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•What is superconvergence, anyway?

•Why superconvergence?

1) Cost Reduction! Tremendous gain under favorable situation!

2) A posteriori error estimates

recovery type versus residual type error estimators

industrial application versus academic development

3) Other benefits, such as enhancing eigenvalue approximation, ......

4) Industrial Application:

Superconvergence Patch Recovery (SPR) by Zienkiewicz-Zhu 1992

Polynomial Preserving Recovery (PPR) by Naga-Zhang 2005
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• SPR: FE software packages ANSYS, LS-DYNA, Abaqus, Diffpack,......

• PPR has been adopted by COMSOL Multiphysics (FEMLAB) since 2008

“To get better accuracy, select the Recover check box. COMSOL Mul-
tiphysics then evaluates the derivatives (and u itself) using a polynomial-
preserving recovery technique by Z. Zhang (see Ref. 1).”

– COMSOL MultiPhysics 3.5a User’s Guide p.471, 2008

“In the Expression text field enter the function ppr(solid.mises). The function
ppr() corresponds to the Recover setting in the earlier note on page 42 for
Surface plots. The Recover setting with the ppr function is used to increase
the quality of the stress field results. It uses a polynomial-preserving recovery
(ppr) algorithm, which is a higher-order interpolation of the solution on a patch
of mesh elements around each mesh vertex.”

– Introduction to COMSOL Multiphysics Version 4.4, November 2013, p.45;

Versions 5.0—5.6, 2014–2020.
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•Where are we standing?

What do we know of superconvergence?

A lot for traditional h-version FEMs from past 50 years: An old field

What do we not know of superconvergence?

Very little (comparing with the h-version FEM) New territories!

p-version finite element methods

finite volume methods

spectral and spectral collocation methods

discontinuous Galerkin methods

Nonconforming finite element methods

............
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Polynomial Spectral Collocation – for ODEs (Z. Zhang, SINUM 2012)

Fundamentals: Natural supercovergence points and approximation theory

Approach: Analysis based on orthogonal polynomials

We interpolate (or collocate) u at a set of N special points on [−1, 1]:

uN(xk) = u(xk), −1 ≤ x1 < · · · < xN ≤ 1.

Goal: Identify yj’s, where u′N superconverges to u′ in the sense that

Nα|(u− uN)′(yj)| ≤ C max
x∈[−1,1]

|(u− uN)′(x)|, α > 0.

Definition of suprconvergence points for the p-version and spectral methods:

yj’s are independent of the particular choice of u: derivative superconver-
gence points (of the interpolation) for a class of functions.
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A set of popular interpolation points are roots of:

2.1) LN , Legendre polynomial of degree N : Gauss points

2.2) LN − LN−2, Lobatto polynomial: Gauss-Lobatto points

2.3) LN + LN−1, left Radau polynomial: left Radau points

2.4) LN − LN−1, right Radau polynomial: right Radau points

Some important relations (similar for other Jacobi polynomials):

(2N − 1)LN−1(x) = (LN − LN−2)′(x),

1

2N − 1
(LN − LN−2)(x) =

1

N(N − 1)
(x2 − 1)L′N−1(x);

N(LN + LN−1)(x) = (x+ 1)(LN − LN−1)′(x),

N(LN − LN−1)(x) = (x− 1)(LN + LN−1)
′(x).
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These relations help us to locate derivative zero points

• Derivative zeros of the Legendre polynomial of degree N is the interior
zeros of the Lobatto polynomial of degree N + 1

• Derivative zeros of the Lobatto polynomial of degree N is the zeros of the
Legendre polynomial of degree N − 1

• Derivative zeros of the right (left) Radau polynomial are the left (right)
Radau points (except ±1) of the same degree

• Superconvergence points are problem and method dependent

• A properly designed method uses correct basis functions,
then the problem is narrow down to interpolation
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Let xks be roots of particular orthogonal polynomials and

u′N(xk) = u′(xk) = f(xk), uN(−1) = u(−1).

• Interpolating derivative at the N Gauss points, the function value approxima-
tion is superconvergent at the N − 1 interior Lobatto points.

• Interpolating derivative at the N Lobatto points, function value approximation
is superconvergent at the N − 1 Gauss points.

• Interpolating derivative at the N left (right) Radau points, the function value
approximation is superconvergent at the N − 1 right (left) Radau points.

Somilar results for Jacobi polynomials and generalized Jacobi functions

Li-Lian Wang, Xiaodan Zhao, and Zhimin Zhang, JSC 2014

Xuan Zhao and Zhimin Zhang, SISC 2017
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Numerical Test Examples

Examples 1 (Runge’ example).

u′(x) = f(x) =
1

1 + 25x2
, ρ =

√
52 + 1 + 1

5
≈ 1.2198.

It has two single poles at ±i/5.

Example 2.

u′(x) = f(x) =
1

2− x
, ρ = 2 +

√
3 ≈ 3.7321.

It has a single pole at x = 2.

We expect faster convergence for Example 2 compared with Example 1.
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Figure 1: Derivative interpolation at the Chebyshev points, Example 1
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Figure 2: Derivative interpolation at the Chebyshev points, Example 2
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LDG for 1D linear conservation laws

• An earlier discovery from numerical tests and 2k + 1 order in negative norm
and post-processed solution in L2-norm for ut + ux = 0:

Bernardo Cockburn, Mitchell Luskin, Chi-Wang Shu, Endre Süli, Enhanced ac-
curacy by post-processing for finite element methods for hyperbolic equations,
Mathematics of Computation 72 (2003), 577-606.

• Recent theoretical development: semi-discretization

Yang Yang and Chi-Wang Shu proved point-wise k + 2 rate.

Analysis of optimal supercovergence of discontinuous Galerkin method
for linear hyperbolic equations, SIAM J. Numer. Anal., 50: 3110-3133, 2012

• Point-wise 2k + 1 rate has remained open till 2014!!

Boundary condition: u(0, t) = u(2π, t) or u(0, t) = g(t)
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Correction idea

• Goal: Design a correction function w to improve the error a(u− P−h u, v)

such that for some l ≥ 1,
∣∣a(u− P−h u+ w, v)

∣∣ . hk+1+l, ∀v ∈ Vh

• Ultimate goal: l = k and ‖uh − uI‖0 . h2k+1 with uI = P−h u− w

• Difference of the new design from that of the FEM:

Explicit vs Implicit: Constructive proof and existence proof

“practical FEM” and “theoretical FEM”

Semi-discretization and time dependent feature

Explicit construction: of wl for any 1 ≤ l ≤ k such that wl(x−
j+1

2
) = 0 and

‖wl‖0,∞ . hk+2‖u‖k+4,∞. Moreover, if u ∈W k+l+2,∞, 1 ≤ l ≤ k,∣∣a(u− P−h u+ wl, v)
∣∣ . hk+1+l‖u‖k+l+2,∞‖v‖0,1
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If the initial value is chosen such that

‖uh(·, 0)− ulI(·, 0)‖0 . hk+l+1‖u‖k+l+2,∞, ulI = P−h u+ wl,

we have ‖uh − ulI‖0 . (1 + t)hk+l+1‖u‖k+l+2,∞.

• ‖uh − P−h u‖0 . (1 + t)hk+2‖u‖k+4,∞

• ‖uh − ukI‖0 . (1 + t)h2k+1‖u‖2k+2,∞. super-closeness

• Superconvergence rate is very sensitive to the method of initialization

Waixiang Cao, Zhimin Zhang, and Qingsong Zou, Superconvergence of Dis-
continuous Galerkin method for linear hyperbolic equations SIAM Journal on
Numerical Analysis 52-5 (2014), 2555-2573.

Waixiang Cao and Zhimin Zhang, Point-wise and cell average error estimates
of the DG and LDG methods for 1D hyperbolic and parabolic equations (in
Chinese), Sci Sin Math, 45 (2015) 1115-1132.
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Superconvergence (Sharp!)

• Downwind points (point-wise): (u− uh)(x−
j+1

2
, t) = O(h2k+1)

• Cell average (discrete L2 norm):

‖eu‖c =

 1

N

N∑
j=1

( 1

hj

∫ x
j+1

2

x
j−1

2

(u− uh)
)21

2

= O(h2k+1)

• Derivative value at interior left Radau points:

∂x(u− uh)(Rlj,l, t) = O(hk+1)

• Function value at right Radau points:

(u− uh)(Rrj,l, t) = O(hk+2)
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Numerical test

Example 1: ut + ux = 0, u0(x) = esin(x), u(0, t) = u(2π, t)

Piecewise uniform mesh composed by dividing [0, π2 ] and [π2 , 2π]

into N/2 subintervals with N = 4, . . . , 512

e1: maximal error at downwind points

e2: discrete L2 error at downwind points

e3: domain average

e4: maximal derivative error at interior left Radau points

e5: maximal function value error at right Radau points

e6: cell average
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Figure 3: left: k = 3, right: k = 4

10
0

10
1

10
2

10
3

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

10
0

10
1

10
2

10
3

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

 

 

e2
e3
e4
e5
e6
slope=2k+1
slope=k+1
slope=k+2

e2
e3
e4
e5
e6
slope=2k+1
slope=k+1
slope=k+2

– Typeset by FoilTEX – 21



Comparison of four different initial discretizations
Method 1 : uh(x, 0) = Rhu(x, 0) (L2 projection of u)

Method 2 : uh(x, 0) = (P−h u)(x, 0)

Method 3 : uht(x, 0) = (P−h ut)(x, 0), uh(x−
j+1

2
, 0) = (P−h u)(x−

j+1
2
, 0)

Method 4 : uh(x, 0) = ukI(x, 0)

Table 1: k = 4
N Method 1 Method 2 Method 3 Method 4

e1 rate e1 rate e1 rate e1 rate
2 1.43e-04 – 8.26e-05 – 1.09e-04 – 5.25e-05 –
4 2.69e-05 2.4 2.02e-06 5.4 1.00e-06 6.8 3.66e-07 7.2
8 7.85e-07 5.1 1.25e-08 7.3 1.10e-08 6.5 7.60e-10 8.9
16 2.02e-08 5.3 9.26e-11 7.1 7.71e-11 7.1 1.51e-12 9.0
32 3.81e-10 5.7 5.13e-12 4.2 3.72e-13 7.7 2.96e-15 9.0
64 4.78e-12 6.3 7.23e-14 6.2 1.52e-15 7.9 5.80e-18 9.0
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LDG method for 1D parabolic equations

ut = uxx, (x, t) ∈ [0, 2π]× (0, T ], u(x, 0) = u0(x) (1)

Boundary conditions: 1) u(0, t) = u(2π, t), or

2) u(0, t) = g0(t), ux(2π, t) = g1(t), or

3) ux(0, t) = g0(t), u(2π, t) = g1(t)

Equation (1) as a first order linear system: ut = qx, q = ux

LDG Methods: find (uh, qh) ∈ Vh such that

(uht, v)j = −(qh, vx)j + q̂hv
−|j+1

2
− q̂hv+|j−1

2

(qh, w)j = −(uh, wx)j + ûhw
−|j+1

2
− ûhw+|j−1

2
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Numerical fluxes ûh, q̂h are taken as alternating fluxes

ûh = u−h , q̂h = q+h (2)

or
ûh = u+h , q̂h = q−h (3)

Note: We test

a) both (2) and (3) in the periodic boundary condition 1)

b) (2) in the mixed boundary condition 2)

c) (3) in the mixed boundary condition 3)
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Correction function for parabolic equations

• Different from FEM and FVM for elliptic equations: semi-discretization and
time dependent feature.

• Different from DG methods for hyperbolic equations: correction functions
for both variables u and q have to be constructed simultaneously.

• Main difficulty: Balance the interplay between two correction functions.

Waixiang Cao and Zhimin Zhang, Superconvergence of Local Discontinuous
Galerkin method for one-dimensional linear parabolic equations, Mathematics
of Computation 85 (2016), 63-84.

Waixiang Cao and Zhimin Zhang, Point-wise and cell average error estimates
of the DG and LDG methods for 1D hyperbolic and parabolic equations (in
Chinese), Sci Sin Math, 45 (2015) 1115-1132.
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Superconvergence

• Downwind and upwind points (point-wise):

(u− ûh)(xj−1
2
, t) = O(h2k+1), (q − q̂h)(xj−1

2
, t) = O(h2k+1)

• Cell average: ‖eu‖c = O(h2k+1), ‖eq‖c = O(h2k+1)

• Domain average:

1

2π

∫ 2π

0

(u− uh)dx = O(h2k+1),
1

2π

∫ 2π

0

(q − qh)dx = 0 periodic

1

2π

∫ 2π

0

(u− uh)dx = O(h2k+1),
1

2π

∫ 2π

0

(q − qh)dx = O(h2k+1) mixed
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• Function value approximation at Radau points:

(u− uh)(Rrj,N , t) = O(hk+2), (q − qh)(Rlj,N , t) = O(hk+2) fluxes (2)

(u− uh)(Rlj,N , t) = O(hk+2), (q − qh)(Rrj,N , t) = O(hk+2) fluxes (3)

• Derivative value approximation at interior Radau points:

∂x(u− uh)(Rlj,N , t) = O(hk+1), ∂x(q − qh)(Rrj,N , t) = O(hk+1) fluxes (2)

∂x(u− uh)(Rrj,N , t) = O(hk+1), ∂x(q − qh)(Rlj,N , t) = O(hk+1) fluxes (3)

Note: Numerical observation: O(hk+2)

• In a purely numerical method, mathematics demonstrates her beauty and
elegant in symmetry and harmony!
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Numerical test

Example 2: ut = uxx with initial condition u0(x) = cos(x) + ex+1 and

boundary condition: ux(0, 0) = et+1, u(2π, 0) = e−t + e2π+t+1.

Numerical fluxes: ûh = u+h , q̂h = q−h

Uniform mesh with N = 2m (m = 2, 3, . . . , 6) for k = 3

Errors:
‖ξu‖0 = ‖u− P+

h u‖0, ‖ξq‖0 = ‖q − P−h q‖0

eu,n = max |(u− uh)(x+
j−1

2
, t)|, eq,n = max |(q − qh)(x−

j−1
2
, t)|

eu,l = max |(u− uh)(Rlj,N , t)|, eq,r = max |(q − qh)(Rrj,N , t)|

eux,r = max |∂x(u− uh)(Rrj,N , t)|, eqx,l = max |∂x(q − qh)(Rlj,N , t)|
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Figure 4: Error curves in the mixed boundary condition for k = 3
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2D case
Model problem: ut + ux + uy = 0, u(x, y, 0) = u0(x, y) with boundary condition.

DG method (tensor-product space, rectangular elements):

aτ(uh, v) =

∫
τ

(uhtv − uh(vx + vy)) +

∫
∂τ

ûhv = 0, ûh = u−h .

• Periodic boundary condition:

ûh(x1
2
, y) = uh(x−1

2
, y) = uh(x−

m+1
2
, y) = ûh(xm+1

2
, y)

ûh(x, y1
2
) = uh(x, y−1

2
) = uh(x, y−

n+1
2
) = ûh(x, yn+1

2
)

• Dirichlet boundary condition (correction discretization):

uh(x−1
2
, y) = uI(x

−
1
2
, y), uh(x, y−1

2
) = uI(x, y

−
1
2

)
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Superconvergence results

Nodes: eu,d =

 1

mn

m∑
i=1

n∑
j=1

(
u− uh

)2(
x−
i+1

2
, y−
j+1

2
, t
)1

2

= O(h2k+1)

Cell average: eu,c =

 1

nm

∑
τ∈Th

( 1

|τ |

∫
τ

(u− uh)
)21

2

= O(h2k+1)

Partial derivative approximation along the left Radau edges:

eu,l = max
P∈Elx

|∂x(u− uh)(P, t)|+ max
Q∈Ely

|∂y(u− uh)(Q, t)| = O(hk+1)

Function value approximation at the right Radau points:

eu,r = max
P∈Rr

|(u− uh)(P, t)| = O(hk+2)
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Numerical test:

Example: ut + ux + uy = 0, u0 = sin(x+ y)

Mesh: Non-uniform meshes of m × n rectangles by randomly perturbing each
node in the x and y axes of a uniform mesh by up to 20%

Note: Optimal convergence rates are observed and superconvergence phe-
nomenon disappears using the L2-projection to treat the initial condition.

Note: The special choice of the boundary discretization for DBC is to guarantee
the superconvergence of the DG approximation. This is very different from the
traditional L2 projection or the Gauss-Radau interpolant.

Waixiang Cao, Chi-Wang Shu, Yang Yang, and Zhimin Zhang, Superconver-
gence of discontinuous Galerkin methods for 2D hyperbolic equations, SIAM
Journal on Numerical Analysis 53-4 (2015), 1651-1671.
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Figure 5: Errors with periodic boundary condition, left: k = 3, right: k = 4
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Further Extension:

• DDG for ut + aux = uxx (semi-discretization): Nodal h2k etc.

Direct DG method without introducing q = ux

W. Cao, H. Liu, and Z.Z., Numer. Meth. PDEs 2017

• LDG for utt = uxx + au (semi-discretization): h2k+1 etc.

W. Cao, D. Li, and Z.Z., CiCP 2017

• Immersed FEM for −(au′)′ + bu′ + cu = f with interface: Nodal h2k etc.

Using weight function a−1 to define generalized Legendre and Lobatto poly-
nomials and to obtain generalized Gauss-Lobatto points in the element con-
tains a jump of a.

W. Cao, X. Zhang, and Z.Z., Advances Comput. Math. 2017
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• LDG for iut + uxx = 0 (semi-discretization): h2k+1 etc.

L. Zhou, Y. Xu, Z.Z., and W. Cao, JSC 2017

• LDG for ut+aux = 0 with degenerate variable coefficient (semi-discretization)

The best possible superconvergence rate:

O(hk+3/2) or O(hk+5/4) (if a′(x) = 0 as well) etc.

W. Cao, C.-W. Shu, and Z.Z., ESAIM: M2NA 2017

• LDG for nonlinear problem ut + f(u)x = 0, O(h2k+1) nodal convergent rate

before the “shock”, W. Cao, C.-W. Shu, Y. Yang, and Z.Z., SINUM 2018

• C1 Petrov-Galerkin method for the two-point boundary value problem

O(h2(k−1)) for both u− uh and (u− uh)′. W. Cao, L. Jia, and Z.Z. 2021
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What’s left?

• A rigorous proof: no need to make initial correction for parabolic equations

• Theory for fully discretization in both time and space (Some program)

• Higher-order problems (Some program has been made)

• Non-linear problems (Some program has been made)

• .................
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A FVM for the Sturm-Liouville System

−(βu′)′ + qu = f, u(0) = 0 = u(1); β(x) ≥ β0 > 0, q(x) ≥ 0.

Partition P: 0 = x0 < x1 < · · · < xn = 1

On each element τi = [xi−1, xi], find r Gauss points {gi,j}rj=1

Dual mesh P ′: [gi,j, gi,j+1], i = 1, . . . , n; j = 1, . . . , r with gi,r+1 = gi+1,1,

gn,r+1 = 1, and skip the interval [0, g1,1] due to u(0) = 0
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Ni: the piecewise linear nodal shape functions (the “tent” function) at xi

φi,j: the Lobatto polynomials (the “bubble” functions) on τi.

Our FVM is to find uP =

n−1∑
i=1

ciNi +

n∑
i=1

r∑
j=2

ci,jφi,j such that

(βu′P)(gi,j)− (βu′P)(gi,j+1) +

∫ gi,j+1

gi,j

quP =

∫ gi,j+1

gi,j

f (4)

Note: There are nr − 1 unknows and nr − 1 equations, we can show that

the system is uniquely solvable for ci’s and ci,j’s

For analysis, we may re-write (4) into variational format a(uP, w) = (f, w)

Denote χi,j, the charicteristic function on the subinterval [gi,j, gi,j+1]
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The test function can be written as w =

n∑
i=1

r∑
j=1

wi,jχi,j with wn,r = 0

Multiplying both sides of (4) by wi,j, summing up, and re-grouping, we have

a(uP, w) =

n∑
i=1

r∑
j=1

(βu′P)(gi,j)[wi,j] +

∫ 1

0

quPw =

∫ 1

0

fw

Define a dual norm by |w|2P ′ =

n∑
i=1

h−1i

r∑
j=1

[wi,j]
2 with [wi,j] = wi,j+1 − wi,j

Then for any v in the trial space, we can prove (Petrov-Galerkin)

sup
w

a(v, w)

|w|P ′
≥ C|v|1, C = β0 if q = 0.
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Key observation

Gauss-type quadrature vs Newton-type quadrature

When q = 0, u ∈ P2r, βu′P is exact at all Gaussian points for variable β(x)!

Denote eP = u− uP, we have

(βe′P)(gi,j)− (βe′P)(gi,j+1) = 0

and therefore (βe′P)(gi,j) is constant and we denote it as K.

Let u ∈ P2r, a polynomial of degree no more than 2r, then the r-point
Gaussian quadrature is exact for the integration of e′P, and hence

0 =

∫ 1

−1
e′P(x)dx =

∑
i,j

e′P(gi,j)wi,j = K
∑
i,j

wi,j
β(gi,j)

.

Therefore, K = 0,
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Superconvergence

• Function values at nodal points:

(u− uP)(xi+1) = (u− uP)(xi) +O(h2r+1)

(u− uP)(x1) = O(h2r+1), (u− uP)(xi) = O(h2r)

• Derivative superconvergence at the Gauss points

(u− uP)′(gi,j) = O(hr+2), = O(h2r) when q = 0

• Function value supercovergence at interior Lobatto points:

(u− uP)(li,j) = O(hr+2), r > 1
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Comparing with FEM

• Nodes: same rate of convergence for function value approximation

one-order higher at those nodes near x0 and xn.

• Lobbato points: same rate of convergence for function value approximation

• Gauss points: better convergent rate for the derivative approximation

O(hr+2) comparing with O(hr+1) in general, and

O(h2r) comparing with O(hr+1) when q = 0

• Note: Numerical tests indicate that our error estimates are sharp!

Waixiang Cao, Zhimin Zhang, and Qingsong Zou, Superconvergence of
any order finite volume schemes for 1D general elliptic equations, Journal of
Scientific Computing 56 (2013), 566-590.
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The p-version

Fix mesh (h), increase polynomial degree r = p.

Additional hypothesis: ‖u(k)‖∞ ≤ cMk.

Superconvergence results:

|u− up|L = max
i,j
|(u− up)(li,j)| ≤ C

(
heM

4p

)p+2

compare
(
heM

4p

)p+1

|u− up|G = max
i,j
|(u− up)′(gi,j)| ≤ C

(
heM

4p

)p+1

compare
(
heM

4p

)p
Waixiang Cao, Zhimin Zhang, and Qingsong Zou, Analysis of a p-version

finite volume method for 1-D elliptic problems, Journal of Computational and
Applied Mathematics 265 (2014), 17-32.
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Numerical test

β = ex, a = 1, q = 7. u(x) = sin(4πx) on [−1, 1]

h = 1 (two elements), p = 15, 16, . . . , 24.

Convergence rates are realized by ratios

‖u− up‖0 :

(
heM

4p

)p+1

, ‖u− up‖∞ :

(
heM

4p

)p+1

|u− up|L :

(
heM

4p

)p+2

, |u− up|G :

(
heM

4p

)p+1

|u− up|1 :
1
√
p

(
heM

4p

)p
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Figure 7: Ratio of estimated error and computed error for |u− up|1
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Figure 9: Ratio of estimated error and computed error. Lobatto (left), Gauss
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2D: the Poisson equation
−∆u = f , Homogeneous Dirichlet boundary condition

rectangular elements with tensor product trial space of degree r

• Convergent rate at vertices:

(u− uP)(xi, yj) ≈ O(h2r) (same as FEM)

• Convergent rate at Lobatto-Lobatto points:

(u− uP)(lxi,k, l
y
j,m) ≈ O(hr+2), k,m = 1, . . . , r − 1 (same as FEM)

• Convergent rate of the gradient at Gauss-Gauss points:

∇(u− uP)(gxi,k, g
y
j,m) ≈ O(hr+1), k,m = 1, . . . , r (same as FEM)
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What is different from FEM? On the element [xi−1, xi]× [yj−1, yj]:

∂x(u− uP)(gxi,k, l
y
j,m) ≈ O(hr+2), k = 1, . . . , r; m = 0, 1, . . . , r.

∂y(u− uP)(lxi,m, g
y
j,k) ≈ O(hr+2), m = 0, 1, . . . , r; k = 1, . . . , r.

where lyj,m is the m+ 1th Lobatto points on the interval [yj−1, yj].

This convergent rate can be realized by the the following discrete L2-norm:

∑
i,j

r∑
k=1

r∑
m=0

([∂x(u− uP)(gxi,k, l
y
j,m)]2 + [∂y(u− uP)(lxi,m, g

y
j,k)]

2)wgkw
l
mh

x
i h
y
j

where wgk’s are weights for the r-point Gauss quadrature

and wlm’s are the weights for the r + 1-point Lobatto quadrature.
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Numerical test

Model problem −∆u = f on the unit square Ω with

f = [(5π2 − 4y2 − 3) sin(πx) sin(2πy)− 2π cos(πx) sin(2πy)

−8πy sin(πx) cos(2πy)]ex−0.5ey
2
.

The exact solution is u(x, y) = sin(πx)ex−0.5 sin(2πy)ey
2
. Ω is divided intoN×N

sub-squares with N = 2, 4, . . . , 64. Denote Nh, N g, and N l as sets of vertices,
Gauss points, and Lobatto points, respectively. Define

eG = max
Q∈N g

|∇(u− uh)(Q)|, eL = max
P∈N l

|(u− uh)(P )|

eN = max
P∈Nh

|(u− uh)(P )|.
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Figure 10: left: k = 3, right: k = 4.
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What we have done in theory for 2D Poisson equation?

• Reformulate the FVM to a Petrov-Galerkin FEM

• A general approach to establish the inf-sup condition for any r

• Optimal rate of convergence in both H1 and L2 norms

• Superconvergence to u at vertices, O(h2r) vs O(hr+1)

• Superconvergence to u at Lobitto-Lobatto points, O(hr+2) vs O(hr+1)

• Supercovergence to ∇u at Gauss-Gauss points, O(hr+1) vs O(hr)
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Broader Open Problems

• Systematic superconvergence theory for FVM and DG

(including nonconforming) methods under triangular meshes

• Gradient recovery for nonconforming FEM, FVM, DG, ......

• Q: Is symmetry theory valid for FVM and/or DG?

A: Probably not for DG, especially LDG.

• Q: Is the computer-based proof valid for FVM and DG?

A: My answer is yes, and much involved work is necessary.

• Applications such as PDE eigenvalue problems ......................

Note I did not discuss the Virtual Element Method (VEM) in this talk.
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Thank you!
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Zhimin Zhang and Qingsong Zou, Some recent advances on vertex cen-
tered finite volume element methods for elliptic equations, Science China,
Mathematics, Special Issue on Computational Mathematics, Guest Editors:
Zhiming Chen, Weinan E, and Chi-Wang Shu, Vol.56 No.12 (2013), 2507-2522.

Waixiang Cao, Zhimin Zhang, and Qingsong Zou, Superconvergence of any
order finite volume schemes for 1D singularly perturbed problems, Journal of
Computational Mathematics 31-5 (2013), 488-508.

Waixiang Cao, Zhimin Zhang, and Qingsong Zou, Is 2k-Conjecture valid
for finite volume methods? SIAM Journal on Numerical Analysis 53-2 (2015),
942-962.
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