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Outline of talk

• A walk around Helmholtz-land

• Very large non-Hermitian indefinite matrices

• Iterative methods and preconditioning

• Convergence theory - absorptive case

• Some examples

• A glimpse of some new results for the propagative case

This is a very active area with many other groups working.
Recent survey: IGG, Spence, Zou, SINUM 58 (2020)

Hermann von Helmholtz 1821–1894:
worked in physiology, physics, philosophy
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Reduced wave equation

−∆U +
∂2U

∂t2
= F, on R3 × R

F (x, t) = exp(ikt)f(x)

U(x, t) = exp(ikt)u(x) separation of variables

−(∆u+ k2u) = f on R3

Helmholtz equation in its simplest form

“Elliptic” but “singularly perturbed” as k →∞
“Bandlimited data” =⇒ “solve in frequency domain”
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Scattering problem: ui(x) = exp(ikâ.x)

Γ

Ω−
Ω

â

Scattered field u satisfies

−(∆u+ k2u) = 0 in Ω

u = −ui on Γ

S.R.C.
∂u

∂r
− iku = o(r−(d−1)/2), r →∞ in far field
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Scattering problem: ui(x) = exp(ikâ.x)

Γ

Ω−
Ω

â

Γ

Ω−
Ω

â

Scattered field u satisfies

−(∆u+ k2u) = 0 in Ω

u = −ui on Γ

Simplest
∂u

∂r
− iku= 0 Impedance cond. on ‘far field boundary’

Ω− = ∅ −→ ‘Interior impedance problem’ 5/40



Scattering problem: ui(x) = exp(ikâ.x)

Γ

Ω−
Ω

â

Γ

Ω−
Ω

â

Scattered field u satisfies Model Problem:

−(∆u+ k2u) = f in Ω

u = 0 on Γ

∂u

∂r
− iku = g on ‘far field boundary’ ∂Ω

Ω− = ∅ −→ ‘Interior impedance problem’
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Oscillatory solutions

Plane wave scattering:

ui(x) = exp(ikâ.x)

‘Hybrid Numerical - Asymptotic Methods’
Chandler-Wilde, IGG, Langdon, Spence 2012
Groth, Hewett, Langdon, 2019

Here we consider ‘standard’ FEM
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Helmholtz stability

Γ

Ω−
Ω

For the model problem: Assume
(i) Ω−, and domain inside ∂Ω are Lipschitz
and star-shaped with respect to a ball.
(ii) f ∈ L2(Ω) and g ∈ L2(∂Ω).

Then ∃! u ∈ H1(Ω) and

‖∇u‖2L2(Ω) + k2‖u‖2L2(Ω)︸ ︷︷ ︸
=:‖u‖21,k

≤ Cstab{‖f‖2L2(Ω)+‖g‖2L2(Γ)}, k →∞

Cstab indept of k. cf. Melenk 95, Cummings & Feng 06...
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Not star-shaped - Geometric trapping

Square
cavity Ω

Ω′

Q

1

Cstab & k

Chandler-Wilde, Spence, Gibbs, Smyshlyaev 2020

Elliptic cavity

Cstab & exp(βk)
some β > 0

Betcke, Chandler-Wilde, IGG, Langdon and Lindner, 2011
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Variable coefficients

−∆u− k2nu = f in bounded polyhedral domain Ω

u = 0 on Γ
∂u

∂n
− iku = g on ∂Ω

n ‘refractive index’ or ‘squared slowness’
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Seismic imaging (Full waveform inversion)

Shaunagh Downing, Silvia Gazzola, Euan Spence and
Schlumberger (Cambridge)
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Variable coefficients

−∇.A∇u− k2nu = f in bounded polyhedral domain Ω

u = 0 on Γ
∂u

∂n
− iku = g on ∂Ω

A ‘diffusion coefficient’
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Variable coefficients

−∆u− k2nu = f in bounded polyhedral domain Ω

u = 0 on Γ
∂u

∂n
− iku = g on ∂Ω

n ‘refractive index’ or ‘squared slowness’

Ω∂Ω

Γ

non-trapping condition:
n(x) + x.∇n(x) ≥ µ > 0

IGG, Pembery, Spence, 2019
IGG, Sauter, 2020
Then stability, with
Cstab = Cstab(µ)
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Trapping can occur - but is very delicate

n = 2 inside circle, n = 1 outside Moiola and Spence 2019
Lafontaine, Spence, Wunch 2019
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Finite Element Method

Global problem u ∈ H1(Ω) k2 → k2 + iε, η = η(k, ε)∫
Ω

(
∇u.∇v − k2n)uv

)
− ik

∫
∂Ω
uv︸ ︷︷ ︸

a(u,v)

=

∫
Ω
fv +

∫
∂Ω
gv, v ∈ H1(Ω)

Finite element discretization (degree p)

Au := (S − k2)Mn − ikN)u = f

For existence/error control: h ∼ k−1−1/2p Du & Wu, 2015

For quasioptimality need : h ∼ k−1−1/p Melenk & Sauter 2011

A complex symmetric non-Hermitian dimension n.
To accurately compute 100 waves in Ω need n DoFs, with

n ∼ 107 in 2D, n ∼ 1010 in 3D
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Poisson versus Helmholtz (at high frequency)

−∆u = f −∆u− k2nu = f
bounded domain k large
+ boundary cond. + far field condition

∃! solution? X X

Solution bounded
in terms of data? X NO!

FE solution exists? X h ∼ k−(1+1/2p)

Quasioptimal? X h ∼ k−(1+1/p)

Efficient solver
for linear systems? X NO!
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Iterative solver for linear systems

Iterative method : GMRES (Generalized minimum residual)

Au = f ⇐⇒ B−1Au = B−1f

Domain decomposition: overlapping subdomains Ω`

‘Local’ impedance matrices

A` ∼
∫

Ω`

(∇u.∇v − k2uv)− ik

∫
∂Ω`

uv
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Iterative solver for linear systems

Iterative method : GMRES (Generalized minimum residual)

Au = f ⇐⇒ B−1Au = B−1f

Domain decomposition: overlapping subdomains Ω`

‘Local’ impedance matrices

A` ∼
∫

Ω`

(∇u.∇v − k2uv)− ik

∫
∂Ω`

uv
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Preconditioners based on Ω`:

‘SORAS’: B−1 :=
∑

` R>` D`A
−1
` D`R`

‘ORAS’: B−1 :=
∑

` R>` D`A
−1
` R`

R`,R
>
` Restriction and prolongation:∑

` D` ≡ 1 partition of unity

Enhance performance by adding solve in a coarse space
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3D Maxwell (“cobra cavity” at 10 GHz):
with M. Bonazzoli, P.-H. Tournier, V. Dolean, E. Spence

Nédélec elements, degree 2:
Fine grid: 10 pts/wavelength =⇒ ∼ 107, 000, 000 DOFs
Coarse grid: 3.3 pts/wavelength (inner GMRES, εprec = k)

cores outer GMRES iterations Total time
1536 31 515.8
3072 32 285.0
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Convergence theory for GMRES

GMRES for preconditoned system B−1Au = B−1f

(Eisenstadt, Elman, Schulz, 1983)...

B−1 is a good preconditioner for A if

‖B−1A‖ . 1, (norm)

and
dist(0, fov(B−1A)) & 1 (fov)

where fov(C) := {x∗Cx : ‖x‖ = 1}

[Sufficient is: ‖I−B−1A‖ small] .

Comforting thought If ε large enough, classical overlapping DD
methods with coarse grids should have a theory
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An approach to the theory:

Introduce absorption k2  k2 + iε, ε > 0

Fundamental solution now decays:

Φk(x,y) Φk(x,y) exp(−(ε/2k)|x− y|)

A Aε, B−1  B−1
ε

Analyse: B−1
ε as a preconditioner for Aε coercivity!

Reasonable because: ‖I−A−1
ε A‖ ≤ C|ε|/k

Gander, IGG, Spence, 2015
IGG, Spence, Vainikko, 2017
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Rigorous theory for SORAS

Assumptions include:
• kH →∞
• finite cover Λ, generous overlap,
• ‖ · ‖Dk

= norm induced by Helmholtz ‘energy’:

Theorem: (IGG, Spence, Zou, 2020)

‖B−1
ε Aε‖Dk

≤ C1 Λ ∀ ε

inf
V 6=0

|〈V ,B−1
ε AεV 〉Dk

|
‖V ‖2Dk

≥ Λ−1

(
1− C2 Λ2 min

{
1,

k

|ε|H

})
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GMRES iterates for B−1A, ε = 0

Ω = (0, 1)2, p = 1, h ∼ k−3/2, n ∼ k3, H ∼ k−α

k\α 0.2 0.3 0.4 0.5
40 5 8 11 19
60 5 7 14 25
80 4 10 15 24

100 7 9 15 27
120 6 9 17 29
140 6 8 16 31

Robust one level method for ‘pure’ Helmholtz
but have to solve on relatively large subdomains.

(Multilevel) Approximations?

Idea! Subdomain problems are again Helmholtz impedance
problems, but with effective wavenumber kH instead of k
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Recursive one-level ORAS (with Scott Congreve)

Scattering of plane wave by a cube - 10 grdpts/wavelength
First level: H = k−0.4, generous overlap
Second level: H ∼ k−0.8, minimal overlap.
Outer/Inner GMRES iterates (tolerances = 10−6, 10−2)

k p = 1 p = 2 p = 3

20 15(7) 16(7) 15(7)
30 21(9) 21(9) 20(9)
40 24(9) 25(10) 24(10)
50 28(11) 29(11) 28(12)

Hey! results independent of p - see Shihua’s talk following!

Results are independent of whether domain has a cavity
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Plain one-level ORAS (with Scott Congreve)

Scattering of plane wave by a cube with a cavity
First level: H = k−0.4, generous overlap
Second level: H ∼ k−0.8, minimal overlap.

k p = 1 p = 2 p = 3
GMRES

20 15(7) 15(7) 22(7)
25.1327 15(7) 15(7) 29(7)
30 20(9) 20(9) 29(9)
40 23(9) 24(10) 31(10)
50 27(11) 28(11) 35(12)
50.2655 27(11) 28(11) 35(12)

∗ ‘Resonant’ frequencies

Results are independent of whether domain has a cavity

Iteration numbers unaffected by resonance
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Adding a coarse grid

with M. Bonazzoli, P.-H. Tournier, V. Dolean and E. Spence

Ω = (0, 1)3 p = 1
h ∼ k−3/2, n ∼ k9/2, Hsub ∼ k−0.5 Hcoarse ∼ k−1

two level hybrid preconditioner

k n dim Coarse # GMRES Time
10 3.9(+4) 1.3(+3) 12 8.9
20 7.0(+5) 9.3(+3) 17 42.2
30 5.0(+6) 3.0(+4) 21 177.1
40 1.6(+7) 6.9(+4) 29 414.8

∼ n0.6 ∼ n0.1 ∼ n0.6

“Weak scaling”
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Heterogeneity A, n, dependence on degree p?

Assumptions:
• kh→ 0 (remember pollution effect)
• subdomains = Lipschitz polyhedra, kH →∞
• finite cover Λ, smooth POU, generous overlap,
• ‖ · ‖Dk

= norm induced by Helmholtz ‘energy’:
(∇vh,∇wh) + k2(vh, wh)

Theorem: (IGG, Spence, Zou, 2018)

‖B−1
ε Aε‖Dk

≤ C1 Λ ∀ ε

inf
V 6=0

|〈V ,B−1
ε AεV 〉Dk

|
‖V ‖2Dk

≥ Λ−1

(
1− C2 Λ2 min

{
1,

k

|ε|H

})

Independent of polynomial degree p as k →∞
‘local dependence on contrast of A, n
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Heterogeneity A, n, dependence on degree p?

Assumptions:
• kh→ 0 (remember pollution effect)
• subdomains = Lipschitz polyhedra, kH →∞
• finite cover Λ, smooth POU, generous overlap,
• ‖ · ‖Dk

= norm induced by Helmholtz ‘energy’:
(∇vh,∇wh) + k2(vh, wh)

Theorem: (Gong IGG, Spence, 2020)

‖B−1
ε Aε‖Dk

≤ C1(A,n) Λ ∀ ε

inf
V 6=0

|〈V ,B−1
ε AεV 〉Dk

|
‖V ‖2Dk

≥ Λ−1

(
1− C2(A,n) Λ2 min

{
1,

k

|ε|H

})
‘local dependence’ on contrast of A, n

Independent of polynomial degree p as k →∞
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Robust to polynomial degree p

constant A and n, # GMRES iterations

k\p 1 2 3 4

40 17 18 17 16
60 16 16 16 15
80 15 16 15 14

100 14 15 14 14
150 14 15 14 14
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Local dependence on contrast in refractive index n

(a) (nontrapping) (b) (trapping) (c) c oscillates

(d) (nontrapping) (e) (trapping) (f) c oscillates
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A = I and n varying, p = 1

k\n n = 1 Fig 1a Fig 1b Fig 1c Fig 1d Fig 1e Fig 1f
40 14 18 17 34 16 19 24
60 13 19 18 25 14 18 22
80 13 17 19 27 13 15 28

100 13 15 19 26 13 15 27

Robust to ‘trapping’ (empirically)
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Current work

Gong, Gander, IGG, Lafontaine, Spence

u = u + B−1(f −Au)

= (I−B−1A)u + B−1f Richardson iteration..

error en+1 = (I−B−1A)︸ ︷︷ ︸
=:E

en

without absorption (ε = 0):
B−1A does not have a ‘good’ field of values But it can be
‘power contractive’:

‖Es‖ � 1, for some s
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power contractivity

Theorem for ‘one-way decompositions’ (with N subdomains )
and ORAS,

∃ norm such that ‖EN‖ ≤ C(N − 1)ρ+O(ρ2)

ρ = norm of ‘left to right impedance map’ (small for large
enough overlap)
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power contractivity

Theorem (for ‘one-way decompositions’)

∃ norm such that ‖EN‖ ≤ C(N − 1)ρ+O(ρ2)

ρ = norm of ‘left to right impedance map’ (small for large
enough overlap)
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power contractivity

Theorem (for ‘one-way decompositions’)

∃ norm such that ‖EN‖ ≤ C(N − 1)ρ+O(ρ2)

ρ = norm of ‘left to right impedance map’ (small for large
enough overlap)
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Overview of proof

•When h small, ORAS (for FEM) is close to a simple iterative
method formulated at PDE level

• Iterating the simple method is like iterating the impedance
map

• The impedance map is contractive (using semiclassical
analysis or rigorous computation)

The proof is only for one-way decompositions but....
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‖Es‖ - for square domain, square subdomains

1 3 5 7 9 11 13 15 17 19

Exponent s

0.05

0.1

0.5

1

5

10

N
o

rm
 o

f 
E

s

2  2 DD, k=40
4  4 DD, k=40

6  6 DD, k=40
8  8 DD, k=40

1 3 5 7 9 11 13 15 17 19

Exponent s

0.05

0.1

0.5

1

7.5

15

N
o

rm
 o

f 
E

s

2  2 DD, k=80
4  4 DD, k=80

6  6 DD, k=80
8  8 DD, k=80

Results for 8× 8 case:

k Iterative GMRES
40 46 28
80 31 26
160 28 24
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Summary

• A walk around Helmholtz-land

• Very large non-Hermitian indefinite matrices

• Iterative methods and preconditioning

• Convergence theory - absorptive case

• Some examples

• A glimpse of some new results

Thanks for listening!
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