A PDE approach to spectral fractional diffusion

Abner J. Salgado

Department of Mathematics, University of Tennessee

January 28, 2021

Outline

Motivation: Fractional powers of an operator

Direct discretization approach

Best uniform rational approximation

The Balakrishnan formula

The Caffarelli-Silvestre extension

Outline

Motivation: Fractional powers of an operator

Direct discretization approach

Best uniform rational approximation

The Balakrishnan formula

The Caffarelli-Silvestre extension

Back to linear algebra I

• If A is symmetric, that is

$$A^{\intercal} = A,$$

then it is diagonalizable.

- This means that there are Q orthogonal, and Λ diagonal, such that

$$A = Q^{\mathsf{T}} \Lambda Q, \quad Q^{\mathsf{T}} = Q^{-1}, \quad \Lambda = \operatorname{diag} \{\lambda_1, \dots, \lambda_n\}.$$

- In this case, the action $\mathbf{w} = A\mathbf{v}$ can be described as follows:
 - $\tilde{\mathbf{v}} = Q\mathbf{v}$ is a change of basis.
 - $\circ~\bar{\mathbf{v}}=\Lambda\tilde{\mathbf{v}}$ is a scaling in this new basis.
 - $\mathbf{w} = Q^{\mathsf{T}} \Lambda \bar{\mathbf{v}}$ is returning to the original basis.
- If, in addition, A is positive, that is

$$\mathbf{v}^{\mathsf{T}}A\mathbf{v} > 0,$$

then all its eigenvalues are positive $\lambda_i > 0$.

Back to linear algebra II

Why do we care about this? If $A \in \mathbb{R}^{n \times n}$ is symmetric:

J.

• With this we can define almost any function of a matrix via

$$f(A) = Q^{\mathsf{T}} f(\Lambda) Q, \qquad f(\Lambda) = \operatorname{diag} \{ f(\lambda_1), \dots, f(\lambda_n) \}.$$

Solution of ODEs:

$$\dot{\mathbf{y}}(t) = A\mathbf{y}, \ t > 0 \quad \mathbf{y}(0) = \mathbf{y}_0 \qquad \Longrightarrow \qquad \mathbf{y}(t) = \exp(tA)\mathbf{y}_0.$$

• Theory of iterative schemes: To solve $A\mathbf{x} = \mathbf{f}$ we can use a two-layer implicit scheme

$$B\frac{\mathbf{x}^{k+1}-\mathbf{x}^k}{\alpha} + A\mathbf{x}^k = \mathbf{f}$$

with SPD preconditioner B. The analysis of such schemes can be reduced to that of the explicit one

$$\frac{\mathbf{v}^{k+1} - \mathbf{v}^k}{\alpha} + C\mathbf{v}^k = \mathbf{g}$$

where

$$\mathbf{v}^k = B^{1/2} \mathbf{x}^k, \quad C = B^{-1/2} A B^{-1/2}, \quad \mathbf{g} = B^{-1/2} \mathbf{f}.$$

Spectral theory 101

Question: What happens in infinite dimensions? In particular, for differential operators?

A (the?) basic partial differential operator that expresses diffusion is the Laplacian

$$-\Delta = -\sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$$

• Integration by parts shows that $-\Delta$ is positive

$$\int_{\Omega} -\Delta v v \, \mathrm{d}x = \int_{\Omega} |\nabla v|^2 \, \mathrm{d}x > 0, \quad \forall v \in C_0^{\infty}(\Omega).$$

- One can show that $(-\Delta)^{-1}: L^2(\Omega) \to L^2(\Omega)$ is compact:
 - There exist $\{\lambda_k, \varphi_k\}_{k \in \mathbb{N}} \subset \mathbb{R}^+ \times L^2(\Omega)$ such that:

$$-\Delta \varphi_k = \lambda_k \varphi_k, \qquad \varphi_{k|\partial\Omega} = 0$$

and $\{\varphi_k\}_{k\in\mathbb{N}}$ is an orthonormal basis of $L^2(\Omega)$.

 $\circ\;$ This means that if $w\in L^2(\Omega),$ then it has the following representation

$$w = \sum_{k=1}^{\infty} w_k \varphi_k \qquad w_k = \int_{\Omega} w \varphi_k \, \mathrm{d}x.$$

The spectral fractional Laplacian I

• In addition, if w is sufficiently nice, then we have that

$$-\Delta w = \sum_{k=1}^{\infty} w_k \lambda_k \varphi_k, \quad w_k = \int_{\Omega} w \varphi_k \, \mathrm{d}x$$

which is an analogue of the matrix case:

- The term w_k is a change of basis.
- Multiplication by the eigenvalue λ_k is a diagonal scaling.
- The outer sum is returning to the original basis.
- We can now define functions of $-\Delta$. For instance, if $s \in (0,1)$ and w is sufficiently nice,

$$(-\Delta)^s w = \sum_{k=1}^{\infty} w_k \lambda_k^s \varphi_k,$$

Questions: Why do we care? What is the domain of this operator? What is its range?

The spectral fractional Laplacian II

• The heat equation

$$\partial_t u - \Delta u = 0, \qquad u_{|t=0} = v$$

smoothens and smears the initial condition v. This could be used, for instance, in image denoising. However, the effect of $-\Delta$ is too strong. Thus, it can be weakened by

$$\partial_t u + (-\Delta)^s u = 0, \qquad u_{|t=0} = v.$$

- Some special cases of random walks also lead to the fractional heat equation[●].
- Models in phase transition^{**B**}: fractional Allen Cahn ($\alpha = 0$, $\beta \in (0, 1)$) and Cahn Hilliard ($\alpha, \beta \in (0, 1)$) equations

$$\partial_t u + (-\Delta)^{\alpha} \left(\varepsilon^2 (-\Delta)^{\beta} u + F'(u) \right) = 0,$$

Ur

■Valdinoci 2017

Ainsworth and Mao 2017, Antil and Bartels 2018

The spectral fractional Laplacian III

- Original, noisy, regularized images for L^2 and H^{-1} fidelity terms.
- Top: s = 0.42
- Bottom: s = 0.35
- Stolen from [■].

Spectral theory 102

• Let $\mathcal L$ be a symmetric second order elliptic operator, i.e.,

$$\mathcal{L}w = -\nabla (a\nabla w) + cw$$

with $a \in L^{\infty}(\Omega, \mathbb{S}^d_+)$ uniformly positive definite and $0 \leq c \in L^{\infty}(\Omega)$.

- In a similar way we can define \mathcal{L}_0^s , the fractional powers of \mathcal{L} supplemented with homogeneous Dirichlet (or Neumann) boundary conditions.
- From now on, and for simplicity only, we will only deal with the Laplacian. Everything that we will say applies to \mathcal{L}_0^s .

• Given a suitable f find u such that

$$(-\Delta)^s u = f$$

in the sense described above.

• Where's the catch? The domain Ω can be quite general, so the spectrum of $-\Delta$ is not readily available.

Domain, range, and regularity I

· Because of the way that we defined the fractional Laplacian we have

$$(-\Delta)^s: \mathbb{H}^s(\Omega) \to \mathbb{H}^{-s}(\Omega)$$

where

$$\mathbb{H}^{s}(\Omega) = \left\{ w = \sum_{k=1}^{\infty} w_{k} \varphi_{k} : \sum_{k=1}^{\infty} \lambda_{k}^{s} |w_{k}|^{2} < \infty \right\}$$

It turns out that

$$\mathbb{H}^{s}(\Omega) = \begin{cases} H^{s}(\Omega), & s \in \left(0, \frac{1}{2}\right), \\ H^{1/2}_{00}(\Omega), & s = \frac{1}{2}, \\ H^{s}_{0}(\Omega), & s \in \left(\frac{1}{2}, 1\right), \end{cases}$$

where the zero subindices mean "zero boundary values".

• The fact that the domain has fractional Sobolev regularity reinforces the idea that we are taking fractional order derivatives.

Domain, range, and regularity II

If we wish to develop a rigorous numerical approximation of $\boldsymbol{u},$ then we must understand its regularity.

- From the definition it follows that, if $f \in \mathbb{H}^r(\Omega)$, then $u \in \mathbb{H}^{r+2s}(\Omega)$, for all $r \in \mathbb{R}$.
- If $r \geq -s$ this means that, at least for $\omega \Subset \Omega$,

$$u \in H^{r+2s}(\omega).$$

- What about near the boundary? For $x \in \overline{\Omega}$ let $dist(x, \partial \Omega)$ be the distance of x to $\partial \Omega$:
 - $\circ~$ If $s\neq \frac{1}{2}$ then ${\ensuremath{^{@}}}$ there is a smooth function v such that

 $u(x) \approx v(x) + \operatorname{dist}(x, \partial \Omega)^{\min\{1, 2s\}}$

 $\circ~$ If $s=\frac{1}{2}$ then we have the exceptional case \blacksquare

 $u(x) \approx v(x) + \operatorname{dist}(x, \partial \Omega) \left| \log \operatorname{dist}(x, \partial \Omega) \right|.$

Costabel, Dauge 1993

Outline

Motivation: Fractional powers of an operator

Direct discretization approach

Best uniform rational approximation

The Balakrishnan formula

The Caffarelli-Silvestre extension

Direct discretization

Given
$$f \in \mathbb{H}^{-s}(\Omega)$$
,
$$f = \sum_{k=1}^{\infty} f_k \varphi_k : \quad (-\Delta)^s u = f \Longrightarrow \quad u_k = f_k \lambda_k^{-s}$$

Algorithm:

- Compute a "sufficiently large" number of eigenpairs $\{\lambda_k, \varphi_k\}_{k=1}^N$.
- Compute the Fourier coefficients f_k .
- Find the solution: $u_k = f_k \lambda_k^{-s}$.

But

- How to choose N?
- VERY time consuming!
- Error analysis?

Error analysis I

The eigenpairs can only be computed approximately (read, via finite elements). The error analysis in this case is as follows^{\square}:

- Let X be a Hilbert space and A be a positive definite self-adjoint operator on X.
- Let $\{X_h\}_{h>0}$ be a family of closed subspaces of X and A_h is a positive definite bounded self-adjoint operator on X_h .
- Inverse estimate: There is $\varepsilon:\mathbb{R}_+\to\mathbb{R}_+$ with $\lim_{h\to 0}\varepsilon(0)=0$ such that

$$\|A_h\| \lesssim \frac{1}{\varepsilon(h)}$$

• Approximability: If P_h is the orthogonal projection onto X_h

$$\|(A_h^{-1}P_h - A^{-1})f\|_X \lesssim \varepsilon(h)\|f\|_X$$

• In this case, for $s \in (0,1)$, we have

$$\|(A_h^{-s}P_h - A^{-s})f\|_X \lesssim \varepsilon(h)^s \|f\|_X$$

Error analysis II

In our case:

- $X = L^2(\Omega)$, X_h is a (piecewise linear) finite element space, $A = -\Delta$, and $A_h = -\Delta_h$.
- Since X_h consists of piecewise polynomials

$$\|A_h\| \lesssim \frac{1}{h^2}, \qquad \Longrightarrow \quad \varepsilon(h) = h^2.$$

• For $f \in L^2(\Omega)$ we have

$$u = (-\Delta)^{-1} f \in H^2(\Omega) \cap H^1_0(\Omega)$$

and, if $u_h\in X_h$ is its finite element approximation: $u_h=(-\Delta_h)^{-1}P_hf$, then Aubin–Nitsche duality yields

$$||u - u_h||_{L^2(\Omega)} \lesssim h^2 |u|_{H^2(\Omega)} \lesssim h^2 ||f||_{L^2(\Omega)}$$

• The previous theory then gives

$$\begin{split} \|(-\Delta)^{-s}f - (-\Delta_h)^{-s}P_hf\|_{L^2(\Omega)} &\lesssim h^{2s}\|f\|_{L^2(\Omega)}. \\ \text{We still need to compute } (-\Delta_h)^{-s}! \end{split}$$

Outline

Motivation: Fractional powers of an operator

Direct discretization approach

Best uniform rational approximation

The Balakrishnan formula

The Caffarelli-Silvestre extension

Computing the discrete spectrum

Evaluating the eigenvalues of $-\Delta_h$ is time consuming: MTT, Lanczos, ... Best uniform rational approximation (BURA)^{\blacksquare}: Assume we need to solve

 $\mathcal{A}^s \mathbf{u} = \mathbf{f}$

where \mathcal{A} is a rescaled version of $(-\Delta_h)^s$ so that its spectrum lies in (0,1].

• Let r_s be analytic on (0,1] and, for some constant $\varepsilon > 0$ satisfies

$$\sup_{t \in (0,1]} |r_s(t) - t^{1-s}| \le \varepsilon,$$

then, for every $\gamma \in \mathbb{R}$ and $\mathbf{F} \in \mathbb{R}^N$ we have

$$\|(r_s(\mathcal{A}) - \mathcal{A}^{1-s})\mathbf{F}\|_{\mathcal{A}^{\gamma}} \le \varepsilon \|\mathbf{F}\|_{\mathcal{A}^{\gamma}}$$

• The previous result implies that, if $\mathbf{u}_r = r_s(\mathcal{A})\mathcal{A}^{-1}\mathbf{f}$, then

$$\|\mathbf{u}_r - \mathbf{u}\|_{\mathcal{A}^{\gamma}} \leq \varepsilon \|\mathbf{f}\|_{\mathcal{A}^{-1}}$$

• Taking into account the discretization error, then $(\gamma = 0)$

$$\|u - u_{h,r}\|_{L^2(\Omega)} \lesssim h^{2s} + \varepsilon.$$

• Question: What is a suitable r_s ?

Harizanov, Lazarov, Margenov, Vutov 2016

BURA

- We choose r_s as the best uniform (m, k)-approximation to t^{1-s} .
- Apply a partial fraction decomposition to $t^{-1}r_s(t)$:

$$t^{-1}r_s(t) = \sum_{j=0}^{m-k-1} b_j t^j + \frac{c_0}{t} + \sum_{j=1}^{p_1} \frac{c_j}{t-d_j} + \sum_{j=1}^{p_2} \frac{B_j t + C_j}{(t-F_j)^2 + D_j^2}$$

where $k = p_1 + 2p_2$.

- To compute $\mathbf{u}_r = \mathcal{A}^{-1} r_s(\mathcal{A}) \mathbf{f}$ we need to evaluate

$$\mathcal{A}^{-1}r_s(\mathcal{A})\mathbf{f} = \sum_{j=0}^{m-k-1} b_j \mathcal{A}^j \mathbf{f} + c_0 \mathcal{A}^{-1}\mathbf{f} + \sum_{j=1}^{p_1} c_j (\mathcal{A} - d_j \mathcal{I})^{-1}\mathbf{f}$$
$$+ \sum_{j=1}^{p_2} (B_j \mathcal{A} + C_j \mathcal{I})((\mathcal{A} - F_j \mathcal{I})^2 + D_j^2 \mathcal{I})^{-1}\mathbf{f}$$

• How do we choose m and k? This is classical in rational approximation. For the optimal choice we have m = k and

$$\varepsilon \lesssim 4^{2-s} |\sin \pi (1-s)| e^{-2\pi \sqrt{(1-s)k}}$$

so that, for this choice, the error decays exponentially in the polynomial degree.

Outlook

To solve

$$(-\Delta)^s u = f$$

with BURA we must:

- Solve $\mathcal{O}(|\log h|)$ problems of the type $(-\Delta_h + c\mathcal{I})\mathbf{w} = \mathbf{g}$.
- Embarrassingly parallelizable.
- Error estimate

$$\|u-u_{h,r}\|_{L^2(\Omega)} \lesssim h^{2s}.$$

Questions:

- Other norms?
- Other types of problems? Time-dependent? Nonlinear?
- Stability? It is known that rational approximations are very sensitive to numerical rounding.

Outline

Motivation: Fractional powers of an operator

Direct discretization approach

Best uniform rational approximation

The Balakrishnan formula

The Caffarelli-Silvestre extension

The Balakrishnan formula

• Notice that, for $\lambda > 0$ and $\theta \in (0, 1)$

$$\frac{\sin \pi \theta}{\pi} \int_0^\infty t^{\theta - 1} (\lambda + t)^{-1} \, \mathrm{d}t = \lambda^{\theta - 1}.$$

• Functional calculus then says that, if X is a Hilbert space and A is a self-adjoint and positive operator on X:

$$A^{\theta} = AA^{\theta-1} = A\frac{\sin \pi\theta}{\pi} \int_0^{\infty} t^{\theta-1} (A+t\mathcal{I})^{-1} dt.$$

• Let $X=L^2(\Omega)$ and $A=-\Delta,$ then

$$(-\Delta)^{-s} = (-\Delta)^{-1} (-\Delta)^{1-s} = (-\Delta)^{-1} (-\Delta) \frac{\sin \pi (1-s)}{\pi} \int_0^\infty t^{1-s-1} (t\mathcal{I} - \Delta)^{-1} dt = \frac{\sin \pi s}{\pi} \int_0^\infty t^{-s} (t\mathcal{I} - \Delta)^{-1} dt$$

where we used the previous formula with $\theta = 1 - s$.

Numerical scheme

Using

$$(-\Delta)^{-s} = \frac{\sin \pi \theta}{\pi} \int_0^\infty t^{-s} (t\mathcal{I} - \Delta)^{-1} \,\mathrm{d}t,$$

we can formulate the following game plan to devise a numerical scheme.

• Step 1: Use a quadrature for the *t* variable:

$$(-\Delta)^{-s} f \approx \frac{\sin \pi s}{\pi} k \sum_{j=0}^{J} t_j^{-s} (t_j \mathcal{I} - \Delta)^{-1} f$$

• Step 2: Use standard finite element methods on the same mesh to approximate

$$w_j \in H^1_0(\Omega): \qquad t_j w_j - \Delta w_j = f \quad \text{in} \quad \Omega,$$

i.e., $w_j = (t_j \mathcal{I} - \Delta)^{-1} f$.

• Step 3: Gather all contributions.

Step 1: Sinc quadrature

• Change of variable: Let $t = e^y$ to get

$$u = (-\Delta)^{-s} f = \frac{\sin(\pi s)}{\pi} \int_{-\infty}^{\infty} e^{(1-s)y} (e^y I - \Delta)^{-1} f \, \mathrm{d}y.$$

• Quadrature: Given $N \in \mathbb{N}$, define $k = 1/\sqrt{N}$, $y_j = jk$ and the quadrature approximation

$$u^{N} = Q^{N} f = \frac{\sin(\pi s)}{\pi} k \sum_{j=-N}^{N} e^{(1-s)y_{j}} (e^{y_{j}} I - \Delta)^{-1} f.$$

• Exponential convergence: Let $s \in [0,1)$ and $r \in [0,1]$. If $f \in \mathbb{H}^r(\Omega)$, then

$$\|u-u^N\|_{\mathbb{H}^r(\Omega)} \lesssim e^{-c\sqrt{N}} \|f\|_{\mathbb{H}^r(\Omega)}.$$

Steps 2 and 3: Finite element approximation and parallelization

- Let X_h be a finite element space over Ω, and assume that the mesh is quasiuniform.
- $w_h^j \in X_h$ are the finite element solutions of

$$(e^{y_j}\mathcal{I} - \Delta)w = f.$$

• These can be solved independently (embarrassingly parallelizable) and then gathered to obtain

$$u_{h}^{N} = \frac{\sin(\pi s)}{\pi} k \sum_{j=-N}^{N} e^{(1-s)y_{j}} w_{h}^{j}$$

Error analysis

For simplicity, assume that $\boldsymbol{\Omega}$ is convex.

 $\bullet \ \, {\rm For} \ r \leq 2s \ {\rm define}$

$$\alpha_{\star} = \frac{1}{2} \left(\alpha + \min\{1 - r, \alpha\} \right), \qquad \sigma = \max\{2\alpha_{\star} - 2s, 0\}.$$

If $f\in \mathbb{H}^{\sigma}(\Omega)$ then

$$\|u-u_h^N\|_{\mathbb{H}^r(\Omega)} \lesssim h^{2\alpha_\star} |\log h| \|f\|_{\mathbb{H}^\sigma(\Omega)}.$$

• Setting r = s we get

$$||u - u_h^N||_{\mathbb{H}^s(\Omega)} \lesssim h^{2-s} ||f||_{\mathbb{H}^{2-2s}(\Omega)},$$

which is "optimal" in order 2-s and regularity $f \in \mathbb{H}^{2-2s}(\Omega)$. However, this requires $u \in \mathbb{H}^2(\Omega)$, which is not generic!

Outlook

To solve

$$(-\Delta)^s u = f$$

with the Balakrishnan formula we must:

- Solve $\mathcal{O}(|\log h|)$ problems of the type $(e^y \mathcal{I} \Delta)w = f$.
- Embarrassingly parallelizable.
- Error estimate

$$||u - u_h^N||_{\mathbb{H}^s(\Omega)} \lesssim h^{2-s} ||f||_{\mathbb{H}^{2-2s}(\Omega)},$$

Questions:

- Other types of problems? Time-dependent? Nonlinear?
- Lower regularity on f? How can we capture the boundary singularities of u?

Outline

Motivation: Fractional powers of an operator

Direct discretization approach

Best uniform rational approximation

The Balakrishnan formula

The Caffarelli-Silvestre extension

The Caffarelli-Silvestre extension Regularity Discretization Tensor Product FEMs Outlook

 $(-\Delta)^{1/2}$: The Dirichlet to Neumann operator I

- Let $u : \mathbb{R}^n \to \mathbb{R}$.
- Extend it harmonically to \mathbb{R}^{n+1}_+

$$-\Delta \mathcal{U} = 0$$
, in $\mathbb{R}^{n_1}_+$, $\mathcal{U}(\cdot, 0) = u$

• The Dirichlet to Neumann map is

$$DtN: u \mapsto -\partial_y \mathcal{U}(\cdot, 0).$$

$(-\Delta)^{1/2}$: The Dirichlet to Neumann operator II

The Dirichlet to Neumann map

$$DtN: u \mapsto -\partial_y \mathcal{U}(\cdot, 0).$$

has the following properties:

• $DtN^2 = -\Delta$: Indeed, since $-\Delta_{x',y}\mathcal{U} = -\Delta_{x'}\mathcal{U} - \partial_y^2\mathcal{U} = 0$,

$$DtN^{2} u = \partial_{y} \left(\partial_{y} \mathcal{U}(\cdot, 0) \right) = -\Delta_{x'} \mathcal{U}(\cdot, 0) = -\Delta_{x'} u.$$

• DtN is positive: Since $\mathcal U$ is harmonic

$$0 = -\int_{\mathbb{R}^{n+1}_+} \Delta \mathcal{U}\mathcal{U} \, \mathrm{d}x \, \mathrm{d}y = \int_{\mathbb{R}^{n+1}_+} |\nabla \mathcal{U}|^2 \, \mathrm{d}x \, \mathrm{d}y + \int_{\mathbb{R}^n} \partial_y \mathcal{U}\mathcal{U} \, \mathrm{d}x.$$

On the other hand

$$\int_{\mathbb{R}^n} u \operatorname{DtN} u \, \mathrm{d}x = - \int_{\mathbb{R}^n} \partial_y \mathcal{U} \mathcal{U} \, \mathrm{d}x > 0.$$

Thus, we define

$$DtN = (-\Delta_x)^{\frac{1}{2}}, \quad (-\Delta_x)^{\frac{1}{2}}u = \partial_{\nu}\mathcal{U}.$$

Outline

Motivation: Fractional powers of an operator

Direct discretization approach

Best uniform rational approximation

The Balakrishnan formula

The Caffarelli-Silvestre extension The Caffarelli-Silvestre extension Regularity Discretization Tensor Product FEMs Outlook

The α -harmonic extension I

The previous extension property can be generalized to any $s \in (0,1)^{\textcircled{B}}$

- $s \in (0,1)$ and $\alpha = 1 2s \in (-1,1)$.
- $\partial_{\nu^{\alpha}} \mathcal{U} = -\lim_{y \downarrow 0} y^{\alpha} \partial_y \mathcal{U} = d_s f \text{ on } \Omega \times \{0\}.$
- $d_s = 2^{\alpha} \Gamma(1-s) / \Gamma(s).$

The α -harmonic extension II

Fractional powers of $-\Delta$ can be realized as a generalization of the Dirichlet to Neumann operator:

$$\begin{cases} \partial_{yy}^2 \mathcal{U} + \frac{\alpha}{y} \partial_y \mathcal{U} + \Delta_x \mathcal{U} = 0 & \text{in } \mathcal{C} \\ \mathcal{U} = 0 & \text{on } \partial_L \mathcal{C} \\ \partial_{\nu^{\alpha}} \mathcal{U} = d_s f & \text{on } \Omega \times \{0\} \end{cases} \iff (-\Delta)^s u = f \text{ in } \Omega \end{cases}$$

$$u = \mathcal{U}(\cdot, 0).$$

Here:

- $\mathcal{C} = \Omega \times (0, \infty).$
- $\alpha = 1 2s \in (-1, 1).$
- $\partial_{\nu^{\alpha}} \mathcal{U} = -\lim_{y \downarrow 0} y^{\alpha} \partial_y \mathcal{U} = d_s f.$
- $d_s = 2^{\alpha} \Gamma(1-s) / \Gamma(s).$

The α -harmonic extension III

Why does this make sense?

• For $\lambda > 0$ and $g \in \mathbb{R}$ consider the ODE:

$$\begin{cases} \psi'' + \frac{1-2s}{y}\psi' - \lambda\psi = 0, & \text{in } (0,\infty), \\ -\lim_{y\downarrow 0} y^{1-2s}\psi' = d_s, & \lim_{y\uparrow \infty} \psi(y) = 0. \end{cases}$$

• This is a Bessel equation with solution

$$\psi(y) = C_s \lambda^{-s} \left(\sqrt{\lambda}y\right)^s K_s(\sqrt{\lambda}y)$$

where K_s is the modified Bessel function of the second kind.

• It is well known that $K_s(z) = az^{-s} + o(z^{-s})$, with a > 0 as $z \downarrow 0$. Thus

$$\psi(y) = c_s \lambda^{-s} \left(\sqrt{\lambda} y \right)^s \left(a(\sqrt{\lambda} y)^{-s} \right) \to a c_s \lambda^{-s}, \quad y \downarrow 0.$$

• Choosing C_s appropriately we get $\psi(0) = \lambda^{-s}$.

The α -harmonic extension IV

• Recall that

$$f = \sum_{k=1}^{\infty} f_k \varphi_k \in \mathbb{H}^{-s}(\Omega), \quad (-\Delta)^s u = f, \implies u = \sum_{k=1}^{\infty} \lambda_k^{-s} f_k \varphi_k$$

$$u(x) = \sum_{k=1}^{\infty} u_k \varphi_k(x) \implies \mathcal{U}(x, y) = \sum_{k=1}^{\infty} u_k \varphi_k(x) \psi_k(y),$$

where the functions ψ_k solve

$$\psi_k'' + \frac{\alpha}{y}\psi_k' = \lambda_k\psi_k, \text{ in } (0,\infty), \quad \psi_k(0) = 1, \quad \lim_{y \to \infty} \psi_k(y) = 0.$$

so that, as before,

$$\psi_k(y) = c_s \left(\sqrt{\lambda_k} y\right)^s K_s(\sqrt{\lambda_k} y),$$

Weak formulation

• Multiply $\nabla (y^{\alpha} \nabla \mathcal{U})$ by a test function ϕ and integrate over the cylinder \mathcal{C} to obtain a possible weak formulation

$$\int_{\mathcal{C}} y^{\alpha} \nabla \mathcal{U} \cdot \nabla \phi \, \mathrm{d}x \, \mathrm{d}y = d_s \int_{\Omega} f \phi(x, 0) \, \mathrm{d}x, \quad \forall \phi \in \mathring{H}^1_L(y^{\alpha}, \mathcal{C}),$$

• Where the energy space is

$$\begin{split} L^2(y^{\alpha},\mathcal{C}) &= \left\{ w : \int_{\mathcal{C}} |w|^2 y^{\alpha} \, \mathrm{d}x \, \mathrm{d}y < \infty \right\} \\ \mathring{H}^1_L(y^{\alpha},\mathcal{C}) &= \left\{ w \in L^2(y^{\alpha},\mathcal{C}) : \ \nabla w \in L^2(y^{\alpha},\mathcal{C}), \ w|_{\partial_L \mathcal{C}} = 0 \right\}. \end{split}$$

The weight y^{α} is degenerate $(\alpha > 0)$ or singular $(\alpha < 0)!$

Muckenhoupt weights

For every $a, b \in \mathbb{R}$, with a < b,

$$\frac{1}{b-a}\int_a^b |y|^\alpha \,\mathrm{d} y \cdot \frac{1}{b-a}\int_a^b |y|^{-\alpha} \,\mathrm{d} y \lesssim 1$$

which means y^{α} belongs to the Muckenhoupt class A_2 .

This condition, essentially, means that y^{α} behaves like a constant at every scale!

Since $y^{\alpha} \in A_2$:

- The Hardy-Littlewood maximal operator is continuous on $L^2(y^{\alpha}, \mathcal{C})$.
- Singular integral operators are continuous on L²(y^α, C).
- $L^2(y^{\alpha}, \mathcal{C}) \hookrightarrow L^1_{loc}(\mathcal{C}).$
- $H^1(y^{lpha},\mathcal{C})$ is Hilbert and $\mathcal{C}^\infty_b(\mathcal{C})$ is dense.
- Traces on $\partial_L C$ are well defined.

Weighted Sobolev spaces

• Weighted Poincaré inequality:

$$\int_{\mathcal{C}} y^{\alpha} |w|^2 \, \mathrm{d}x \, \mathrm{d}y \lesssim \int_{\mathcal{C}} y^{\alpha} |\nabla w|^2 \, \mathrm{d}x \, \mathrm{d}y \quad \forall w \in \mathring{H}^1_L(y^{\alpha}, \mathcal{C}).$$

- Surjective trace operator $\operatorname{tr}_{\Omega} : \mathring{H}^{1}_{L}(y^{\alpha}, \mathcal{C}) \to \mathbb{H}^{s}(\Omega).$
- Lax-Milgram \Rightarrow existence and uniqueness for every $f \in \mathbb{H}^{-s}(\Omega)$. Also

$$\|\mathcal{U}\|_{\dot{H}^{1}_{L}(y^{\alpha},\mathcal{C})}^{2} = \|u\|_{\mathbb{H}^{s}(\Omega)}^{2} = d_{s}\|f\|_{\mathbb{H}^{-s}(\Omega)}^{2}.$$

We will discretize the α -harmonic extension!

$$\mathcal{U} \in \mathring{H}^{1}_{L}(y^{\alpha}, \mathcal{C}): \qquad \begin{cases} \nabla \cdot (y^{\alpha} \nabla \mathcal{U}) = 0 & \text{in } \mathcal{C} \\ \mathcal{U} = 0 & \text{on } \partial_{L} \mathcal{C} \\ \partial_{\nu^{\alpha}} \mathcal{U} = d_{s} f & \text{on } \Omega \times \{0\} \end{cases}$$

Advantages and disadvantages

Advantages:

- Implementation requires standard numerical PDE components.
- It is very flexible as we will see later.

Disadvantages:

- One extra dimension! We have efficient solvers, and we will see later how to minimize the effect of *y*.
- Singular/degenerate weight y^α? The weight y^α ∈ A₂ for which there is a very well developed theory.

Outline

Motivation: Fractional powers of an operator

Direct discretization approach

Best uniform rational approximation

The Balakrishnan formula

The Caffarelli-Silvestre extension The Caffarelli-Silvestre extension Regularity Discretization Tensor Product FEMs Outlook

Solution representation

• Recall that we found, via separation of variables

$$u(x) = \sum_{k=1}^{\infty} \lambda_k^{-s} f_k \varphi_k(x) \implies \mathcal{U}(x, y) = \sum_{k=1}^{\infty} \lambda_k^{-s} f_k \varphi_k(x) \psi_k(y),$$

• The pairs $\{\lambda_k, \varphi_k\}_{k=1}^\infty$ are the eigenpairs of the Laplacian.

The \u03c6_k are

$$\psi_k(y) = c_s \left(\sqrt{\lambda_k}y\right)^s K_s(\sqrt{\lambda_k}y),$$

where K_s is the modified Bessel function of the second kind.

• The function ψ_k satisfies, as $y \to \infty$,

$$\psi_k(y) \approx \left(\sqrt{\lambda_k}y\right)^{s-1/2} e^{-\sqrt{\lambda_k}y}.$$

• The function ψ_k satisfies, as $y \to 0$,

$$\psi'_k(y) \approx y^{-\alpha}, \quad \psi''_k(y) \approx y^{-\alpha-1},$$

Global Sobolev Regularity

- Compatible data: Let $f \in \mathbb{H}^{1-s}(\Omega)$, which means that f has a vanishing trace for $s < \frac{1}{2}$.
- Space regularity:

$$\|\Delta_x \mathcal{U}\|_{L^2(y^{\alpha},\mathcal{C})}^2 + \|\partial_y \nabla_x \mathcal{U}\|_{L^2(y^{\alpha},\mathcal{C})}^2 = d_s \|f\|_{\mathbb{H}^{1-s}(\Omega)}^2$$

• Regularity in extended variable y: If $s \neq \frac{1}{2}$ and $\beta > 2\alpha + 1$ then

$$\|\partial_{yy}\mathcal{U}\|_{L^2(y^\beta,\mathcal{C})} \lesssim \|f\|_{L^2(\Omega)}.$$

If $s = \frac{1}{2}$, then

$$\|\mathcal{U}\|_{H^2(\mathcal{C})} \lesssim \|f\|_{\mathbb{H}^{1/2}(\Omega)}.$$

• Elliptic pick-up regularity: If Ω convex, then

 $\|w\|_{H^2(\Omega)} \lesssim \|\Delta_x w\|_{L^2(\Omega)} \quad \forall w \in H^2(\Omega) \cap H^1_0(\Omega).$

Under this assumption, we further have

$$\|D_x^2 \mathcal{U}\|_{L^2(y^{\alpha}, \mathcal{C})} \lesssim \|f\|_{\mathbb{H}^{1-s}(\Omega)}.$$

Nochetto, Otárola, AJS 2015

Analytic Regularity

• Behavior of $\psi(z) = c_s z^s K_s(z)$ near z = 0:

$$\left| \frac{\mathrm{d}^{\ell}}{\mathrm{d}z^{\ell}} \psi(z) \right| \le C d_s \ell! z^{2s-\ell},$$

where $d_s = 2^{1-2s} \Gamma(1-s) / \Gamma(s)$.

• Behavior of $\psi(z)$ for z large:

$$\left| \frac{\mathrm{d}^{\ell}}{\mathrm{d}z^{\ell}} \psi(z) \right| \le C_{\epsilon,s} \ell! \epsilon^{-\ell} z^{s-\ell-\frac{1}{2}} e^{-(1-\epsilon)z}$$

• Global regularity of \mathcal{U} : If $0\leq \tilde{\nu}< s$ and $0\leq \nu<1+s,$ then there exists $\kappa>1$ such that

$$\begin{split} \|\partial_y^{\ell+1}\mathcal{U}\|_{L^2(\omega_{\alpha+2\ell-2\bar{\nu},\gamma},\mathcal{C})} &\lesssim \kappa^{\ell+1}(\ell+1)! \, \|f\|_{\mathbb{H}^{-s+\bar{\nu}}(\Omega)},\\ \|\nabla_x \partial_y^{\ell+1}\mathcal{U}\|_{L^2(\omega_{\alpha+2(\ell+1)-2\nu,\gamma},\mathcal{C})} &\lesssim \kappa^{\ell+1}(\ell+1)! \, \|f\|_{\mathbb{H}^{-s+\nu}(\Omega)},\\ \|\Delta_x \partial_y^{\ell+1}\mathcal{U}\|_{L^2(\omega_{\alpha+2(\ell+1)-2\nu,\gamma},\mathcal{C})} &\lesssim \kappa^{\ell+1}(\ell+1)! \, \|f\|_{\mathbb{H}^{1-s+\nu}(\Omega)}, \end{split}$$

with weight
$$\omega_{\beta,\gamma}(y) = y^{\beta} e^{\gamma y}, 0 \leq \gamma < 2\sqrt{\lambda_1}.$$

۲U

Banjai, Melenk, Nochetto, Otárola, AJS, Schwab 2018

Outline

Motivation: Fractional powers of an operator

Direct discretization approach

Best uniform rational approximation

The Balakrishnan formula

The Caffarelli-Silvestre extension

The Caffarelli-Silvestre extension Regularity Discretization Tensor Product FEMs Outlook

Domain truncation

The domain C is infinite. We need to consider a truncated problem. Theorem (exponential decay) For every $\mathcal{Y} > 0$

$$\|\mathcal{U}\|_{\dot{H}^{1}_{L}(y^{\alpha},\Omega\times(\mathcal{Y},\infty))}^{\circ} \lesssim e^{-\sqrt{\lambda_{1}}\mathcal{Y}/2} \|f\|_{\mathbb{H}^{-s}(\Omega)}.$$

Let v solve

$$\begin{cases} \nabla \cdot (y^{\alpha} \nabla v) = 0 & \text{ in } \mathcal{C}_{\mathcal{Y}} = \Omega \times (0, \mathcal{Y}), \\ v = 0 & \text{ on } \partial_L \mathcal{C}_{\mathcal{Y}} \cup \Omega \times \{\mathcal{Y}\}, \\ \partial_{\nu^{\alpha}} v = d_s f & \text{ on } \Omega \times \{0\}. \end{cases}$$

Theorem (exponential convergence) For all $\mathcal{Y} > 0$,

$$\|\mathcal{U}-v\|_{\dot{H}^{1}_{L}(y^{\alpha},\mathcal{C}_{\mathcal{Y}})} \lesssim e^{-\sqrt{\lambda_{1}}\mathcal{Y}/4} \|f\|_{\mathbb{H}^{-s}(\Omega)}.$$

Finite element method I: Mesh

Let $\mathscr{T}_{\Omega} = \{K\}$ be triangulation of Ω (simplices or cubes)

• \mathscr{T}_{Ω} is conforming and shape regular.

Let $\mathscr{T}_{\gamma} = \{T\}$ be a triangulation of \mathcal{C}_{γ} into cells of the form

 $T = K \times I, \quad K \in \mathscr{T}_{\Omega}, \quad I = (a, b).$

Finite element method II: Spaces

We only require that if $T = K \times I$ and $T' = K' \times I'$ are neighbors

 $\frac{|I|}{|I'|} \approx 1,$

This weak condition allows us to consider anisotropic meshes Define

 $\mathbb{V}(\mathscr{T}_{\mathcal{Y}}) = \left\{ W \in \mathcal{C}^{0}(\bar{\mathcal{C}}_{\mathcal{Y}}) : W_{|T} \in \mathcal{P}_{1}(K) \otimes \mathbb{P}_{1}(I), W_{|\Gamma_{D}} = 0 \right\}$ with $\Gamma_{D} = \partial_{L}\mathcal{C} \cup \Omega \times \{\mathcal{Y}\}$, and $\mathbb{U}(\mathscr{T}_{\Omega}) = \operatorname{tr}_{\Omega} \mathbb{V}(\mathscr{T}_{\mathcal{Y}}) = \left\{ W \in \mathcal{C}^{0}(\bar{\Omega}) : W_{|K} \in \mathcal{P}_{1}(K), W_{|\partial\Omega} = 0 \right\}.$

Here $\mathcal{P}_1 = \mathbb{P}_1$ if K is a simplex and $\mathcal{P}_1 = \mathbb{Q}_1$ if is a "brick".

Finite element method III: Discrete problem

• Galerkin method for the extension: Find $V_{\mathscr{T}_{\mathcal{Y}}} \in \mathbb{V}(\mathscr{T}_{\mathcal{Y}})$ such that

$$\int_{\mathcal{C}_{\mathcal{Y}}} y^{\alpha} \nabla V_{\mathscr{T}_{\mathcal{Y}}} \nabla W \, \mathrm{d}x \, \mathrm{d}y = d_s \int_{\Omega} f W(x,0) \, \mathrm{d}x, \quad \forall W \in \mathbb{V}(\mathscr{T}_{\mathcal{Y}}).$$

Define

$$U_{\mathscr{T}_{\Omega}} = V_{\mathscr{T}_{\mathcal{Y}}}(\cdot, 0) \in \mathbb{U}(\mathscr{T}_{\Omega}).$$

• A trace estimate and Cèa's Lemma imply quasi-best approximation:

$$\|u - U_{\mathscr{T}_{\Omega}}\|_{\mathbb{H}^{s}(\Omega)} \lesssim \|v - V_{\mathscr{T}_{\mathcal{T}}}\|_{\dot{H}^{1}_{L}(y^{\alpha}, \mathcal{C}_{\mathcal{T}})} = \inf_{W \in \mathbb{V}(\mathscr{T}_{\mathcal{T}})} \|v - W\|_{\dot{H}^{1}_{L}(y^{\alpha}, \mathcal{C}_{\mathcal{T}})}$$

We reduced the error analysis to a question of approximation theory in weighted spaces. Usually we set $W = \Pi v \in \mathbb{V}(\mathscr{T}_{\mathcal{Y}})$ where Π is a suitable interpolation operator.

The quasi-interpolation operator

We introduce an averaged interpolation operator $\Pi^{\textcircled{\sc l}}$

 $\Pi \phi(z) = Q_z^m \phi(z).$

where $Q_z^m \phi$ is an averaged Taylor polynomial of ϕ of degree m. Notice that:

- This is defined for all polynomial degree *m* and any element shape (simplices or rectangles).
- We do not go back to the reference element This is important for anisotropic estimates.

If the mesh is rectangular and Cartesian If ${\cal R}$ and ${\cal S}$ are neighbors

$$h_R^i/h_S^i \lesssim 1, \qquad i = \overline{1, N}.$$

Durán, Lombardi 2005; Dupont, Scott 1980; Sobolev 1950

Error estimates on rectangles

Theorem If $\varpi \in A_p(\mathbb{R}^N)$, and $\phi \in W_p^1(\varpi, S_R)$

$$\|\phi - \Pi\phi\|_{L^p(\varpi,R)} \lesssim \sum_{i=1}^N h_R^i \|\partial_i \phi\|_{L^p(\varpi,S_R)}.$$

If $\phi \in W_p^2(\varpi, S_R)$

$$\begin{aligned} \|\partial_j(\phi - \Pi\phi)\|_{L^p(\varpi,R)} &\lesssim \sum_{i=1}^N h_R^i \|\partial_i \partial_j \phi\|_{L^p(\varpi,S_R)}, \\ \|\phi - \Pi\phi\|_{L^p(\varpi,R)} &\lesssim \sum_{i,j=1}^N h_R^i h_R^j \|\partial_i \partial_j \phi\|_{L^p(\varpi,S_R)}. \end{aligned}$$

- Directional estimates: note the products of the form $h_R^i h_R^j \|\partial_i \partial_j \phi\|_{L^p(\varpi, S_R)}$.
- Estimates on simplicial elements, different metrics and applications.

Error estimates. Quasiuniform meshes

On quasiuniform meshes $h_T \approx h_K \approx h_I$ for all $T \in \mathscr{T}_{\mathcal{Y}}$, then Theorem (error estimates) The following estimate holds for all $\epsilon > 0$

$$\begin{aligned} \|\nabla(v-V_{\mathscr{T}_{\mathcal{T}}})\|_{L^{2}(y^{\alpha},\mathcal{C}_{\mathcal{T}})} &\lesssim h_{K} \|\partial_{y} \nabla_{x'} v\|_{L^{2}(y^{\alpha},\mathcal{C})} + h_{I}^{s-\epsilon} \|\partial_{yy} v\|_{L^{2}(y^{\beta},\mathcal{C})} \\ &\lesssim h^{s-\epsilon} \|f\|_{\mathbb{H}^{1-s}(\Omega)}. \end{aligned}$$

Consequently,

$$||u - U_{\mathscr{T}_{\Omega}}||_{\mathbb{H}^{s}(\Omega)} \lesssim h^{s-\epsilon} ||f||_{\mathbb{H}^{1-s}(\Omega)}.$$

- This is suboptimal in terms of order (only order $s \epsilon$)
- Is it sharp?

Numerical experiment. Quasiuniform mesh

Let
$$\Omega = (0,1)$$
 and $f = \pi^{2s} \sin(\pi x)$, then

$$\mathcal{U} = \frac{2^{1-s}\pi^s}{\Gamma(s)}\sin(\pi x)y^s K_s(\pi y)$$

If s = 0.2, then

The energy error behaves like $DOFS^{-0.1} \approx h^{0.2}$, as predicted!

Error estimates. Graded meshes

We use the principle of error equilibration. We use a graded mesh on $(0,\mathcal{T})$

$$y_j = \mathcal{Y}\left(\frac{j}{M}\right)^{\gamma}, \quad j = \overline{0, M}, \quad \gamma > 1$$

 $\mathcal{U}_{yy} \approx y^{-\alpha-1} \Longrightarrow$ energy equidistribution for $\gamma > 3/(1-\alpha)$.

Theorem (error estimates^[2]) If $f \in \mathbb{H}^{1-s}(\Omega)$ and $\mathcal{Y} \approx |\log \# \mathscr{T}_{\mathcal{Y}}|$,

$$\|u - U_{\mathscr{T}_{\Omega}}\|_{\mathbb{H}^{s}(\Omega)} = \|\nabla(\mathcal{U} - V_{\mathscr{T}_{\mathcal{T}}})\|_{L^{2}(y^{\alpha}, \mathcal{C})} \lesssim |\log \#\mathscr{T}_{\mathcal{T}}|^{s} \#\mathscr{T}_{\mathcal{T}}^{-\frac{1}{n+1}} \|f\|_{\mathbb{H}^{1-s}(\Omega)},$$

or equivalently

$$\|u - U_{\mathscr{T}_{\Omega}}\|_{\mathbb{H}^{s}(\Omega)} \lesssim |\log \mathscr{T}_{\Omega}|^{s} \mathscr{T}_{\Omega}^{-1/n} \|u\|_{\mathbb{H}^{1+s}(\Omega)}.$$

- This is near optimal in terms of regularity of $u \in \mathbb{H}^{1+s}(\Omega)$ and almost linear decay rate in h.
- This is suboptimal in terms of total number of degrees of freedom $\#\mathscr{T}_{\mathcal{Y}} \approx \#\mathscr{T}_{\Omega}^{1+\frac{1}{n}} \gg \#\mathscr{T}_{\Omega}$ with respect to the degrees of freedom in Ω .

Numerical experiment

Experimental rates for circle and s = 0.3 and s = 0.7. Set $\Omega = D(0, 1) \subset \mathbb{R}^2$, $f = j_{1,1}^{2s} J_1(j_{1,1}r)(A_{1,1}\cos(\theta) + B_{1,1}\sin(\theta))$. With graded meshes:

The experimental convergence rate -1/3 is optimal!

Outline

The Caffarelli-Silvestre extension

Tensor Product FEMs Outlook

Diagonalization I

- Discretization in y: Let \mathcal{G}^M be an arbitrary mesh in $(0, \mathcal{Y})$ with $M = \#\mathcal{G}^M$ and let $S^{\mathbf{r}}(0, \mathcal{Y}; \mathcal{G}^M)$ be a FE space of polynomial degree \mathbf{r} in y.
- Define

$$\mathbb{V}_{M}^{\mathbf{r}}(\mathcal{C}_{\mathcal{Y}}) = H_{0}^{1}(\Omega) \otimes S^{\mathbf{r}}(0,\mathcal{Y};\mathcal{G}^{M}).$$

FE in y, continuous in x.

• Semidiscrete solution: $\mathcal{U}_M \in \mathbb{V}_M^{\mathbf{r}}(\mathcal{C}_{\mathcal{Y}})$ satisfies

$$\int_{\mathcal{C}_{\mathcal{Y}}} y^{\alpha} \nabla \mathcal{U}_M \nabla \phi \, \mathrm{d}x \, \mathrm{d}y = d_s \int_{\Omega} f \phi(x,0) \, \mathrm{d}x \quad \forall \phi \in \mathbb{V}_M^{\mathbf{r}}(\mathcal{C}_{\mathcal{Y}}).$$

• Exponential convergence: Let $f \in \mathbb{H}^{-s+\nu}(\Omega)$ for $0 < \nu < s$. If $\mathcal{Y} \approx M$, the mesh \mathcal{G}^M is geometric towards y = 0, and the polynomial degree \mathbf{r} grows linearly from y = 0, then there exists b > 0 such that

$$\|\nabla (\mathcal{U} - \mathcal{U}_M)\|_{L^2(y^{\alpha}, \mathcal{C})} \lesssim e^{-bM} \|f\|_{\mathbb{H}^{-s+\nu}(\Omega)}.$$

Diagonalization II

• Eigenvalue problem: Let $\mathcal{M} = \dim S^{\mathbf{r}}(0, \mathcal{Y}; \mathcal{G}^M)$ and $(\mu_i, v_i)_{i=1}^{\mathcal{M}}$ be the (normalized) eigenpairs of

$$\mu \int_0^{\mathcal{Y}} y^{\alpha} v'(y) w'(y) \, \mathrm{d}y = \int_0^{\mathcal{Y}} y^{\alpha} v(y) w(y) \, \mathrm{d}y \qquad \forall w \in S^{\mathbf{r}}(0, \mathcal{Y}; \mathcal{G}^M).$$

• Representation: If $\mathcal{U}_M(x,y) = \sum_{j=1}^{\mathcal{M}} U_j(x) v_j(y)$ with $U_j \in H^1_0(\Omega)$, then

$$a_{\mu_i,\Omega}(U_i,V) = d_s v_i(0) \int_{\Omega} f V \,\mathrm{d}x \qquad \forall V \in H^1_0(\Omega),$$

where $a_{\mu_i,\Omega}$ are the singularly perturbed bilinear forms

$$a_{\mu_i,\Omega}(U,V) := \int_{\Omega} (\mu_i \nabla_x U \nabla_x V \, \mathrm{d}x + UV) \, \mathrm{d}x$$

Tensor product discretization

• Ritz projections: $\Pi_i u \in S^q_0(\mathscr{T}_\Omega)$ satisfies

$$a_{\mu_i,\Omega}(u - \Pi_i u, v) = 0 \quad \forall v \in S_0^q(\mathscr{T}_\Omega),$$

where $S_0^q(\mathscr{T}_\Omega) \subset H_0^1(\Omega)$ is the FE space of piecewise polynomials of degree $\leq q$ over \mathscr{T}_Ω .

• Discrete solution: Let $U_{h,M} \in S^q_0(\mathscr{T}_\Omega) \otimes S^{\mathbf{r}}(0,\mathcal{Y};\mathcal{G}^M)$ satisfy

$$\int_{\mathcal{C}_{\mathcal{Y}}} y^{\alpha} \nabla U_{h,M} \nabla V \, \mathrm{d}x \, \mathrm{d}y = d_s \int_{\Omega} f V(x,0) \, \mathrm{d}x, \, \forall V \in S_0^q(\mathscr{T}_{\Omega}) \otimes S^{\mathbf{r}}(0,\mathcal{Y};\mathcal{G}^M)$$

and note that it can be represented as follows

$$U_{h,M}(x,y) = \sum_{i=1}^{\mathcal{M}} \prod_{i} U_i(x) v_i(y).$$

• Parallelization: This corresponds to solving \mathcal{M} decoupled elliptic problems with the singularly perturbed bilinear form $a_{\mu_i,\Omega}$ for $i = 1, \ldots, \mathcal{M}$.

Tensor \mathbb{P}_1 -FEM

- Assume that $f \in L^2(\Omega)$ where $\Omega \subset \mathbb{R}^2$ is a polygon with corners c.
- The solution to

$$\begin{split} &-\Delta_x w = f, \text{ in } \Omega \quad w = 0, \text{ on } \partial \Omega \implies \\ &w\|_{H^2_\beta(\Omega)} \lesssim \|f\|_{L^2(\Omega)}, \qquad |w|^2_{H^2_\beta(\Omega)} = \int_\Omega \prod_{\mathbf{c}} |x' - \mathbf{c}|^{2\beta} |D^2 w|^2 \, \mathrm{d}x. \end{split}$$

- This type of singularity can be captured by using a graded mesh in Ω : Let \mathscr{T}_{Ω} be graded towards the re-entrant corners so that, if $N = \#\mathscr{T}_{\Omega}$ and $h = N^{-1/2}$, for any $w \in S_0^1(\mathscr{T}_{\Omega})$ $N \| w - \Pi w \|_{L^2(\Omega)}^2 \lesssim \| w \|_{H^1(\Omega)}^2, \quad N^2 \| w - \Pi w \|_{L^2(\Omega)}^2 \lesssim \| w \|_{H^2(\Omega)}^2.$
- With this construction we obtain that, if \mathcal{G}_{η}^{M} is a suitably graded radical mesh $\left\{y_{i}=\left(\frac{i}{M}\right)^{\eta}\mathcal{Y}\right\}_{i=0}^{M}$, with $\eta s > 1$ and $M \approx N^{\frac{1}{2}} = (\#\mathcal{T}_{\Omega})^{\frac{1}{2}}$, the discrete solution $U_{h,M}$ satisfies $\|u \operatorname{tr}_{\Omega} U_{h,M}\|_{\mathbb{H}^{s}(\Omega)} \leq h\|f\|_{\mathbb{H}^{1-s}(\Omega)}$

and

$$\dim \mathbb{V}_{h,M}^{1,1}(\mathscr{T}_{\Omega},\mathcal{G}^M) \approx h^{-3} \log |\log h| \approx N_{\Omega}^{1+\frac{1}{2}} \log \log N_{\Omega}.$$

Sparse grid FEM

- Complexity of tensor product: $N_{\Omega}^{1+\frac{1}{2}}$ is suboptimal.
- To overcome this we use a sparse grid space. Let

$$\mathbb{V}_{L}^{1,1}(\mathcal{C}_{\mathcal{Y}}) = \sum_{\ell,\ell' \ge 0, \, \ell + \ell' \le L} S_{0}^{1}(\mathscr{T}_{\Omega}^{\ell}) \otimes S^{1}(0,\mathcal{Y};\mathcal{G}_{\eta}^{2^{\ell'}}),$$

where $\mathscr{T}^{\ell}_{\Omega}$ and $\mathscr{G}^{2^{\ell'}}_{\eta}$ are nested meshes of levels ℓ and ℓ' graded towards corners \mathbf{c} of Ω and y = 0, respectively.

• We have the error estimate: Let $1 < \nu < 1 + s$, $\eta(\nu - 1) \ge 1$, and $\mathcal{Y} \approx |\log h_L|$. If $f \in \mathbb{H}^{-s+\nu}(\Omega)$, then $\mathcal{U}_L \in \mathbb{V}_L^{1,1}(\mathcal{C}_{\mathcal{Y}})$ satisfies

$$\begin{aligned} \|\mathcal{U} - \mathcal{U}_L\|_{L^2(y^{\alpha}, \mathcal{C})} &\lesssim h_L |\log h_L| \, \|f\|_{\mathbb{H}^{-s+\nu}(\Omega)},\\ \dim \mathbb{V}_L^{1,1}(\mathcal{C}_{\mathcal{Y}}) &\lesssim N_\Omega \log \log N_\Omega. \end{aligned}$$

The complexity of sparse grids is quasi-optimal in terms of N_Ω.

hp-FEM in y and \mathbb{P}_1 -FEM in Ω

- Graded geometric mesh: Let $\mathcal{G}_{\sigma}^{M} = \{\mathcal{Y}\sigma^{M-i}\}_{i=1}^{M}$ with $\sigma < 1$.
- Data regularity: $f \in \mathbb{H}^{1-s}(\Omega)$ and $\Omega \subset \mathbb{R}^2$ is a polygon with corners c.
- FE space: V^{1, r}_{h,M}(𝔅_Ω, 𝔅^M_σ) is the space of piecewise polynomials of degree one over 𝔅_Ω and piecewise polynomials of degree r growing linearly from 1 over 𝔅^M_σ.
- Error estimates: Let \mathscr{T}_{Ω} be a suitably graded mesh towards the re-entrant corners c. If $\mathscr{T} \approx |\log h|$ and $U_{h,M} \in \mathbb{V}_{h,M}^{1,\mathbf{r}}(\mathscr{T}_{\Omega}, \mathscr{G}_{\sigma}^{M})$ is the Galerkin solution, then

$$\begin{aligned} \|\nabla(\mathcal{U} - U_{h,M})\|_{L^{2}(y^{\alpha},\mathcal{C})} &\lesssim h \|f\|_{\mathbb{H}^{1-s}(\Omega)} \\ \dim \mathbb{V}_{h,M}^{1,\mathbf{r}}(\mathscr{T}_{\Omega},\mathcal{G}_{\sigma}^{M}) &\approx h^{-2} |\log h|^{2} \approx N_{\Omega} |\log N_{\Omega}| \end{aligned}$$

• Complexity: This is quasi-optimal in terms of N_{Ω} .

$hp\text{-}\mathsf{FEM}$ in y and Ω

- Data regularity: The domain $\Omega \subset \mathbb{R}^2$ and f are analytic.
- Graded mesh in Ω : The mesh \mathscr{T}_{Ω} is anisotropic and graded towards $\partial \Omega$ so that it resolves the smallest scale $\mu_{\mathcal{M}}$ of the singularly perturbed problems originating from the diagonalization.
- Graded mesh in y: Let $\mathcal{G}_{\sigma}^{M} = \left\{ \mathcal{Y}\sigma^{M-i} \right\}_{i=1}^{M}$ with $\sigma < 1$.
- Error estimate: If $\mathcal{Y} \approx M$, \mathbf{r} grows linearly from y = 0, then the Galerkin solution $U_{h,M} \in S_0^q(\mathscr{T}_\Omega) \otimes S^{\mathbf{r}}(\mathscr{G}_\sigma^M)$ and the total number $N_{\Omega,\mathcal{Y}}$ of degrees of freedom satisfy

$$\|\nabla (\mathcal{U} - U_{h,M})\|_{L^2(y^{\alpha},\mathcal{C})} \lesssim M^2 e^{-bq} + e^{-bM}$$
$$N_{\Omega,\mathcal{Y}} \approx q^2 M^3.$$

• Exponential rate of convergence: If $q \approx M$, then

$$\|\nabla(\mathcal{U} - U_{h,M})\|_{L^2(y^\alpha,\mathcal{C})} \lesssim e^{-b'N_{\Omega,\mathcal{Y}}^{1/5}}.$$

Numerical experiment. Performance of tensor FEMs

- Data: Ω L-shaped domain in \mathbb{R}^2 ; f = 1; s = 3/4.
- Error: It is always measured in the energy space $\mathbb{H}^{s}(\Omega)$.

• Conclusions: Both sparse grid FEM and *hp*-FEM reduced substantially the DOFs relative to tensor FEM and deliver quasi-optimal complexity.

Outline

Motivation: Fractional powers of an operator

Direct discretization approach

Best uniform rational approximation

The Balakrishnan formula

The Caffarelli-Silvestre extension

The Caffarelli-Silvestre extension Regularity Discretization Tensor Product FEMs **Outlook**

Outlook I

- PDE approach. The extension converts the nonlocal problem into a local PDE problem in one higher dimension. This is very flexible:
 - Parabolic problems[®] Details.
 - Stationary end time dependent obstacle problems.
- We have a complete and quasi-optimal a priori error analysis over anisotropic meshes. The complexity, in terms of total degrees of freedom, is:
 - $\mathbb{P}_1 \mathbb{P}_1$ -elements: suboptimal complexity and linear rate for Ω convex and compatible data. Extension to non-convex domains.
 - Sparse tensor $\mathbb{P}_1 \mathbb{P}_1$ -elements: quasi-optimal complexity and linear rate for Ω polygonal with compatible data.
 - *hp-elements:* quasi-optimal complexity and exponential rate for analytic but incompatible data.
 - We also have multigrid methods[®] (Details), a posteriori error estimators[®] (Details).

Nochetto, Otárola, AJS 2016

Nochetto, Otárola, AJS 2015

Otárola, AJS 2016

Chen, Nochetto, Otárola, AJS 2016

Chen, Nochetto, Otárola, AJS 2015

Outlook II

Questions:

- Adaptivity: Convergence and optimality is still open (issue is anisotropic meshes and lack of shape regularity).
- 3*d*-computations: A virtual implementation of extended variable is open.
- Theory and implementation of 3d hp-FEM are open.

Outline

A posteriori error analysis

Motivation A fundamental difficulty Anisotropic error estimation

Multilevel methods

Time dependent problems

Elliptic obstacle problem

Parabolic obstacle problem

Outline

A posteriori error analysis Motivation A fundamental difficulty

Anisotropic error estimation

Multilevel methods

Time dependent problems

Elliptic obstacle problem

Parabolic obstacle problem

Adaptivity

Adaptivity is motivated by:

- Computational efficiency: extra n + 1-dimension.
- The a priori theory requires:
 - Regularity of the datum: $f \in \mathbb{H}^{1-s}(\Omega)$.
 - Regularity of the domain: Ω is $C^{1,1}$ or a convex polygon.
- If one of these conditions is violated, the solution \mathcal{U} may have singularities in Ω which lead to fractional regularity.
- Quasiuniform refinement of Ω would not result in an efficient solution technique.
- We need anisotropic a posteriori error estimators.

Adaptive Loop

We consider an *almost* standard adaptive loop:

 $\mathsf{SOLVE} \to \mathsf{ESTIMATE} \to \mathsf{MARK} \to \mathsf{REFINE}$

except for the statements in red below:

- **SOLVE**: Finds the Galerkin solution $V_{\mathcal{T}_{\gamma}}$.
- **ESTIMATE**: Computes a star-indicator $\mathcal{E}_{z'}$ for every node $z' \in \Omega$.
- MARK: For $\theta \in (0,1)$ choose a minimal subset of nodes \mathcal{M} :

$$\mathcal{E}_{\mathcal{M}}^2 = \sum_{z' \in \mathcal{M}} \mathcal{E}_{z'}^2 \ge \theta^2 \mathcal{E}_{\mathscr{T}}^2.$$

- **REFINE**: Given a set of marked nodes \mathcal{M}
 - Refine the cells $K \ni z'$ for all $z' \in \mathcal{M}$ to get $\widetilde{\mathscr{T}_{\Omega}}$.
 - Create an anisotropic mesh $\{y_j\}_{j=1}^M$ so that grading $y_j = \mathcal{Y}\left(\frac{j}{M}\right)^{\gamma}$ holds.
 - \circ The refined mesh is $\widetilde{\mathscr{T}_{\mathscr{Y}}} = \widetilde{\mathscr{T}_{\Omega}} \times \{\widetilde{I}\}$ with $\widetilde{I} = [y_{j-1}, y_j]$.

Outline

A posteriori error analysis

Motivation A fundamental difficulty

Multilevel methods

Time dependent problems

Elliptic obstacle problem

Parabolic obstacle problem

Isotropic a posteriori error indicators

• Residual error indicator: If we were to integrate by parts the discrete problem over an element $T \in \mathscr{T}_{\mathcal{Y}}$, we would get

$$\int_T y^\alpha \nabla V \nabla W = \int_{\partial T} y^\alpha W \nabla V \cdot \boldsymbol{\nu} - \int_T \nabla (y^\alpha \nabla V) W$$

Since $\alpha \in (-1, 1)$, the boundary integral is meaningless for y = 0.

- Alternative error indicators: Residual indicators are not the only possibility:
 - Local problems on stars: $\mathcal{E}_z^2 = \int_{S_z} y^{\alpha} |\nabla Z|^2$ (Z solution of a BVP in S_z).
 - Zienkiewicz-Zhu estimators.
 - Hypercircle estimators.
- Local problems on stars: We prove for all nodes $z \in \mathcal{N}$

$$\mathcal{E}_z^2 \lesssim \|\nabla(v-V)\|_{L^2(y^\alpha, S_z)}^2 \lesssim \mathcal{E}_z^2 + \operatorname{osc}(y^\alpha, V, f, S_z)^2$$

Numerical Experiment with Isotropic Refinement

- Set $C_{\mathcal{Y}} = (0,1) \times (0,4)$ and $u = \sin(\pi x)$
- Experimental convergence rates:

- The error decays like $(\#\mathscr{T}_{\mathcal{Y}})^{-(1-|\alpha|)/4}$ as in uniform/isotropic refinement!
- Does adaptivity help?

Outline

A posteriori error analysis

Motivation A fundamental difficulty Anisotropic error estimation

Multilevel methods

Time dependent problems

Elliptic obstacle problem

Parabolic obstacle problem

Anisotropic Error Estimation

- Anisotropic a posteriori error estimator: we need to distinguish the behavior on the extended variable *y* from the rest.
- The theory of a posteriori error estimation (and adaptivity) on anisotropic discretizations is still in its infancy.
- Cylindrical stars: We propose an error estimator based on solving local problems on sets $C_{z'} = S_{z'} \times (0, \mathcal{Y})$ as depicted in red in the figure:

An Ideal A Posteriori Error Estimator

• Local space: For $z'\in\Omega$ a node, let $\mathcal{C}_{z'}=S_{z'}\times(0,\mathcal{Y})$ and define

$$\mathcal{W}(\mathcal{C}_{z'}) = \left\{ w \in H^1(y^{\alpha}, \mathcal{C}_{z'}) : w = 0 \text{ on } \partial \mathcal{C}_{z'} \setminus \Omega \times \{0\} \right\}.$$

• Local star indicator: The error indicator $\eta_{z'} \in \mathcal{W}(\mathcal{C}_{z'})$ is given by

$$\int_{\mathcal{C}_{z'}} y^{\alpha} \nabla \eta_{z'} \nabla w \, \mathrm{d}x \, \mathrm{d}y = d_s \int_{\Omega} f w(x,0) \, \mathrm{d}x - \int_{\mathcal{C}_{z'}} y^{\alpha} \nabla V \nabla w \, \mathrm{d}x \, \mathrm{d}y,$$

for every $w \in \mathcal{W}(\mathcal{C}_{z'})$.

• Global error estimator:

$$\mathcal{E}_{\mathscr{T}_{\Omega}} = \left(\sum_{z'} \mathcal{E}_{z'}^2\right)^{1/2}, \quad \mathcal{E}_{z'} = \|\nabla \eta_{z'}\|_{L^2(y^{\alpha}, \mathcal{C}_{z'})}$$

Anisotropic a posteriori error analysis

• Efficiency: For every node $z'\in \Omega$ we have

$$\mathcal{E}_{z'} \le \|\nabla e\|_{L^2(y^\alpha, \mathcal{C}_{z'})}.$$

- Data oscillation: If $f_{z'|K} = \frac{1}{|K|} \int_K f \, \mathrm{d} x$ for every element $K \subset S_{z'}$, then

$$\operatorname{osc}_{\mathscr{T}_{\Omega}}(f)^{2} = \sum_{z'} \operatorname{osc}_{z'}(f)^{2}, \quad \operatorname{osc}_{z'}(f)^{2} = d_{s} h_{z'}^{2s} \|f - f_{z'}\|_{L^{2}(S_{z'})}^{2}$$

• Reliability:

$$\|\nabla e\|_{L^2(y^{\alpha},\mathcal{C}_{\mathcal{T}})}^2 \lesssim \mathcal{E}_{\mathscr{T}_{\Omega}}^2 + \operatorname{osc}_{\mathscr{T}_{\Omega}}(f)^2.$$

• Computable estimator: Restrict $\mathcal{W}(\mathcal{C}_{z'})$ to a discrete subspace

$$\{W \in \mathcal{W}(\mathcal{C}_{z'}) : W|_T \in \mathcal{P}_2(K) \otimes \mathbb{P}_2(I), \forall T = K \times I\}$$

 $\mathcal{P}_2(K) = \mathbb{Q}_2(K)$ for rectangles, $\mathcal{P}_2(K) = \mathbb{P}_2(K) \oplus \mathbb{B}_3(K)$ for simplices.

Numerical experiment I

- Ω is the standard L-shaped domain in 2d.
- f = 1 which, for $s < \frac{1}{2}$, is incompatible with the problem and creates a boundary layer.
- Experimental error and estimator: error computed against a very fine discrete solution.

• Optimal decay rate: We get $DOF^{-1/3}$ for all s.

Numerical experiment II: Meshes

• Meshes: For s < 1/2 the solution exhibits a boundary layer.

$$s = 0.2$$
 $s = 0.8$

• Question: Is there any theory on anisotropic adaptive approximation [●]?

Back

Outline

A posteriori error analysis

Multilevel methods

Time dependent problems

Elliptic obstacle problem

Parabolic obstacle problem

Multilevel methods

If you do not diagonalize, How do you solve the equations? We use multilevel methods.

• We have a sequence of nested meshes $\mathscr{T}_0 \preceq \mathscr{T}_1 \preceq \cdots \preceq \mathscr{T}_J$ which induces a sequence of nested FE spaces

$$\mathbb{V}_0 \subset \mathbb{V}_1 \subset \cdots \subset \mathbb{V}_J = \mathbb{V}.$$

Introduce the space macro and micro decomposition

$$\mathbb{V} = \sum_{k=0}^{J} \mathbb{V}_k = \sum_{k=0}^{J} \sum_{j=1}^{\mathcal{M}_k} \mathbb{V}_{k,j}.$$

- Define a multigrid algorithm as a standard SSC[®] over this decomposition.
- This setting allows for point and line smoothers.

Properties of the decomposition

Lemma (stability and inverse inequality) Let $v \in \mathbb{V}$ and $v = \sum_{i=1}^{N} v_i$ be the line decomposition of v. Then we have the norm equivalence

$$\sum_{i=1}^{\mathcal{N}} \|v_i\|_{L^2(y^{\alpha},\mathcal{C})}^2 \lesssim \|v\|_{L^2(y^{\alpha},\mathcal{C})}^2 \lesssim \sum_{i=1}^{\mathcal{N}} \|v_i\|_{L^2(y^{\alpha},\mathcal{C})}^2.$$

Moreover, for every $K \in \mathscr{T}_{\Omega}$ we have

$$\|\nabla v\|_{L^2(y^{\alpha}, K \times (0, \mathcal{T}))} \lesssim h_K^{-1} \|v\|_{L^2(y^{\alpha}, K \times (0, \mathcal{T}))}.$$

In both inequalities the hidden constant is independent of J and depends on y^α only through $C_{2,y^\alpha}.$

• The proof relies fundamentally on the fact that $y^{\alpha} \in A_2$.

Theorem (convergence of multigrid)

The contraction rate of the multigrid algorithm is

$$\delta \le 1 - \frac{1}{1 + CJ}$$

where the constant C is independent of the mesh size, and it depends on y^{α} only through $C_{2,y^{\alpha}}.$

Back

Chen, Nochetto, Otárola, AJS 2015

Outline

A posteriori error analysis

Multilevel methods

Time dependent problems

Elliptic obstacle problem

Parabolic obstacle problem

Space-time fractional parabolic problem

Let T>0 be some positive time. Given $f:\Omega\to\mathbb{R}$ and $u_0:\Omega\to\mathbb{R}$ find u such that

$$\partial_t^\gamma u + (-\Delta)^s u = f \text{ in } \Omega \times (0,T] \quad u|_{t=0} = u_0 \quad \text{in } \Omega.$$

Here $\gamma \in (0, 1]$.

For $\gamma=1$ this is the usual time derivative, if $\gamma<1$ we consider the Caputo derivative

$$\partial_t^\gamma u(x,t) = \frac{1}{\Gamma(1-\gamma)} \int_0^t \frac{\partial_r u(x,r)}{(t-r)^\gamma} \,\mathrm{d}r = [I^{1-\gamma} \partial_r u(x,\cdot)](t),$$

where I^{σ} is the *Riemann-Liouville* fractional integral of order σ .

Nonlocality in space and time! We will overcome the nonlocality in space using the Caffarelli-Silvestre extension.

Extended evolution problem

The Caffarelli-Silvestre extension turns our problem into a quasistationary elliptic problem with dynamic boundary condition

$$\begin{cases} -\nabla \cdot (y^{\alpha} \nabla \mathcal{U}) = 0, & \text{in } \mathcal{C}, \ t \in (0, T), \\ \mathcal{U} = 0, & \text{on } \partial_L \mathcal{C}, \ t \in (0, T), \\ d_s \partial_t^{\gamma} \mathcal{U} + \frac{\partial \mathcal{U}}{\partial \nu^{\alpha}} = d_s f, & \text{on } \Omega \times \{0\}, \ t \in (0, T), \\ \mathcal{U} = \mathbf{u}_0, & \text{on } \Omega \times \{0\}, \ t = 0. \end{cases}$$
Connection: $\mathbf{u} = \mathcal{U}(x, 0), \ \alpha = 1 - 2s.$

Weak formulation: seek $\mathcal{U} \in \mathbb{V}$ such that for a.e. $t \in (0,T)$,

$$\begin{cases} \int_{\Omega} \partial_{\gamma}^{\gamma} \mathcal{U}(x,0) \phi(x,0) \, \mathrm{d}x + a(w,\phi) = \int_{\Omega} f \phi(x,0) \, \mathrm{d}x, \\ \mathcal{U}_{|t=0} = \mathsf{u}_{0} \end{cases}$$

for all $\phi \in \mathring{H}^1_L(y^{lpha}, \mathcal{C})$, where

$$a(w,\phi) = \frac{1}{d_s} \int_{\mathcal{C}} y^{\alpha} \nabla w \cdot \nabla \phi \, \mathrm{d}x \, \mathrm{d}y$$

Discretization

- As in the elliptic case C is infinite, but we have exponential decay.
- This allows us to consider a truncated problem.
- In doing so we commit only an exponentially small error

$$I^{1-\gamma} \| tr_{\Omega}(\mathcal{U}-v) \|_{L^{2}(\Omega)}^{2} + \| \nabla(\mathcal{U}-v) \|_{L^{2}(0,T;L^{2}(y^{\alpha},\mathcal{C}_{\mathcal{Y}}))}^{2} \lesssim e^{-\sqrt{\lambda_{1}}\mathcal{Y}}.$$

$$\|V^{\tau}(\cdot,0)\|_{\ell^{\infty}(L^{2}(\Omega))}^{2}+\|V^{\tau}\|_{\ell^{2}(\overset{\circ}{H}_{L}^{1}(y^{\alpha},\mathcal{C}_{\mathcal{Y}}))}^{2}\lesssim\|\mathbf{u}_{0}\|_{L^{2}(\Omega)}^{2}+\|f^{\tau}\|_{\ell^{2}(\mathbb{H}^{-s}(\Omega))}^{2}.$$

Error estimates for fully discrete schemes

Discretization in time and space: stability + consistency yield

• Error estimates for $\mathcal{U}:\ s\in(0,1)$ and $\gamma\in(0,1)$

$$\begin{split} [I^{1-\gamma} \| tr_{\Omega}(v^{\tau} - V_{\mathscr{T}_{\mathcal{Y}}}^{\tau}) \|_{L^{2}(\Omega)}^{2}(T)]^{\frac{1}{2}} &\lesssim \tau^{\theta} + |\log \# \mathscr{T}_{\mathcal{Y}}|^{2s} \# \mathscr{T}_{\mathcal{Y}}^{\frac{-(1+s)}{n+1}} \\ \| v^{\tau} - V_{\mathscr{T}_{\mathcal{Y}}}^{\tau} \|_{\ell^{2}(\mathring{H}_{L}^{1}(y^{\alpha},\mathcal{C}_{\mathcal{Y}}))} &\lesssim \tau^{\theta} + |\log \# \mathscr{T}_{\mathcal{Y}}|^{s} \# \mathscr{T}_{\mathcal{Y}}^{\frac{-1}{n+1}}. \end{split}$$

• Error estimates for $u{:}~s\in(0,1)$ and $\gamma\in(0,1)$

$$[I^{1-\gamma} \| u^{\tau} - U^{\tau} \|_{L^{2}(\Omega)}^{2}(T)]^{\frac{1}{2}} \lesssim \tau^{\theta} + |\log \# \mathscr{T}_{\mathcal{Y}}|^{2s} \# \mathscr{T}_{\mathcal{Y}}^{\frac{-(1+s)}{n+1}}$$
$$\| u^{\tau} - U^{\tau} \|_{\ell^{2}(\mathbb{H}^{s}(\Omega))} \lesssim \tau^{\theta} + |\log \# \mathscr{T}_{\mathcal{Y}}|^{s} \# \mathscr{T}_{\mathcal{Y}}^{\frac{-1}{n+1}},$$

where $\theta < \frac{1}{2}$.

Back

Outline

A posteriori error analysis

Multilevel methods

Time dependent problems

Elliptic obstacle problem

Parabolic obstacle problem

Formulation

- Given $f \in \mathbb{H}^{-s}(\Omega)$ and an obstacle $\psi \in \mathbb{H}^{s}(\Omega) \cap C(\overline{\Omega})$ with $\psi \leq 0$ on $\partial \Omega$.
- Find $u \in \mathcal{K}$ such that

$$\langle (-\Delta)^s u, u - w \rangle \le \langle f, u - w \rangle \quad \forall w \in \mathcal{K}$$

where

$$\mathcal{K} := \{ w \in \mathbb{H}^s(\Omega) : \ w \ge \psi \text{ a.e. in } \Omega \}.$$

- Nonlinear and (because of $(-\Delta)^s$) nonlocal problem!
- Use the Caffarelli-Silvestre extension.

Thin obstacle problem

• We convert the fractional obstacle problem into a thin obstacle problem.

• The restriction $U > \psi$ only applies when y = 0 (thin obstacle).

Truncation

- The domain \mathcal{C} is infinite.
- The energy of the solution decays exponentially in y.
- We truncate the cylinder $\mathcal{C}_{\mathcal{Y}}=\Omega\times(0,\mathcal{Y})$ and consider a truncated problem.
- In doing this we only commit an exponentially small error

$$\|\nabla(\mathcal{U}-\mathcal{V})\|_{L^2(y^{\alpha},\mathcal{C}_{\mathcal{Y}})} \lesssim e^{-\sqrt{\lambda_1}\mathcal{Y}/8}.$$

Discretization

Discretize the truncation over an anisotropic mesh.

Theorem ([■])

If ${\mathcal U}$ is the exact solution and $V_{{\mathscr T}_{\gamma}}$ the discrete solution, then

$$\|\mathcal{U} - V_{\mathscr{T}_{\mathcal{Y}}}\|_{\dot{H}^{1}_{L}(y^{\alpha},\mathcal{C})}^{s} \lesssim |\log(\#\mathscr{T}_{\mathcal{Y}})|^{s}(\#\mathscr{T}_{\mathcal{Y}})^{-1/(n+1)},$$

where C depends on the Hölder moduli of smoothness of \mathcal{U} and \mathcal{V} , $\|f\|_{\mathbb{H}^{-s}(\Omega)}$ and $\|\psi\|_{\mathbb{H}^{s}(\Omega)}$.

- Optimal regularity in Ω^{\blacksquare} : $u \in C^{1,s}$.
- This implies that $\partial_{\nu}^{\alpha}\mathcal{U}(\cdot,0) \in C^{0,1-s}$.
- For y "small" use that \bullet : $s \leq \frac{1}{2} \Rightarrow \mathcal{V} \in C^{0,2s}(\mathcal{C}_{\mathcal{Y}})$ and $s > \frac{1}{2} \Rightarrow \mathcal{V} \in C^{1,2s-1}(\mathcal{C}_{\mathcal{Y}}).$
- For y "big" use $\mathcal{V} \in H^2(y^{\beta}, \mathcal{C}_{\mathcal{Y}})$ with $\beta > 1 + 2\alpha$.
- Back
- Nochetto, Otárola, AJS 2015
- Caffarelli, Salsa and Silvestre 2008
- Allen, Lindgren, and Petrosyan 2014
- Nochetto, Otárola, AJS 2015

Outline

A posteriori error analysis

Multilevel methods

Time dependent problems

Elliptic obstacle problem

Parabolic obstacle problem

Formulation

• Define the energy

$$\mathcal{J}(v) = \frac{1}{2} \|v\|_{\mathbb{H}^s(\Omega)}^2 + \mathbf{1}_{\mathcal{K}}(v).$$

• We will study the (sub)gradient flow

$$u_t + \partial \mathcal{J}(u) \ni f \qquad u|_{t=0} = u_0.$$

• Equivalently we have the evolution variational inequality

$$(u_t, u - \phi)_{L^2(\Omega)} + \langle (-\Delta)^s u, u - \phi \rangle \le (f, u - \phi)_{L^2(\Omega)} \quad \forall \phi \in \mathcal{K}.$$

• Or the complementarity conditions

$$\min \{ u_t + (-\Delta)^s u - f, u - \psi \} = 0.$$

The Caffarelli-Silvestre extension and truncation

• We will again overcome the nonlocality with the Caffarelli-Silvestre extension and consider

$$(\mathcal{U}_t(\cdot,0),(\mathcal{U}-\phi)(\cdot,0))_{L^2(\Omega)} + \frac{1}{d_s} \int_{\mathcal{C}} y^{\alpha} \nabla \mathcal{U} \nabla (\mathcal{U}-\phi) \, \mathrm{d}x \, \mathrm{d}y \leq (f,(\mathcal{U}-\phi)(\cdot,0))_{L^2(\Omega)}$$

for all $\phi \in \mathring{H}^{1}_{L}(y^{\alpha}, \mathcal{C})$ with $\phi(\cdot, 0) \in \mathcal{K}$.

• We consider, again, a truncated problem over C_{γ} :

$$\|(\mathcal{U}-\mathcal{V})(\cdot,0)\|_{L^{\infty}(0,T;L^{2}(\Omega))}+\|\mathcal{U}-\mathcal{V}\|_{L^{2}(0,T;\overset{\circ}{H}_{L}^{1}(y^{\alpha},\mathcal{C}_{\mathcal{Y}}))}\lesssim e^{-\sqrt{\lambda_{1}}\mathcal{Y}/8}$$

Time discretization

- The energy $\mathcal J$ is convex and lower semicontinuous $\Longrightarrow \partial \mathcal J$ is maximal monotone.
- We use the implicit Euler method:

$$\left(\frac{V^{k+1} - V^k}{\tau}(\cdot, 0), (V^{k+1} - \phi)(\cdot, 0) \right)_{L^2(\Omega)}$$

+ $\frac{1}{d_s} \int_{\mathcal{C}_{\mathcal{Y}}} y^{\alpha} \nabla V^{k+1} \nabla (V^{k+1} - \phi) \, \mathrm{d}x \, \mathrm{d}y \le \left(f^{k+1}, (V^{k+1} - \phi)(\cdot, 0) \right)_{L^2(\Omega)}$

 $\text{ for all } \phi \in \mathring{H}^1_L(y^\alpha, \mathcal{C}) \text{ with } \phi(\cdot, 0) \in \mathcal{K}.$

Time discretization

The general theory of graident flows[®] yields:

• If $u_0 \in \mathcal{K}$ and $f \in L^2(0,T;L^2(\Omega))$

$$\|(\mathcal{V} - V)(\cdot, 0)\|_{L^{\infty}(0,T;L^{2}(\Omega))} + \|\mathcal{V} - V\|_{L^{2}(0,T;\overset{\circ}{H}^{1}_{L}(y^{\alpha}, \mathcal{C}_{\mathcal{Y}}))} \lesssim \tau^{1/2}.$$

• If $u_0 \in \mathcal{K} \cap \mathbb{H}^{2s}(\Omega)$ and $f \in BV(0,T;L^2(\Omega))$

$$\|(\mathcal{V} - V)(\cdot, 0)\|_{L^{\infty}(0,T;L^{2}(\Omega))} + \|\mathcal{V} - V\|_{L^{2}(0,T;\mathring{H}^{1}_{L}(y^{\alpha},\mathcal{C}_{\mathcal{Y}}))} \lesssim \tau.$$

These estimates are sharp!

Nochetto, Savaré, Verdi 2000

Space discretization I: Minimal regularity

- Discretize in space using finite elements over an anisotropic mesh $\mathcal{T}_{\mathcal{Y}}.$
- If the discrete initial condition $V^0_{\mathcal{T}_{Y}}$ satisfies

$$\|\nabla V^0_{\mathscr{T}_{\mathscr{T}}}\|_{L^2(y^{\alpha},\mathcal{C}_{\mathscr{T}})} \lesssim \|u_0\|_{\mathbb{H}^s(\Omega)}.$$

then₽

$$\begin{aligned} \|(V - V_{\mathscr{T}_{\mathcal{T}}})(\cdot, 0)\|_{L^{\infty}(0,T;L^{2}(\Omega))} + \|V - V_{\mathscr{T}_{\mathcal{T}}}\|_{L^{2}(0,T;\mathring{H}^{1}_{L}(y^{\alpha},\mathcal{C}_{\mathcal{T}}))} \lesssim \\ \tau^{\theta} + \|\mathcal{V} - \Pi\mathcal{V}\|_{L^{2}(0,T;\mathring{H}^{1}_{L}(y^{\alpha},\mathcal{C}_{\mathcal{T}}))}^{1/2}. \end{aligned}$$

where $\theta \in \{1/2,1\}$ depends on the smoothness of f and u_0

• No regularity assumptions!

Space discretization II: Analysis with regularity

• Under certain conditions we have that[#]

$$u_t, (-\Delta)^s u \in \mathsf{logLip}((0,T], C^{1-s}(\bar{\Omega})) \quad s \leq \frac{1}{3},$$

$$u_t, (-\Delta)^s u \in C^{\frac{1-s}{2s}}((0,T], C^{1-s}(\bar{\Omega})) \quad s > \frac{1}{3}$$

With this regularity[●]

$$\begin{split} \| (V - V_{\mathscr{T}_{\mathcal{Y}}})(\cdot, 0) \|_{L^{\infty}(0,T;L^{2}(\Omega))} + \| V - V_{\mathscr{T}_{\mathcal{Y}}} \|_{L^{2}(0,T;\mathring{H}^{1}_{L}(y^{\alpha},\mathcal{C}_{\mathcal{Y}}))} \lesssim \\ \tau + |\log \# \mathscr{T}_{\mathcal{Y}}|^{s} \left(\# \mathscr{T}_{\mathcal{Y}}^{-\frac{1}{n+1}} + \frac{\# \mathscr{T}_{\mathcal{Y}}^{-\frac{1+s}{n+1}}}{\tau^{1/2}} \right) \\ + \| \mathcal{V} - \Pi \mathcal{V} \|_{L^{2}(0,T;\mathring{H}^{1}_{L}(y^{\alpha},\mathcal{C}_{\mathcal{Y}}))} \end{split}$$

Back

Caffarelli and Figalli 2013
 Otárola, AJS 2016

