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Introduction to Poroelasticity problem

@ Solvers for Poroelastic problems. Robust Preconditioners

Parameter-robust preconditioners for the full stabilized P1-RT0-P0 system

@ Cheaper approach: special static condensation and parameter-robust
preconditioners

Conclusions
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Poroelasticity problem. Introduction

@ The theory of poro-elasticity addresses the time dependent coupling
between the deformation of a porous material and the fluid flow inside it.
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Poroelasticity problem. Subsidence

SUBSIDENCE from groundwater pumping in San Joaquin Valley (California)

Courtesy of California Department of Water Resources
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Poroelasticity problem. Subsidence

SUBSIDENCE from groundwater pumping in San Joaquin Valley (California)

SUBSIDENCE 6.2 ft
1988-2016
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Poroelasticity problem. Subsidence
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Poroelasticity problem

QUASI-STATIC BIOT'S MODEL:

Equilibrium equation: dive’ —aVp=pg, inQ,
(or equivalently diveo = pg, o = o’ — alp)
Generalized form of Hooke's law: o’ = Atr(e)l +2ue, in€Q,
Compatibility equation:  €(u) = 3(Vu+ Vu'), inQ.
1
e

Darcy's law:  w = K(Vp—prg), inQ,

- . o (1 .
Continuity equation: T (Mp +aVv - u) +V-w=f, inQ.

A and p: Lamé coefficients

«: Biot-Willis constant and M: Biot's modulus

K: Permeability of the porous medium and p: density of the solid
p: viscosity of the fluid and pf: density of the fluid

u: displacement vector and p: pore pressure

o’ and e: effective stress and strain tensors

w: velocity of the fluid relative to the soil

f: a forced fluid extraction or injection process and g: gravity vector



Poroelasticity problem

Two-field (displacement-pressure) formulation

—VOA+p)V-u—V - -uVu+aVp=pg,
1 9dp 0 1 _

Three-field (fluid velocity) formulation

—VOA+pu)V-u—V - -uVu+aVp=npg,
K™ purw + Vp = prg,
1 0p

9]
Ma+aa(v~ u)+V-w="r.

C. Rodrigo Robust discretizations and solvers for poroelastic problems



Poroelasticity problem

Three-field (solid pressure) formulation

—VuV-u—V - -uVu+Vps+aVp=pg,
A lps+V-u=0,
1 0p 0 1 _

—VuV -u—V . uVu+ Vpr = pg,
—V-u—- A" (pr —ap) =0,

1 o®\ Op  adpr 1 _
(M*T)&*XW* (VP —pre) ) =F.
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Poroelasticity problem - Many Applications!

Reservoir Engineering

Bioengineering

Earthquake Engineering

Carbon Dioxide Storage  Hydraulic Fracturing Animal Cells
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Poroelasticity problem - Many Applications!

Reservoir Engineering

Bioengineering

Earthquake Engineering

Large variation of model parameters in many practical problems !! J

Carbon Dioxide Storage  Hydraulic Fracturing Animal Cells

Caprock
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-
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Poroelasticity problem. Discretization schemes

@ Finite Difference schemes

- F.J. Gaspar, F.J. Lisbona, P.N. Vabishchevich, A Finite Difference Analysis of Biot’s Consolidation Model. Applied Numerical

Mathematics, 44 (2003) 487-506.

- F.J. Gaspar, F.J. Lisbona, P.N. Vabischevich, Staggered grid discretizations for the quasi-static Biot's consolidation problem,

Applied Numerical Mathematics 56 (2006) pp. 888-898.

@ Finite Volume methods

- R.E. Ewing, O.P. lliev, R.D. Lazarov, and A. Naumovich, On convergence of certain finite volume difference discretizations for

1-D poroelasticity interface problems, Numerical Methods for Partial Differential Equations 23 (3) (2007), 652-671.

- J. M. Nordbotten, Stable cell-centered finite volume discretization for Biot equations, SIAM Journal on Numerical Analysis 54

(2) (2016) 942-968.

@ Finite Element discretizations
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Poroelasticity problem. Discretization schemes

@ Finite Difference schemes

- F.J. Gaspar, F.J. Lisbona, P.N. Vabishchevich, A Finite Difference Analysis of Biot’s Consolidation Model. Applied Numerical

Mathematics, 44 (2003) 487-506.

- F.J. Gaspar, F.J. Lisbona, P.N. Vabischevich, Staggered grid discretizations for the quasi-static Biot's consolidation problem,

Applied Numerical Mathematics 56 (2006) pp. 888-898.

@ Finite Volume methods

- R.E. Ewing, O.P. lliev, R.D. Lazarov, and A. Naumovich, On convergence of certain finite volume difference discretizations for

1-D poroelasticity interface problems, Numerical Methods for Partial Differential Equations 23 (3) (2007), 652-671.

- J. M. Nordbotten, Stable cell-centered finite volume discretization for Biot equations, SIAM Journal on Numerical Analysis 54

(2) (2016) 942-968.

@ Finite Element discretizations

DESIRABLE PROPERTIES
o Free of non-physical oscillations (MONOTONICITY?)

o Uniform stability with respect to the discretization and physical parameters
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Poroelasticity problem. Robust discretization schemes

Search for parameter-robust stable discretizations )

@ J.J. Lee, Robust error analysis of coupled mixed methods for Biot's consolidation model, Journal of Scientific Computing 69

(2016) 610-632.

@ JJ. Lee, K-A. Mardal, and R. Winther. Parameter-robust discretization and preconditioning of Biot's consolidation model.

SIAM Journal on Scientific Computing, 39 (2017) A1-A24.

@ I Adler, F.j. Gaspar, X. Hu, C. Rodrigo, L.T. Zikatanov, Robust Block Preconditioners for Biot's Model, Domain Decomposition
Methods in Science and Engineering XXIV in Lecture Notes in Computational Science and Engineering, Vol. 125, Bjostad, P.E.,

Brenner, S.C., Halpern, L., Kim, H.H., Kornhuber, R., Rahman, T., Widlund, O.B. (Eds.), 2018.

@ Q. Hong, J. Kraus, Parameter-robust stability of classical three-field formulation of Biot's consolidation model, ETNA, 48 (2018)

202-226.
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SIAM Journal on Scientific Computing, 39 (2017) A1-A24.

@ I Adler, F.j. Gaspar, X. Hu, C. Rodrigo, L.T. Zikatanov, Robust Block Preconditioners for Biot's Model, Domain Decomposition
Methods in Science and Engineering XXIV in Lecture Notes in Computational Science and Engineering, Vol. 125, Bjostad, P.E.,

Brenner, S.C., Halpern, L., Kim, H.H., Kornhuber, R., Rahman, T., Widlund, O.B. (Eds.), 2018.

@ Q. Hong, J. Kraus, Parameter-robust stability of classical three-field formulation of Biot's consolidation model, ETNA, 48 (2018)

202-226.

After discretization. .. we need to solve Ax = f

@ Strongly coupled, ill-conditioned large systems of equations.

@ Many physical parameters (\, u, M, K, ) and discretization parameters
(h,7) are involved.
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Solution of large-sparse systems

DESIRABLE PROPERTIES

@ Robust convergence with respect to the discretization and physical
parameters.

@ Computationally efficient.
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Solution of large-sparse systems

DESIRABLE PROPERTIES

@ Robust convergence with respect to the discretization and physical
parameters.

@ Computationally efficient.

Mainly two approaches:

@ lterative coupling methods: solve sequentially the equations for fluid flow
and geomechanics until a converged solution is achieved.

o Flexibility: two different codes for fluid flow and geomechanics can
be linked for solving the poroelastic problems.

o Most frequently used: fixed-stress split method.
J. Kim, H.A. Tchelepi, R. Juanes, Stability, Accuracy, and Efficiency of Sequential Methods for Coupled Flow and

Geomechanics. Society of Petroleum Engineers (2011)
A. Mikelic, M.F. Wheeler, Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci. (2013,
J. Both, M. Borregales, J.M. Nordbotten, K. Kumar, F. Radu, Robust fixed stress splitting for Biot's equations in

heterogeneous media, Applied Mathematics Letters. (2017)

@ Monolithic or fully coupled methods: the linear system is solved
simultaneously for all the unknowns.
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Solution of large-sparse systems. Monolithic Approaches

MONOLITHIC APPROACHES

@ Monolithic multigrid methods (design of the smoother)

@ F.J. Gaspar, F.J. Lisbona, C. Oosterlee, R. Wienands, A systematic comparison of coupled and distributive smoothing in
multigrid for the poroelasticity system, Numer. Linear Algebra Appl. 11 (2004) 93-113.

@ P. Luo, C. Rodrigo, F.J. Gaspar, C.W. Qosterlee, On an Uzawa smoother in multigrid for poroelasticity equations,
Numer. Linear Algebra Appl. 24 (1) (2017). http://dx.doi.org/10.1002/nla.2074. 2074 nla.2074.

@ F.J. Gaspar, C.Rodrigo, On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and

geomechanics, Comput. Methods Appl. Mech. Engrg. 326 (2017) 526-540

@ Preconditioners for Krylov subspace methods

@ L. Bergamaschi, M. Ferronato, G. Gambolati, Novel preconditioners for the iterative solution to FE-discretized coupled
consolidation equations, Comput. Methods Appl. Mech. Engrg. 196 (25) (2007) 2647-2656.

@ M. Ferronato, L. Bergamaschi, G. Gambolati, Performance and robustness of block constraint preconditioners in finite
element coupled consolidation problems, Internat. J. Numer. Methods Engrg. 81 (2010) 381-402.

@ N. Castelleto, J.A. White, H.A. Tchelepi, Accuracy and convergence properties of the fixed-stress iterative solution of
two-way coupled poromechanics, Int. J. Numer. Anal. Methods Geomech. 39 (2015) 1593-1618.

@ J.J. Lee, K.-A. Mardal, and R. Winther, Parameter-robust discretization and preconditioning of Biot's consolidation

model. SIAM Journal on Scientific Computing, 39 (2017) A1-A24.
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Preconditioner Framework

Setup:
@ Hilbert space H equipped with inner product (-, )3 and norm || - ||%
@ Operator A: H +— H’

Linear system: given f € H’, find x € H such that Ax = f

Well-posedness:

Continuity: sup <AX7’Y> <p
oxer oyer |[X|[#llylln
Inf-sup condition: inf (Axy) >v>0

SUp i
0AxeH opyen [[X[|o[lyll#

The well-posedness of the discretized system provides a convenient framework
with which to construct block preconditioners

D. Loghin and A. Wathen, Analysis of preconditioners for saddle-point problems, SIAM Journal on Scientific Computing, 25
(2004), 2029-2049.
K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differential equations, Numerical Linear

Algebra with Applications, 18 (2011), 1-40.
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Norm-equivalent Preconditioner

Preconditioner M : H' + H is symmetric positive definite (MA : H — H)

Norm-equivalence

If A is well-posed w.r.t the norm || - ||%. Choose M such that

allxlffe < [IxlP-1 < ellxll3

then M and A are norm-equivalent and k(M.A) < 22

ay

Theorem (Convergence of preconditioned MINRES)

There exists a constant § € (0,1) such that
(MA(x — x™), A(x — x™))/? < 26™(MA(x — x°), A(x — x°))}/?
where

5= HMA) —1
- K(MA)+1
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Field-of-Values Equivalent Preconditioner

Preconditioner M : H' — H is a general operator (M A : H — H)

Field-of-Value equivalence

The operators M, and A are FoV-equivalent, if for any x € H,

MLAX,X)M_l ||ML.AX||M—1

o< ( s
(%, X) 011 [%[|ng—1

<T.

Theorem (Convergence of preconditioned GMRES)

If x™ is the m-th iteration of GMRES method and x is the exact solution,

IMLAG =Xl per (1 2 )’"/2
[MLAG =) [ =\ T2
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Application to Poroelasticity. Two-field formulation

Two-field formulation

We consider the discretization of poroelasticity problem given by operators of

/
the form Ac = ( g iBC > where C is bounded, selfadjoint and positive
definite. 5
Ac is an isomorphism < For any g € QF , sup {Bv.q) >y llqll =1 qlc
veu",‘ H v HA

If inf-sup condition for B is satisfied with C = 0,
then it is also satisfied with C > 0

Stable finite element pair for Stokes is also stable for poroelasticity

C. Rodrigo, F.J. Gaspar, X. Hu, L.T. Zikatanov, Stability and monotonicity for some discretizations of the Biot's consolidation model,

Computer methods in applied mechanics and engineering, 2016

@ P1-P1 + Stabilization @ MINI element + Stabilization

Robust preconditioners for the two-field formulation in:
J. Adler, F.j. Gaspar, X. Hu, C. Rodrigo, L.T. Zikatanov, Robust Block Preconditioners for Biot's Model, Domain Decomposition Methods
in Science and Engineering XXIV in Lecture Notes in Computational Science and Engineering, Vol. 125, Bjostad, P.E., Brenner, S.C.,

Halpern, L., Kim, H.H., Kornhuber, R., Rahman, T., Widlund, O.B. (Eds.), 2018.
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Application to Poroelasticity. Three-field formulation

Three-field formulation

—dive’ + aVp = pg, where o' = 2ue(u) + Mdiv(u)l,
K™ uew + Vp = prg,

% (%p—ka divu) +divw = f.
Boupc.iary p=0, for xel;, o' n=0, for x €Ty,
conditions:
u=0, for xel,, w-n=0, for xelg
. . 1 -
Initial condition: (Mp + a div u) (x,00=0
el,Ulr.=r.

@ n is the unit outward normal to the boundary.
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Variational formulation

Introducing the spaces:

v = {ueHl(Q),u:Oenrc},
W = {weH(iv,Q),(w-n)r,=01},
Q = LX9),

and the bilinear form:

a(u,v) = ZM/QE(U):s(v)dQJr/\/Qdivudivde.

For each t € (0, T], find (u(t), w(t),p(t)) € V x W x Q such that
a(u,v) — (ap,divv) = (pg,v), Vvev,
(K pew,r) = (p,divr) = (prg,r), VreWw,

1 0p . Ou . .
(Ma7q)+(ad|VE,q)+(d|VW7q)—(f,q)7 quQ
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Finite element discretization

@ Implicit Euler scheme + triple of finite element spaces (Vi, Wh, Q)

For m > 1, find (up’, wy", pi') € Vi X Wi X Qp such that

a(uy', vh) — (app, divvy) = (pg,vn), Y vy € Vi,
(K prwiy' r) — 7(p , divr) = 7(prg, ),V € W,

1 m . m . m s
(Mph 7qh) + (ad'V up >Clh) + T(d'V Wh >Qh) = (f, qh), Y qn € Qh.
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Definition (Adler, Gaspar, Hu, Ohm, Rodrigo, & Zikatanov 2018)

The triple of spaces (Vi, Wh, Qp) is Stokes-Biot stable if and only if the
following conditions are satisfied:

(] a(uh, Vh) < Cv||llh||1HVh||1, for all up, € Vi, vy, € Vp;
o a(up, up) > aVHuhH%, for all u, € Vp;
@ The pair of spaces (Wh, Q) is Poisson stable;

@ The pair of spaces (Vi, Q) is Stokes stable.
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We introduce the weighted norm:

2 —1
« 1 .
o o) = <|uh||i+r||wh||i1M+72(€2+M) I div w

2 1/2
2
(G ) Iel)e= a2

Theorem (Adler, Gaspar, Hu, Ohm, Rodrigo, & Zikatanov 2018)

If the triple (Vh, Wh, Qp) is Stokes-Biot stable, the block matrix form A is
well-posed with respect to the weighted norm, i.e. the following continuity and
inf-sup condition hold for x, = (un, Wh, pr) € Xn = Vi Xx W, X Q4 and y, € Xy,

(AXh, .Vh)

sup sup —————— <g,
0£x, € Xy uséyhexh 1 %n 1] [yl

inf  sup AN o
07yn€Xh 02x,e X, ||[%][| 1] yl]]

with constants ¢ > 0 and v > 0 independent of mesh size h, time step size T,
and the physical parameters.

v
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element discretization: P1-RTO0-PO

Implicit Euler scheme + P1-RT0-PO
Vi={weV|ulrePyT), forall TeT},
Wh:{whe W | wp|T = a+ nx, acRY, n €R, VT€77,}7
Qr={qn € Q| gn|lTt €Po(T), VT € Tr}.
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Finite element discretization: P1-RTO0-PO

Implicit Euler scheme + P1-RT0-PO
V, = {v,, € V| wlr € [Py(T), forall T ¢ Th},
Wh:{whe W | wy|r =a+nx, acR nekR, VT€77,}7
Qn={agn€ Q| qnlt €Po(T), VT € Tn}.

@ RTO-PO is Poisson stable

@ P1-P0 is not Stokes stable
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Numerical Experiment

@ Domain: Q =(0,1) x (0,1).
@ Dirichlet boundary conditions for displacements and pressure.

@ We cover Q with a uniform triangular grid by dividing an (N x N) uniform
square mesh into right triangles.

e A=2,u=1.

o ur=1,a=1M=10°

@ Diagonal permeability tensor K = kI with constant k.

@ Weset 7 =1 and tmax = 1, so that we only perform one time step.

@ the exact solution is given by

wyet) = antp= (7). ol byl -0 -,

p(x,y,t) = 1
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Numerical Experiment

Energy norm and L-norm for displacement and pressure errors

N = N=16 | N=32 | N=64 N =128
o _10-4 | lu—un[a [ 00209 [0.0089 | 0.0043 | 0.0022 0.0011
B llp — pall,2 | 0.0535 | 0.0088 | 0.0015 | 0.0003 | 7.38 x 1075
o _10-6 | [lu—unla [00477 [T0.0271 [ 0.0060 | 0.0022 0.0011
llp — pall,2 | 0.3277 | 0.3199 | 0.0763 | 0.0099 0.0012
10— | [lu—unla [ 00503 [ 0.0497 | 0.0418 | 0.0147 0.0019
— lp— pull,2 | 0.3553 | 0.7157 | 1.1509 | 0.6537 0.1152
o —10-10 | [lu— wn[la [ 0-0503 | 0.0503 | 0.0501 | 0.0484 0.0330
— llp — pull,2 | 0.3550 | 0.7271 | 1.4576 | 2.7836 3.4508
Results confirm poor approximation when k/h is small J
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Stabilization by Bubbles (Girault & Raviart 1986)

Enrich linear finite element by face bubbles: V, = V,,, & V, J

Example: bubbles in 2D
4)1 = n1A2A3, ¢'2 = ng)\l)\3, ¢3 = ﬂ3)\1)\2

Vi

P1+bubbles-RTO0-PO is Stokes-Biot stable J
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Stabilization by face bubbles.

@ Implicit Euler scheme 4+ V,,-RT0-P0O

V, = Vh,/ @® Vb, where
Vi ={vh € V | w|7 € [P(T)]%, forall T € Ta},
Vi, = span{®.}ece,

Wh:{Whe W|Wh|T:a+nx3 aeRda n€R7 VTeﬁ}7
Qu={gr € Q| qulT €Po(T), VT €Tp}.

For m > 1, find (ug’, w;", pi') € Vi X Wi X Qp such that

a(uy', vh) — (appy, divvy) = (pg,vn), YV vy € Vi,
(K™ pewy’, 1) — 7(ph, div r) = 7(pg, 1), ¥ rn € W,

1 m . m . m s
(Mph 7qh) + (OédIV Up ,Qh) + T(dIV Wp ,Qh) = (f7 Qh), Vg € Qs

v
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Stabilization by face bubbles

We have the following block form of the discrete problem:

Uy Apb Ay aBl 0

u | . B Al A aBl 0
Al p [ =howith A=t B, —aB LM, —1B.

w 0 0 Bl M,

a(u,’f7 v,l,’) — Abp, a(u,/” vf,’) — Ap, a(u,’,, v,’,) — Au,
—(pn,divvy) — By, —(pn,divvi) — B,  —(pn,divr,) — B,

(K™ prwh, 1) = Mw,  (Pn, qn) — Mp,

We also denote:
a(uh, Vh) — Au, —(div Up, qh) — Bu,

App  Apbl

h that A, =
such tha ( A Ay

) and B, = (B, B).
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Numerical results. Poroelastic problem 2D

Energy norm and L?-norm for displacement and pressure errors

N = N =16 N = 32 N = 64 N = 128
k—10-* [Jlu— uplla 0.0151 0.0072 0.0037 0.0019 0.0010
B llp = pall;2 0.0322 0.0168 0.0104 0.0052 0.0020
k=105 [lu— uplla 0.0153 0.0073 0.0036 0.0018 0.0009
llp = pall,2 0.0349 0.0161 0.0074 0.0032 0.0012
k—10-8 [lu— uplla 0.0153 0.0073 0.0036 0.0018 0.0009
llp = pall;2 0.0349 0.0162 0.0074 0.0035 0.0017
k= 10-10 [lu— uplla 0.0153 0.0073 0.0036 0.0018 0.0009
llp = pall;2 0.0349 0.0162 0.0075 0.0035 0.0017

The errors are appropriately reduced independently of the physical parameters. )
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Stabilized P1-RT0-PO

We have the following block form of the discrete problem:

Up Abp Ay aBl 0

u | . B Al A aBl 0
Al p | =bowith A= B, aB LM, —rB,

w 0 0 Bl M,

Since the triple (Vi, Wh, Qp) is Stokes-Biot stable, the block matrix form A is
well-posed with respect to the weighted norm:

&M

a? 1 2 1/2 2u
(Gt ) Iol) L e= a2

independently of discretization and physical parameters.

2 =i
1 .
1, wa, plll = ( Nlenlla + Tllwallz-s,,, + 72 ( 35 I div w |
K
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Norm-equivalent Preconditioner for the full system

Block diagonal preconditioners:
—1

Au 0 0
0 _o? + 1 )\m 0
Bp = /\+2# M P
—1
2
0 0 TMw + (}\i‘% + %) 2 Aw

where A, = B M, 'B,.

C. Rodrigo Robust discretizations and solvers for poroelastic problems



Norm-equivalent Preconditioner for the full system

Block diagonal preconditioners:
—1

Au 0 0
0 (2% +2L)m 0
Bp = /\+2# M P
—1
2
0 0 My + (}\i‘% + ﬁ) T2 AW

where A, = B M, 'B,.

Inexact block diagonal preconditioners:

_ [Qu 0 0
BD = 0 Qp 0
0 0 Qw

where Qu: MG, Qp: Jacobi, and Qw: Hiptmair-Xu/MG
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Norm-equivalent Preconditioner for the full system

Block diagonal preconditioners:

Au 0 0 -1
0 o> 1)y 0
Bp = /\+2# M P
-1
2
0 0 My + (}\i‘% + ﬁ) 2 Aw

where A, = B M, 'B,.

Inexact block diagonal preconditioners:

_ [Qu 0 0
BD = 0 Qp 0
0 0 Qw

where Qu: MG, Qp: Jacobi, and Qw: Hiptmair-Xu/MG

Theorem (Adler, Gaspar, Hu, Ohm, Rodrigo, & Zikatanov 2018)

If the linear system is well-posed w.r.t || - ||, then we have

k(BpA) < G and k(BpA) < G
where Gy and G, are constants independent of the physical parameters (X, p,
M, K, «) and the discretization parameters (h, 7).
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FoV-equivalent Preconditioners for the full system

Block lower triangular preconditioner:

-1

Ay 0 0
aZ
BL _ —OéBu (@ —+ %) Mp O
1
0 TBJ/— TMW + <)\+0€7“ + %) 7'2Aw
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FoV-equivalent Preconditioners for the full system

Block lower triangular preconditioner:

Ay 0 0 -t
o‘2
BL _ —OéBu (@ —+ %) Mp O
—1
0 7B} M + <Aj§# + ﬁ) A

Inexact block lower triangular preconditioner:
(@' o o\
Bi=|-aBs, Q' 0
0 7B, Q.'

Theorem (Adler, Gaspar, Hu, Ohm, Rodrigo, & Zikatanov 2018)

If the linear system is well-posed w.r.t || - ||, then we have
@ B, and A are FoV-equivalent
@ B, and A are FoV-equivalent if ||l — QuAulla, <0 <1
@ FoV-equivalent constants are independent of the physical parameters
(A p, M, K, ) and the discretization parameters (h, T)
@ Preconditioned GMRES converges uniformly
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FoV-equivalent Preconditioners for the full system

Block upper triangular preconditioner:

Ay aBT 0 -t
aZ
By=|° (ﬁ + %) M, ~7Bu
-1
Oc2
0 0 M. + (H% i ﬁ) 2A,
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FoV-equivalent Preconditioners for the full system

Block upper triangular preconditioner:

Ay aBT 0 -t
aZ
By=|° (ﬁ + %) M, ~7Bu
-1
Oc2
0 0 M. + (@ i ﬁ) 2A,

Inexact block upper triangular preconditioner:
_ [Q' eBy 0\
Bu=| 0 @' -7Bw
o 0 QF

Theorem (Adler, Gaspar, Hu, Ohm, Rodrigo, & Zikatanov 2018)

If the linear system is well-posed w.r.t || - ||, then we have
@ By and A are FoV-equivalent
@ By and A are FoV-equivalent if ||ly — QuAulla, < J <1
@ FoV-equivalent constants are independent of the physical parameters
(\, 1, M, K, a) and the discretization parameters (h, T)
@ Preconditioned GMRES converges uniformly
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Numerical experiments

@ Linear system solved using preconditioned FGMRES to a relative residual
tolerance of 1078

@ @y is solved using AMG preconditioned GMRES to a relative residual
tolerance of 1073

@ Qu is solved using HX preconditioned GMRES to a relative residual
tolerance of 1073

@ @, is calculated directly since the pressure block, M,, is diagonal

@ Solved using HAZMATH: A Simple Finite Element, Graph, and Solver
Library (www.hazmath.net)
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Numerical experiments: Mandel problem

2D physical and computational domains for Mandel's problem

lZF
7

2b

2a

A
TZF

@ Benchmark problem: the analytical solution for the pore pressure can be
found in Abousleiman et al. 1996

@ Computational domain: Q = (0,1)%.

@ Uniform triangular grid on 2, obtained by dividing a N x N uniform
square grid into right triangles.

@ Material properties: pf =1, oo =1, M = 10°

A

T-2n)1+v) " HF T 1v

where E is the Young modulus and v is the Poisson ratio.
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Numerical experiments: Mandel problem

Iteration counts for the block preconditioners
with varying discretization parameters.

BD BL BU
by 10101 111 1 1 1|11 1 1 1
T 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
0.1 28 35 37 38 37 (|15 17 17 17 16 || 15 17 17 17 17
0.01 21 22 28 33 35 (|10 12 15 16 16 9 12 14 16 16
0.001 19 19 19 22 27 8 8 9 12 14 ||7 7 8 11 13
0.0001 {16 17 17 17 17 (|7 7 7 7 7 7 6 6 6 8

Bp By By
h 11 1 1 1 11 1 1 1 11 1 1 1
T 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
0.1 28 35 38 38 37 (|15 17 17 17 16 (|15 17 18 17 17
0.01 21 22 28 33 35 (|10 12 15 16 16 9 12 14 16 16
0.001 19 19 19 22 27 8 8 10 12 14 7T 7 9 11 14
0.0001 (17 17 17 17 17 (|7 7 7 8 9 7 6 6 7 9
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Numerical experiments: Mandel problem

Iteration counts for the block preconditioners
with varying physical parameters K and v

v = 0.0 and varying K
1 1072 107%* 107® 10°% 10710
Bo | 23 27 38 35 17 10
B, | 7 9 15 16 9 5
By | 13 15 17 16 8 3
Bo | 35 29 38 35 17 10
B, | 14 15 16 16 9 6
By | 27 19 17 16 9 2

K = 1079 and varying v
0.1 02 04 045 049 0.499
Bp | 45 50 39 37 32 21
B 16 18 11 9 7 6
By | 20 22 15 13 11 12
Bp | 45 50 39 37 32 25
B 17 19 12 10 11 9

Bu 21 23 19 20 24 16
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Numerical experiments: 3D footing problem

Three-dimensional footing problem

@ Block of porous soil: Q = (0,1)*

@ Uniform load of intensity oo = 3 x 10* per unit area

Oy

Computational domain Example solution
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Numerical experiments: 3D footing problem

Iteration counts for the block preconditioners

with varying discretization parameters

Bp B By
hflr 1 1 1 101 1 1 101 1 1
T 4 8 16 32 4 8 16 32 4 8 16 32
0.1 60 65 65 * || 3¢ 36 36 * || 32 34 34 =«
0.01 47 57 68 x || 30 34 37 x || 26 31 35 9«
0001 || 40 42 49 « || 26 28 32 x || 20 23 28 9«
00001 || 40 42 42 + || 24 35 36 « || 20 20 21 &
Bo B By
h 101 1 1 101 1 1 101 1 1
T 4 8 16 32 4 8 16 32 4 8 16 32
0.1 60 65 66 64 || 3% 36 36 36 || 32 34 34 34
0.01 47 58 68 71 || 30 34 37 39|26 31 35 37
0001 || 42 42 51 63|/ 26 28 32 36|20 24 28 33
0.0001 || 40 42 42 45 || 24 25 271 20 || 21 22 23 25

(* means the direct method for solving diagonal blocks is out of memory)
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Numerical experiments: 3D footing problem

Iteration counts for the block preconditioners
with varying physical parameters, K and v

v = 0.2 and varying K
1 1072 107%* 100 1078 1010
Bp | 28 28 49 68 42 35
B, | 20 20 27 37 26 24
By | 18 18 26 35 21 14
Bo | 28 28 49 68 42 42
Bl |20 20 28 37 27 25
By |21 21 27 35 22 24

K = 107° and varying v
0.1 02 04 045 049 0.499
Bp | 72 68 51 46 35 26
By | 41 37 25 21 17 20
By | 38 3 25 21 17 20

Bp | 72 68 51 46 35 26

—

B 41 37 25 21 17 20

—~

By | 38 35 25 21 17 21
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Cheaper strategy?

Block preconditioners robust w.r.t. discretization and physical parameters
for the full stabilized P1-RT0-PO system J
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Cheaper strategy?

Block preconditioners robust w.r.t. discretization and physical parameters
for the full stabilized P1-RT0-PO system J

We have the following block form of the discrete problem:

Uy Abpb Ay aBl 0

u | _ : _ Al Ay B 0
Al p | Zhowith A= B, 0B M, 7B

w 0 0 7B, 7M.,

a(u,l,’, v,f’) — App, a(u,’,7 v,f’) — Apr, a(uL, v,i) — Ay,
—(pn,divvy) = By, —(pn,divvy) = B, —(pn,divr) — Bu,

(K purwi, 1n) — M, (phy qn) — My,
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Perturbation of the bilinear form. Elimination of bubbles

@ For the restriction of a(:,-) onto the space spanned by bubble functions
V., we have

av (b, vo) = a(up, vo) = an,m(up,vs) = D D teverar(Per, Be).

TETH TeThee'€dT
@ On each element, T € Tj, then introduce

dp,7(u,v) =(d+1) Z ueveadr(®e, ®e), do(u,v) = Z dp 7(u, v).

ecoT TET,
@ Replacing a(-,-) with ds(-,-) gives a perturbation, a°(-,-), of a(-,-):

aD(u, v) := dp(up, vb) + a(up, vi) + a(uy, vp) + a(uy, vi)

Lemma: A spectral equivalence result

The following inequalities hold:
a(u,u) < a°(u,u) < na(u,u), forall wue V,

where 1 depends on the shape regularity of the mesh.
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Perturbation of the bilinear form. Elimination of bubbles

We define the following block form of the discrete operator:

Ub Dbb Ab/ OLBZ— 0

p| U | _ . D _ Al Ar aBf 0
ATl p | Thowith AD=1 B, aB LM, —rBu
w 0 0 7Bi My

After eliminating the degrees of freedom corresponding to the bubble functions,
we obtain:

Ay — ALD, Ay aB — oAl DB 0
A" = | —aBi+aByDylAw  HEM,+ a?ByDy' Bl —7Bu
0 Bl ™M,

We have the same degrees of freedom as in the original P1-RT0-P0 method for
the three-field formulation. J
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Well-posedness for the bubble-eliminated system

Here, XF denotes the discretized finite-element space after bubble elimination.

Theorem (Adler, Gaspar, Hu, Ohm, Rodrigo, & Zikatanov 2018)

If the full system is well-posed as shown before, then the bubble-eliminated
system satisfies the following inequalities for x£ = (ur, pn,w) " € XF and
yE=(vi,gnm)" € XE,

E_E E
inf sup M >y,
0AxEEXE 0yE e XE IxEllpellyE |l pe
EE E
sup sup M <g,
0#xEeXE 0£yEeXf [IxE |l pellyEllpe
where,
Ay — AL Dyt A 0 0
DF = 0 o?ByDy,'B] + c; M, 0 ,
0 0 ™My + TchAW

with [|x5||5e = (D x5, xF).
Thus, the bubble-eliminated system is well-posed w.r.t. the weighted norm
defined above, independently of the discretization and physical parameters.
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Norm-equivalent Preconditioners for the bubble-eliminated

system

Block diagonal preconditioners:

Ay — ATD=1A, 0 0 -t
E bl = bb 1 1
Bp = 0 ¢ 'Mp+ a?ByDy ) Bl 0

0 0 TMw + T2 cpAw
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Norm-equivalent Preconditioners for the bubble-eliminated

system

Block diagonal preconditioners:

Ay — ATD=1A, 0 0 -t
E bl = bb 1 1
Bp = 0 ¢ 'Mp+ a?ByDy ) Bl 0

0 0 TMw + T2 cpAw

—1
2
—_a 1
where ¢, := (A+2: + M) and

. QF o 0
BE=(0 QF o0
0 0 QF

where QL’;:: MG, QE: MG, and QE: Hiptmair-Xu/ADS
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Norm-equivalent Preconditioners for the bubble-eliminated

system

Block diagonal preconditioners:

Ay — ATD=1A, 0 0 -t
E bl = bb 1 1
Bp = 0 ¢ 'Mp+ a?ByDy ) Bl 0

0 0 TMw + T2 cpAw

—1
2
—_a 1
where ¢, := (A+2: + M) and

. QF o 0
BE=(0 QF o0
0 0 QF

where QE: MG, QE: MG, and QE: Hiptmair-Xu/ADS
u P w

Theorem (Adler, Gaspar, Hu, O., Rodrigo, & Zikatanov 2019)

If the linear system is well-posed w.r.t ||| - |||p, then we have

®(B5A) < G and k(BEA) < G
where Ci and G, are constants independent of the physical parameters (X, p,
M, K, ) and the discretization parameters (h, 7).
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FoV-equivalent Preconditioners for the bubble-eliminated

system: Left Preconditioning

Block lower triangular preconditioner:

Ai— AL Dy Aw 0 0 -
BE = | -aB + aByDy, Ay ¢y My + o’ ByDyyt By 0
0 TB,:.’,- TMW —+ Cp7'2Aw
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FoV-equivalent Preconditioners for the bubble-eliminated

system: Left Preconditioning

Block lower triangular preconditioner:

Ai — ALD; As 0 0 -
Bi = | —aB/+aByDy'Aw i *M, + a?ByD,, B 0
0 7B TMy + 72 Aw
Inexact block lower triangular preconditioner:

E-1 -1

. . 0 0

BE = | —aB +aByDy Ay Q50
0 Bl Qt!
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FoV-equivalent Preconditioners for the bubble-eliminated

system: Left Preconditioning

Block lower triangular preconditioner:

Ay — ALDp Ap 0 0
Bi = | —aBi+aByD,,' Ay 5 *M, + a?ByD,,t B 0
0 TBY TMy 4 o7 Aw
Inexact block lower triangular preconditioner:
E-1 -1
. ; 0 0
BE = | —aB +aByDy Ay Q50
0 Bl Qt!

Theorem (Adler, Gaspar, Hu, O., Rodrigo, & Zikatanov 2019)

p, then we have

If the linear system is well-posed w.r.t ||| - ||
° IEE and A are FoV-equivalent
@ Bf and AF are FoV-equivalent if
s — Q5 (An — A[,D;Ab,)H(AWALD;AM) <6<1
@ FoV-equivalent constants are independent of the physical parameters
(\, 1, M, K, a) and the discretization parameters (h, T)
@ Preconditioned GMRES converges uniformly

v
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Numerical experiments: Mandel problem

Iteration counts for the block preconditioners
with varying discretization parameters

Bh B[ BG
h i1 1 1 1 i1 1 1 1 i1 1 1 1
T 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
0.1 25 31 36 39 39 (18 20 21 20 19 ||17 20 21 21 20
0.01 27 26 25 30 34 (|14 13 17 19 19 ||13 14 17 18 19
0.001 (27 28 27 22 25|13 13 12 13 16 || 9 11 11 13 15
0.0001 (22 25 25 24 22 (|10 11 11 11 11 (|9 9 9 10 11
Bp B B
h i1 1 1 1 i1 1 1 1 i1 1 1 1
T 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
0.1 25 31 36 39 39 ({18 20 21 20 19 ||17 20 21 21 20
0.01 27 26 25 30 34 (|14 14 17 19 19 ||13 14 17 18 19
0.001 (27 28 27 22 25|13 14 12 13 16 (| 9 11 12 14 15
0.0001 |22 25 25 24 22 ({10 11 11 12 11{|{9 9 9 10 11
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Numerical experiments: Mandel problem

Iteration counts for the block preconditioners
with varying physical parameters K and v.

v = 0.0 and varying K
1 102 107% 100 108 1010
Bé 36 38 42 34 23 19
B{E 14 15 19 19 11 7
BE | 23 22 21 19 11 3
125 49 38 42 34 23 14
lff 17 18 19 19 11 8
BE | 34 24 21 19 11 2

K =107 and varying v
01 02 04 045 049 0.499
BE | 43 50 43 43 43 30
BE |20 23 17 15 13 8
BE | 24 28 23 23 2 16

BE | 43 50 43 43 43 24
BE | 20 23 18 17 14 12
BE | 25 29 24 24 26 14
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Numerical experiments: Mandel problem

Performance comparison between the block diagonal, block upper triangular
and block lower triangular preconditioners for the full and the
bubble-eliminated systems

A (timing results versus mesh size)

107
10" g
o 100} 1
1071
107} ‘ ‘ E
10 10* 10°
N (number of elements)
Solving the bubble-eliminated system is faster
than solving the full-bubble system J
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Numerical experiments: 3D footing problem

Iteration counts for the block preconditioners

with varying discretization parameters

Bh B}
hflr 1 1 1 101 1 1 101 1 1
T 4 8 16 32 4 8 16 32 4 8 16 32
0.1 61 65 66 * || 41 41 39 = || 39 39 38 =«
0.01 54 58 66 « || 39 42 43 o« || 33 39 41 «
0001 || 58 58 53 « || 37 39 40 x || 28 32 35 9«
0.0001 || 59 61 60 x || 35 38 38 x || 20 20 30 =«

E E

BD BL
h 101 1 1 101 1 1 101 1 1
T 4 8 16 32 4 8 16 32 4 8 16 32
0.1 61 65 66 66 || 41 41 30 39 || 40 40 38 37
0.01 54 58 66 70 || 39 42 43 43 || 33 39 41 42
0001 || 58 58 53 61 || 37 39 40 43 || 28 32 35 40
0.0001 || 58 61 60 55 || 35 38 38 38|20 30 30 32

(* means the direct method for solving diagonal blocks is out of memory)
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Numerical experiments: 3D footing problem

Iteration counts for the block preconditioners
with varying physical parameters, K and v

v = 0.2 and varying K
1 1072 107%* 10® 10°% 10710
Bé 33 33 51 66 60 61
Bfz 20 20 29 43 38 35
BE | 20 20 29 41 28 18
zgg 33 33 51 66 60 61
@f 22 22 30 43 38 36
BE | 22 22 29 41 29 29

K = 107° and varying v
01 02 04 045 049 0.499
BE| 70 66 53 48 43 28
BE | 46 43 32 28 24 21
BE | 44 41 31 21 24 21
BE | 70 66 53 48 43 28
BE | 46 43 32 28 24 22

BE | 44 41 31 28 24 22
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Numerical experiments: 3D footing problem

Performance comparison between the block diagonal, block upper triangular
and block lower triangular preconditioners for the full and the
bubble-eliminated systems

A (timing results versus mesh size)

10? E E
— 10! E E
PR
'é lOog E
1071 E

% 10t 100 10% 107
N (number of elements)
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Conclusions

@ Design of parameter-robust preconditioners:

o Norm-equivalent preconditioners
o Field-of-values preconditioners

based on a stabilization of the P1 — RT0 — PO finite-element
discretization for a three-field formulation of the poroelasticity system.

© Same idea for the design of preconditioners robust w.r.t. discretization
and physical parameters for the corresponding bubble-eliminated approach
which has the same number of unknowns as in the initial P1-RT0-P0O
discretization.
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Conclusions

@ Design of parameter-robust preconditioners:

o Norm-equivalent preconditioners
o Field-of-values preconditioners

based on a stabilization of the P1 — RT0 — PO finite-element
discretization for a three-field formulation of the poroelasticity system.

© Same idea for the design of preconditioners robust w.r.t. discretization
and physical parameters for the corresponding bubble-eliminated approach
which has the same number of unknowns as in the initial P1-RT0-P0O
discretization.

Thank you for your attention!
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