochetto, Savaré, Verdi 2000



Space discretization |: Minimal regularity

e Discretize in space using finite elements over an anisotropic mesh
Ty
e If the discrete initial condition ng satisfies

IVVG 2ty ey S lluolles o)

then®

IV =V ) Ol o.rsz2 () + IV = Vaull pao s oy S

1/2
R L FP

where 6 € {1/2,1} depends on the smoothness of f and ug

e No regularity assumptions!

& 0térola, AJS 2016



Space discretization Il: Analysis with regularity

e Under certain conditions we have that@

IN
W~ W

ug, (—A)%u € logLip((0,7],C*5(Q)) s

V

1— _
us, (A u e O ((0,T),C175(Q)) s
o With this regularity®

”(V - Vryy)('ﬂ 0)HL°°(O,T;L2(Q)) + HV - V%’”L%(],T;I?Ii(ya,cy)) S
_ 1+s
1 n+1
T # 7
T+ |log # Ty |* | #T ot %

+|V - HvHLz(O,T;IO-Ii(y"7C9'))

& Caffarelli and Figalli 2013
& 0térola, AJS 2016
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