Solving the Helmholtz equation at high frequency

Ivan Graham（Bath，UK）

Collaborators：

Shihua Gong，Euan Spence（Bath） Jun Zou（Chinese University of Hong Kong） and others

Irish Numerical Analysis Forum
March 11， 2021

Outline of talk

－A walk around Helmholtz－land
－Very large non－Hermitian indefinite matrices
－Iterative methods and preconditioning
－Convergence theory－absorptive case
－Some examples
－A glimpse of some new results for the propagative case

This is a very active area with many other groups working． Recent survey：IGG，Spence，Zou，SINUM 58 （2020）

Hermann von Helmholtz 1821－1894： worked in physiology，physics，philosophy

$$
\begin{gathered}
-\Delta U+\frac{\partial^{2} U}{\partial t^{2}}=F, \quad \text { on } \quad \mathbb{R}^{3} \times \mathbb{R} \\
F(x, t)=\exp (\mathrm{i} k t) f(x) \\
U(x, t)=\exp (\mathrm{i} k t) u(x) \quad \text { separation of variables } \\
-\left(\Delta u+k^{2} u\right)=f \text { on } \mathbb{R}^{3}
\end{gathered}
$$

Helmholtz equation in its simplest form
"Elliptic" but "singularly perturbed" as $k \rightarrow \infty$
"Bandlimited data" \Longrightarrow "solve in frequency domain"

Scattering problem：
 $u^{i}(x)=\exp (\mathrm{i} k \hat{a} . x)$

Scattered field u satisfies

$$
\begin{aligned}
-\left(\Delta u+k^{2} u\right) & =0 \text { in } \Omega \\
u & =-u^{i} \text { on } \Gamma
\end{aligned}
$$

S．R．C．$\frac{\partial u}{\partial r}-\mathrm{i} k u=o\left(r^{-(d-1) / 2}\right), r \rightarrow \infty$ in far field

Scattering problem:
 $u^{i}(x)=\exp (\mathrm{i} k \hat{a} \cdot x)$

Scattered field u satisfies

$$
\begin{aligned}
-\left(\Delta u+k^{2} u\right) & =0 \text { in } \Omega \\
u & =-u^{i} \text { on } \Gamma
\end{aligned}
$$

Simplest $\frac{\partial u}{\partial r}-i k u=0 \quad$ Impedance cond. on 'far field boundary'

Scattering problem:
 $u^{i}(x)=\exp (\mathrm{i} k \hat{a} \cdot x)$

Scattered field u satisfies

Model Problem:

$$
\begin{aligned}
-\left(\Delta u+k^{2} u\right) & =f \text { in } \Omega \\
u & =0 \text { on } \Gamma \\
\frac{\partial u}{\partial r}-\mathrm{i} k u & =g \quad \text { on 'far field boundary' } \partial \Omega
\end{aligned}
$$

$$
\Omega^{-}=\emptyset \quad \longrightarrow \quad \text { 'Interior impedance problem' }
$$

Oscillatory solutions

Plane wave scattering:
$u^{i}(x)=\exp (\mathrm{i} k \hat{a} . x)$

'Hybrid Numerical - Asymptotic Methods'
Chandler-Wilde, IGG, Langdon, Spence 2012
Groth, Hewett, Langdon, 2019
Here we consider 'standard' FEM

For the model problem：Assume
（i）Ω^{-}，and domain inside $\partial \Omega$ are Lipschitz and star－shaped with respect to a ball．
（ii）$f \in L^{2}(\Omega)$ and $g \in L^{2}(\partial \Omega)$ ．

Then $\exists!u \in H^{1}(\Omega)$ and

$$
\underbrace{\|\nabla u\|_{L^{2}(\Omega)}^{2}+k^{2}\|u\|_{L^{2}(\Omega)}^{2}}_{=:\|u\|_{1, k}^{2}} \leq C_{\text {stab }}\left\{\|f\|_{L^{2}(\Omega)}^{2}+\|g\|_{L^{2}(\Gamma)}^{2}\right\}, \quad k \rightarrow \infty
$$

$C_{\text {stab }}$ indept of k ．cf．Melenk 95，Cummings \＆Feng 06．．．

Not star-shaped - Geometric trapping

Square cavity

$$
C_{\text {stab }} \gtrsim k
$$

Chandler-Wilde, Spence, Gibbs, Smyshlyaev 2020

Elliptic cavity

$$
\begin{array}{r}
C_{\text {stab }} \underset{\text { some } \beta>0}{\gtrsim \exp (\beta k)}
\end{array}
$$

Betcke, Chandler-Wilde, IGG, Langdon and Lindner, 2011

Variable coefficients

$$
\begin{aligned}
-\Delta u-k^{2} n u & =f \text { in bounded polyhedral domain } \Omega \\
u & =0 \text { on } \Gamma \\
\frac{\partial u}{\partial n}-i k u & =g \text { on } \partial \Omega
\end{aligned}
$$

n 'refractive index' or 'squared slowness'

Seismic imaging (Full waveform inversion)

Shaunagh Downing, Silvia Gazzola, Euan Spence and Schlumberger (Cambridge)

Variable coefficients

$$
\begin{aligned}
-\nabla \cdot A \nabla u-k^{2} n u & =f \text { in bounded polyhedral domain } \Omega \\
u & =0 \text { on } \Gamma \\
\frac{\partial u}{\partial n}-i k u & =g \text { on } \partial \Omega
\end{aligned}
$$

A 'diffusion coefficient'

Variable coefficients

$$
\begin{aligned}
-\Delta u-k^{2} n u & =f \text { in bounded polyhedral domain } \Omega \\
u & =0 \text { on } \Gamma \\
\frac{\partial u}{\partial n}-i k u & =g \text { on } \partial \Omega
\end{aligned}
$$

n＇refractive index＇or＇squared slowness＇

non－trapping condition：
$n(\boldsymbol{x})+\boldsymbol{x} . \nabla n(\boldsymbol{x}) \geq \mu>0$
IGG，Pembery，Spence， 2019
IGG，Sauter， 2020
Then stability，with
$C_{\text {stab }}=C_{\text {stab }}(\mu)$

Trapping can occur - but is very delicate

$k_{1}=1.77945199481921$

$k_{3}=1.77945199481 \underline{5}$
$n=2$ inside circle, $n=1$ outside
Moiola and Spence 2019
Lafontaine, Spence, Wunch 2019

Global problem $u \in H^{1}(\Omega)$

$$
\underbrace{\int_{\Omega}\left(\nabla u \cdot \nabla \bar{v}-k^{2} n u \bar{v}\right)-\mathrm{i} k \int_{\partial \Omega} u \bar{v}}_{a(u, v)}=\int_{\Omega} f \bar{v}+\int_{\partial \Omega} g \bar{v}, \quad v \in H^{1}(\Omega)
$$

Finite element discretization (degree p)

$$
\mathbf{A u}:=\left(\mathbf{S}-k^{2} \mathbf{M}_{n}-\mathrm{i} k \mathbf{N}\right) \mathbf{u}=\mathbf{f}
$$

For existence/error control: $h \sim k^{-1-1 / 2 p} \quad$ Du \& Wu, 2015
For quasioptimality need : $h \sim k^{-1-1 / p}$ Melenk \& Sauter 2011
A complex symmetric non-Hermitian dimension n.
To accurately compute 100 waves in Ω need n DoFs, with

$$
n \sim 10^{7} \quad \text { in 2D, } \quad n \sim 10^{10} \text { in 3D }
$$

Poisson versus Helmholtz (at high frequency)

	$-\Delta u=f$ bounded domain + boundary cond.	$-\Delta u-k^{2} n u=f$ k large + far field condition
\exists ! solution?	\checkmark	\checkmark
Solution bounded in terms of data?	\checkmark	NO
FE solution exists?	\checkmark	
Quasioptimal?	\checkmark	$h \sim k^{-(1+1 / 2 p)}$
Efficient solver for linear systems?	\checkmark	NO

Iterative solver for linear systems

Iterative method ：GMRES（Generalized minimum residual）

$$
\mathbf{A} \mathbf{u}=\mathbf{f} \quad \Longleftrightarrow \quad \mathbf{B}^{-1} \mathbf{A} \mathbf{u}=\mathbf{B}^{-1} \mathbf{f}
$$

Domain decomposition：overlapping subdomains Ω_{ℓ}

Iterative solver for linear systems

Iterative method : GMRES (Generalized minimum residual)

$$
\mathbf{A} \mathbf{u}=\mathbf{f} \quad \Longleftrightarrow \quad \mathbf{B}^{-1} \mathbf{A} \mathbf{u}=\mathbf{B}^{-1} \mathbf{f}
$$

Domain decomposition: overlapping subdomains Ω_{ℓ}

'Local' impedance matrices

$$
\mathbf{A}_{\ell} \sim \int_{\Omega_{\ell}}\left(\nabla u . \nabla \bar{v}-k^{2} u \bar{v}\right)-\mathrm{i} k \int_{\partial \Omega_{\ell}} u \bar{v}
$$

'SORAS': $\mathbf{B}^{-1}:=\sum_{\ell} \mathbf{R}_{\ell}^{\top} \mathbf{D}_{\ell} \mathbf{A}_{\ell}^{-1} \mathbf{D}_{\ell} \mathbf{R}_{\ell}$
'ORAS': $\quad \mathbf{B}^{-1}:=\sum_{\ell} \mathbf{R}_{\ell}^{\top} \mathbf{D}_{\ell} \mathbf{A}_{\ell}^{-1} \mathbf{R}_{\ell}$
$\mathbf{R}_{\ell}, \mathbf{R}_{\ell}^{\top} \quad$ Restriction and prolongation:
$\sum_{\ell} \mathbf{D}_{\ell} \equiv 1 \quad$ partition of unity

Enhance performance by adding solve in a coarse space

3D Maxwell ("cobra cavity" at 10 GHz):

with M. Bonazzoli, P.-H. Tournier, V. Dolean, E. Spence

Nédélec elements, degree 2:
Fine grid: 10 pts/wavelength $\Longrightarrow \sim 107,000,000$ DOFs
Coarse grid: 3.3 pts/wavelength (inner GMRES, $\varepsilon_{\text {prec }}=k$)

cores	outer GMRES iterations	Total time
1536	31	515.8
3072	32	285.0

Convergence theory for GMRES

GMRES for preconditoned system $\quad \mathbf{B}^{-1} \mathbf{A u}=\mathbf{B}^{-1} \mathbf{f}$
(Eisenstadt, Elman, Schulz, 1983)...
\mathbf{B}^{-1} is a good preconditioner for \mathbf{A} if

$$
\begin{equation*}
\left\|\mathbf{B}^{-1} \mathbf{A}\right\| \lesssim 1 \tag{norm}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dist}\left(0, \boldsymbol{f o v}\left(\mathbf{B}^{-1} \mathbf{A}\right)\right) \gtrsim 1 \tag{fov}
\end{equation*}
$$

where $\quad \operatorname{fov}(\mathbf{C}):=\left\{\mathbf{x}^{*} \mathbf{C x}:\|\mathbf{x}\|=1\right\}$
[Sufficient is: $\quad\left\|\mathbf{I}-\mathbf{B}^{-1} \mathbf{A}\right\|$ small] .

An approach to the theory：

－Introduce absorption $k^{2} \rightsquigarrow k^{2}+\mathrm{i} \varepsilon, \quad \varepsilon>0$
－Fundamental solution now decays：

$$
\Phi_{k}(\boldsymbol{x}, \boldsymbol{y}) \rightsquigarrow \Phi_{k}(\boldsymbol{x}, \boldsymbol{y}) \exp (-(\varepsilon / 2 k)|\boldsymbol{x}-\boldsymbol{y}|)
$$

－ $\mathbf{A} \rightsquigarrow \mathbf{A}_{\varepsilon}, \quad \mathbf{B}^{-1} \rightsquigarrow \mathbf{B}_{\varepsilon}^{-1}$
－Analyse： $\mathbf{B}_{\varepsilon}^{-1}$ as a preconditioner for \mathbf{A}_{ε}
coercivity！
－Reasonable because：$\left\|\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\| \leq C|\varepsilon| / k$
Gander，IGG，Spence， 2015
IGG，Spence，Vainikko， 2017

Assumptions include：
－$k H \rightarrow \infty$
－finite cover Λ ，generous overlap，
－$\|\cdot\|_{D_{k}}=$ norm induced by Helmholtz＇energy＇：

Theorem：（IGG，Spence，Zou，2020）

$$
\left\|\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\right\|_{D_{k}} \leq C_{1} \Lambda \quad \forall \varepsilon
$$

$$
\inf _{\boldsymbol{V} \neq \mathbf{0}} \frac{\left|\left\langle\boldsymbol{V}, \mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon} \boldsymbol{V}\right\rangle_{D_{k}}\right|}{\|\boldsymbol{V}\|_{D_{k}}^{2}} \geq \Lambda^{-1}\left(1-C_{2} \Lambda^{2} \min \left\{1, \frac{k}{|\varepsilon| H}\right\}\right)
$$

GMRES iterates for $B^{-1} A$,

$\Omega=(0,1)^{2}, \quad p=1, \quad h \sim k^{-3 / 2}, \quad n \sim k^{3}, \quad H \sim k^{-\alpha}$

$k \backslash \alpha$	0.2	0.3	0.4	0.5
40	5	8	11	19
60	5	7	14	25
80	4	10	15	24
100	7	9	15	27
120	6	9	17	29
140	6	8	16	31

Robust one level method for 'pure' Helmholtz but have to solve on relatively large subdomains.
(Multilevel) Approximations?
Idea! Subdomain problems are again Helmholtz impedance problems, but with effective wavenumber $k H$ instead of k

Scattering of plane wave by a cube－ 10 grdpts／wavelength
First level：$H=k^{-0.4}, \quad$ generous overlap
Second level：$H \sim k^{-0.8}$ ，minimal overlap．
Outer／Inner GMRES iterates（tolerances $=10^{-6}, 10^{-2}$ ）

k	$p=1$	$p=2$	$p=3$
20	$15(7)$	$16(7)$	$15(7)$
30	$21(9)$	$21(9)$	$20(9)$
40	$24(9)$	$25(10)$	$24(10)$
50	$28(11)$	$29(11)$	$28(12)$

Plain one-level ORAS (with Scott Congreve)

Scattering of plane wave by a cube with a cavity
First level: $H=k^{-0.4}, \quad$ generous overlap

k	$p=1$	$p=2$	$p=3$					
			GMRES	$	$	22		
:---	:---	:---						
20								
25.1327								
30								
40								
50								
50.2655								

* 'Resonant' frequencies

Iteration numbers unaffected by resonance

Adding a coarse grid

with M. Bonazzoli, P.-H. Tournier, V. Dolean and E. Spence
$\Omega=(0,1)^{3} \quad p=1$
$h \sim k^{-3 / 2}, \quad n \sim k^{9 / 2}, \quad H_{\text {sub }} \sim k^{-0.5} \quad H_{\text {coarse }} \sim k^{-1}$
two level hybrid preconditioner

k	n	dim Coarse	\# GMRES	Time
10	$3.9(+4)$	$1.3(+3)$	12	8.9
20	$7.0(+5)$	$9.3(+3)$	17	42.2
30	$5.0(+6)$	$3.0(+4)$	21	177.1
40	$1.6(+7)$	$6.9(+4)$	29	414.8
		$\sim n^{0.6}$	$\sim n^{0.1}$	$\sim n^{0.6}$

"Weak scaling"

Theorem：（IGG，Spence，Zou，2018）

$$
\left\|\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\right\|_{D_{k}} \leq C_{1} \Lambda \quad \forall \varepsilon
$$

$$
\inf _{\boldsymbol{V} \neq \mathbf{0}} \frac{\left|\left\langle\boldsymbol{V}, \mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon} \boldsymbol{V}\right\rangle_{D_{k}}\right|}{\|\boldsymbol{V}\|_{D_{k}}^{2}} \geq \Lambda^{-1}\left(1-C_{2} \Lambda^{2} \min \left\{1, \frac{k}{|\varepsilon| H}\right\}\right)
$$

Heterogeneity A, n, dependence on degree

Theorem: (Gong IGG, Spence, 2020)

$$
\left\|\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\right\|_{D_{k}} \leq C_{1}(A, n) \Lambda \quad \forall \varepsilon
$$

$$
\inf _{\boldsymbol{V} \neq \mathbf{0}} \frac{\left|\left\langle\boldsymbol{V}, \mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon} \boldsymbol{V}\right\rangle_{D_{k}}\right|}{\|\boldsymbol{V}\|_{D_{k}}^{2}} \geq \Lambda^{-1}\left(1-C_{2}(A, n) \Lambda^{2} \min \left\{1, \frac{k}{|\varepsilon| H}\right\}\right)
$$

'local dependence' on contrast of A, n
Independent of polynomial degree p as $k \rightarrow \infty$

Robust to polynomial degree p

constant A and n ，\＃GMRES iterations

$k \backslash p$	1	2	3	4
40	17	18	17	16
60	16	16	16	15
80	15	16	15	14
100	14	15	14	14
150	14	15	14	14

Local dependence on contrast in refractive index n

(a) (nontrapping)

(d) (nontrapping)

(b) (trapping)

(e) (trapping)

(c) c oscillates

(f) c oscillates
$A=I$ and n varying, $p=1$

$k \backslash n$	$n=1$	Fig 1a	Fig 1b	Fig 1c	Fig 1d	Fig 1e	Fig 1f
40	14	18	17	34	16	19	24
60	13	19	18	25	14	18	22
80	13	17	19	27	13	15	28
100	13	15	19	26	13	15	27

Robust to 'trapping' (empirically)

Current work

Gong，Gander，IGG，Lafontaine，Spence

$$
\begin{aligned}
\mathbf{u} & =\mathbf{u}+\mathbf{B}^{-1}(\mathbf{f}-\mathbf{A u}) \\
& =\left(\mathbf{I}-\mathbf{B}^{-1} \mathbf{A}\right) \mathbf{u}+\mathbf{B}^{-1} \mathbf{f} \quad \text { Richardson iteration.. } \\
\text { error } \quad \mathbf{e}^{n+1} & =\underbrace{\left(\mathbf{I}-\mathbf{B}^{-1} \mathbf{A}\right)}_{=: \mathbf{E}} \mathbf{e}^{n}
\end{aligned}
$$

without absorption $(\varepsilon=0)$ ：
$\mathbf{B}^{-1} \mathbf{A}$ does not have a＇good＇field of values But it can be ＇power contractive＇：

$$
\left\|\mathbf{E}^{s}\right\| \ll 1, \quad \text { for some } \quad s
$$

power contractivity

Theorem for＇one－way decompositions＇（with N subdomains ） and ORAS，
\exists norm such that $\left\|E^{N}\right\| \leq C(N-1) \rho+\mathcal{O}\left(\rho^{2}\right)$
$\rho=$ norm of＇left to right impedance map＇（small for large enough overlap）

power contractivity

Theorem (for 'one-way decompositions')
\exists norm such that $\left\|E^{N}\right\| \leq C(N-1) \rho+\mathcal{O}\left(\rho^{2}\right)$
$\rho=$ norm of 'left to right impedance map' (small for large enough overlap)

power contractivity

Theorem（for＇one－way decompositions＇）
\exists norm such that $\left\|E^{N}\right\| \leq C(N-1) \rho+\mathcal{O}\left(\rho^{2}\right)$
$\rho=$ norm of＇left to right impedance map＇（small for large enough overlap）

power contractivity

Theorem (for 'one-way decompositions')
\exists norm such that $\left\|E^{N}\right\| \leq C(N-1) \rho+\mathcal{O}\left(\rho^{2}\right)$
$\rho=$ norm of 'left to right impedance map' (small for large enough overlap)

－When h small，ORAS（for FEM）is close to a simple iterative method formulated at PDE level
－Iterating the simple method is like iterating the impedance map
－The impedance map is contractive（using semiclassical analysis or rigorous computation）

The proof is only for one－way decompositions but．．．．

Results for 8×8 case：

k	Iterative	GMRES
40	46	28
80	31	26
160	28	24

Summary

－A walk around Helmholtz－land
－Very large non－Hermitian indefinite matrices
－Iterative methods and preconditioning
－Convergence theory－absorptive case
－Some examples
－A glimpse of some new results

Thanks for listening！

