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Numerical Simulation

The point of numerical simulation is to use computers to
answer science and engineering questions
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Numerical Simulation

The point of numerical simulation is to use computers to
answer science and engineering questions

The Question
↓

Mathematical Model
↓

Discrete Model
↓

Numerical Simulation
↓

Data/Answer
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Mathematical Models
Often use PDE models, based on conservation principles
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Mathematical Models
Often use PDE models, based on conservation principles

Consider a fluid moving with velocity v

• Let L be the density of a conserved quantity

• Let Ω be an arbitrary control volume within the flow
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Mathematical Models
Often use PDE models, based on conservation principles

Write conservation of L as

d

dt

∫
Ω

LdΩ = −
∫
∂Ω

Lv · nds+

∫
Ω

QdΩ

where

• n is the outward unit normal, and

• Q represents internal sources and sinks of L
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Mathematical Models
Often use PDE models, based on conservation principles

Apply Leibnitz rule and Divergence theorem to get∫
Ω

∂

∂t
LdΩ = −

∫
Ω

∇ · (Lv)dΩ +

∫
Ω

QdΩ

or ∫
Ω

(
∂L

∂t
+∇ · (Lv)−Q

)
dΩ = 0

This holds for an arbitrary control volume, Ω, so need

∂L

∂t
+∇ · (Lv) = Q
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Euler Equations
Applying conservation to mass, momentum, and energy gives:

∂ρ

∂t
+∇ · (ρv) = 0

ρ
∂v

∂t
+ ρv · ∇v +∇p = ρg

∂E

∂t
+∇ · ((E + p)v) = 0

• Need equation of state to close system
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Navier-Stokes Equations
Applying conservation to mass and momentum, adding
assumptions that the fluid is

• Incompressible: ρ is constant

• Newtonian: viscous stress is linear in local strain rate

∂v

∂t
+ v · ∇v − 1

Re
∇2v +∇p = f

∇ · v = 0
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PDE-based Simulation
Lots of effort invested in developing simulation tools for

PDE-based mathematical models

Spatial discretization tools:

• Finite Differences

• Finite Elements

• Finite Volumes

• Spectral Methods

Temporal integration tools:

• Runge-Kutta methods

• Multistep (BDF, Adams) methods, predictor-corrector

• Space-Time discretizations

These are our “go-to” tools for many problems
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PDE-based Simulation Failures

Difficulties arise in this framework when PDEs under
consideration don’t have unique solutions
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PDE-based Simulation Failures

Difficulties arise in this framework when PDEs under
consideration don’t have unique solutions

Difficulties in Mathematical Modeling

• PDE models can also come from equilibrium conditions

• These are sufficient conditions to be a physical solution

• Need to distinguish between multiple solutions
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PDE-based Simulation Failures

Difficulties arise in this framework when PDEs under
consideration don’t have unique solutions

Difficulties in Mathematical Modeling

• PDE models can also come from equilibrium conditions

• These are sufficient conditions to be a physical solution

• Need to distinguish between multiple solutions

Need underlying energy model to identify meaningful solutions

• Mathematical/numerical treatment of constraints,
mathematical reformulations can change picture of energy
landscape
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Nematic liquid crystals

• Substances which possess liquid
and crystalline properties.

• Nematic liquid crystals: rod
shaped molecules with a
preferred local average direction.

• The director, n(x, y, z) ∈ R3, is
unit length. Local average direction, n.

1

J. P. Lagerwall and G. Scalia, 2012.
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Nematic liquid crystals
Free-energy minimization of Lagrangian:

L(n,E, λ) =

∫
Ω

wF (n)− 1

2
D ·E −P ·E + λ(n ·n− 1)dV.

where

wF (n) =
1

2
K1 (∇ · n)2 +

1

2
K2 (n · ∇ × n)2 +

1

2
K3 |n×∇× n|2

D = ε0ε⊥E + ε0εa(n ·E)n

P = es (∇ · n)n+ ebn×∇× n

Considering the case where constants are anisotropic

• K1, K2, K3 not all the same

• εa 6= 0
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Elastic Free Energy Density

Splay Twist Bend
K1(∇ · n)2 K2(n ·∇× n)2 K3|n×∇× n|2

K1, K2, and K3 depend on temperature and liquid crystal
type.
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Frank-Oseen Elastic Free Energy Density

wF (n) =
1

2
K1(∇ ·n)2 +

1

2
K2(n ·∇×n)2 +

1

2
K3|n×∇×n|2.

A common analytical technique relies on the “one-constant
approximation”1

K1 = K2 = K3 ⇒ wF (n) =
1

2
K1|∇n|2.

A. Ramage and E. Gartland, SISC 2013
H. Wu, X. Xu, and C. Liu, Arch. Rational Mech. Anal. 2013.
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Frank-Oseen Elastic Free Energy Density

wF (n) =
1

2
K1(∇ ·n)2 +

1

2
K2(n ·∇×n)2 +

1

2
K3|n×∇×n|2.

A common analytical technique relies on the “one-constant
approximation”1

K1 = K2 = K3 ⇒ wF (n) =
1

2
K1|∇n|2.

In contrast, we’ll take
Z = κn⊗ n+ (I − n⊗ n) = I − (1− κ)n⊗ n,

where κ = K2/K3 with K2, K3 > 0 and write

wF (n) =
1

2
K1(∇ · n)2 +

1

2
K3 (Z∇× n) · (∇× n)

A. Ramage and E. Gartland, SISC 2013
H. Wu, X. Xu, and C. Liu, Arch. Rational Mech. Anal. 2013.

Finite-Element Modelling of Liquid Crystal Equilibria- p.12



Electric Effects

External static electric fields affect energy and orientation

Augment elastic free energy by

−1

2
D ·E = −1

2
(ε0ε⊥E + ε0εa(n ·E)n) ·E

where

ε0 = permittivity of free space,

ε⊥ = perpendicular permittivity of the dielectric,

ε‖ = parallel permittivity of the dielectric,

εa = ε‖ − ε⊥.

Also need to ensure ∇ ·D = 0, ∇×E = 0
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Electric Potential
Write E = ∇φ
• Ensures Faraday’s Law satisfied

Static electric field augmentation becomes

−1

2
D ·E = −1

2
(ε0ε⊥∇φ · ∇φ+ ε0εa(n · ∇φ) · (n · ∇φ))

where

ε0 = permittivity of free space,

ε⊥ = perpendicular permittivity of the dielectric,

ε‖ = parallel permittivity of the dielectric,

εa = ε‖ − ε⊥.

Still need to ensure ∇ ·D = 0
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Flexoelectric Effects
Polarization induced by curvature
• Several causes:

I shape asymmetry
I quadrupolar molecules
I effects of splay and bend on association between

molecules

• important in conversion of mechanical to electrical energy

Gives total electric displacement as

Dtotal = D + P = ε0ε⊥E + ε0εa(n ·E)n+ P

P = es (∇ · n)n+ ebn×∇× n

Augment energy density by

−P ·E = − (es (∇ · n)n+ ebn×∇× n) · ∇φ

Need ∇ ·Dtotal = 0
Finite-Element Modelling of Liquid Crystal Equilibria- p.15



Unit Length Constraint2

Need to ensure director field is unit length pointwise:

n · n = 1

Impose this using Lagrange multiplier, λ.

• Augment physical energy density by λ (n · n− 1)

• When satisfied, contributes no energy

• Could also use penalty approach
I Avoids adding extra variable
I Leads to less accurate solutions
I Linearized systems are harder to solve

Adler, Emerson, MacLachlan, Manteuffel, SISC 2016
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Complete Lagrangian
Free-energy minimization of Lagrangian:

L(n, φ, λ) =

∫
Ω

wF (n)− 1

2
D ·E − P ·E + λ(n · n− 1)dV.

where

wF (n) =
1

2
K1 (∇ · n)2 +

1

2
K2 (n · ∇ × n)2 +

1

2
K3 |n×∇× n|2

E = ∇φ
D = ε0ε⊥E + ε0εa(n ·E)n

P = es (∇ · n)n+ ebn×∇× n

Additionally, need ∇ · (D + P ) = 0
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First-Order Optimality Conditions
Minimize Lagrangian when first variations are zero:

Ln[v] =
∂

∂n
L(n, φ, λ)[v] = 0, ∀v ∈ HDC

0 (Ω),

Lφ[ψ] =
∂

∂φ
L(n, φ, λ)[ψ] = 0, ∀ψ ∈ H1

0 (Ω),

Lλ[γ] =
∂

∂λ
L(n, φ, λ)[γ] = 0, ∀γ ∈ L2(Ω).

Necessary function spaces:

L2(Ω) =

{
γ :

∫
γ2 <∞

}
H1(Ω) = {ψ ∈ L2(Ω) : ∇ψ ∈ L2(Ω)}
H1

0 (Ω) = {ψ ∈ H1(Ω) : ψ(x) = 0 ∀x ∈ ∂Ω}
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First-Order Optimality Conditions
Minimize Lagrangian when first variations are zero:

Ln[v] =
∂

∂n
L(n, φ, λ)[v] = 0, ∀v ∈ HDC

0 (Ω),

Lφ[ψ] =
∂

∂φ
L(n, φ, λ)[ψ] = 0, ∀ψ ∈ H1

0 (Ω),

Lλ[γ] =
∂

∂λ
L(n, φ, λ)[γ] = 0, ∀γ ∈ L2(Ω).

Necessary function spaces:

H(curl,Ω) = {v ∈ L2(Ω) : ∇× v ∈ L2(Ω)}
H(div,Ω) = {v ∈ L2(Ω) : ∇ · v ∈ L2(Ω)}
HDC

0 (Ω) = {v ∈ H(div,Ω) ∩H(curl,Ω) : B(v) = 0}
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Nonlinearities
First-order optimality equations are nonlinear variational forms

• Weak form of Euler-Lagrange equations

• Could extract these as PDEs and continue in classical way

• Instead, ask for weak solution directly
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Nonlinearities
First-order optimality equations are nonlinear variational forms

• Weak form of Euler-Lagrange equations

• Could extract these as PDEs and continue in classical way

• Instead, ask for weak solution directly

Use Newton’s method to linearize variational system Lnn Lnφ Lnλ

Lφn Lφφ 0
Lλn 0 0

 δn
δφ
δλ

 = −

 Ln

Lφ
Lλ

 .
for all (v, ψ, γ)

nk+1 = nk + ω δn

Then update φk+1 = φk + ω δφ

λk+1 = λk + ω δλ
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Discretization

Linearized variational system pairs naturally with finite-element
discretization

Use standard uniform tensor-product meshes in 2D

• Represent three-dimensional “slab” geometry

• Functions vary smoothly over rectangular elements

Restrict all functions to finite-dimensional subspaces:

• nk, δn, v as continuous piecewise biquadratic vector
fields

• φk, δφ, ψ as continuous piecewise biquadratic functions

• λk, δλ, γ as discontinuous piecewise constant functions
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Well-Posedness3

Relying on two key facts:

• Solution satisfies first-order optimality conditions
I Ensure weak satisfaction of ∇ · (D + P ) = 0

• Newton’s method will converge to a solution
I Use nested-iteration or trust-region methods to ensure

Adler, Atherton, Emerson, MacLachlan, SINUM 2015
Adler, Atherton, Benson, Emerson, MacLachlan, SISC 2015
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Well-Posedness3

Relying on two key facts:

• Solution satisfies first-order optimality conditions
I Ensure weak satisfaction of ∇ · (D + P ) = 0

• Newton’s method will converge to a solution
I Use nested-iteration or trust-region methods to ensure

Need to ensure each linearization step has unique solution

• Weak form has saddle-point structure

• Existence and uniqueness of solutions to update equations
not immediately guaranteed
I Make use of weak coercivity arguments at discrete level
I Show discretized linear systems have unique solutions

when “close enough” to a continuum solution
I Also need weak(?) assumptions on physical parameters

Adler, Atherton, Emerson, MacLachlan, SINUM 2015
Adler, Atherton, Benson, Emerson, MacLachlan, SISC 2015
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Sketch of Proof
Consider “elastic” problem (no φ), of saddle-point form:4

a(δn,v) + b(v, δλ) = G(v), ∀v ∈ HDC
0 (Ω),

b(δn, γ) = H(γ), ∀γ ∈ L2(Ω).

Under reasonable assumptions:

• a(u,v) and b(v, γ) are continuous

• If λk is pointwise non-negative, there exist ε1, ε2 > 0 such
that if 1− ε2 < κ < 1 + ε1, then a(u,v) is coercive on Vh
• For properly chosen Vh and Qh,

sup
v∈Vh

|b(v, γ)|
‖v‖DC

≥ Ch‖γ‖0, ∀γ ∈ Qh

• Finite-element pair is convergent but sub-optimal
Adler, Atherton, Emerson, MacLachlan, SINUM 2015
Adler, Atherton, Benson, Emerson, MacLachlan, SISC 2015
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Sketch of Proof
Adding electric effects gives 3× 3 block system4 Lnn Lnφ Lnλ

Lφn Lφφ 0
Lλn 0 0

 δnH
δφH
δλH

 = −

 Ln

Lφ
Lλ

 .
For invertibility, need

• Maintain coercivity of a(u,v)
I Natural if εa < 0, or if |∇φk| is not too large

• Weak coercivity of b(v, γ)

• Negative definiteness of Lφφ
I Natural if εa ≥ 0, or if |nk| ≤ β < ε⊥/|εa|

Benzi, Golub, Liesen, Acta Numerica 2005
Adler, Atherton, Benson, Emerson, MacLachlan, SISC 2015
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Simplest Test Problems

• Ω consists of parallel substrates distance 1 apart.

• Periodic boundary conditions along x = 0 and x = 1.

• Dirichlet boundary conditions on the y-boundaries.

• n may have a non-zero z component, but ∂n
∂z

= 0.
I 2-D domain: Ω = {(x, y) | 0 ≤ x, y ≤ 1}.
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Freedericksz Transition5

• n lies parallel to x-axis on boundaries.

• φ(y = 1) = 1 and φ(y = 0) = 0.

• K1 = 1, K2 = 0.62903, K3 = 1.32258.

• ε0 = 1.42809, ε‖ = 18.5, ε⊥ = 7, εa = 11.5.

Left: Degenerate solution with free energy, −6.05.
Right: Energy-minimizing solution with free energy, −6.78.

Adler, Emerson, Farrell, MacLachlan, SISC 2017
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Bistability6

Nano-patterned boundary
conditions
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Adler, Atherton, Benson, Emerson, MacLachlan, SISC 2015
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Finding Multiple Solutions7

Brute-force approaches to finding more solutions are natural

• Multistart methods
I Aim for initial guesses to sample solution space

• Difficulty when solution space is high-dimensional

We use an approach that augments Newton functional

• Use Newton’s method to find a solution, r, to F (x) = 0

• Construct new functional, G(x), such that
I For all x 6= r such that F (x) = 0, G(x) = 0
I G(r) 6= 0

• Now apply Newton’s method to G(x) = 0

J. Larson, S. M. Wild, Optim Eng 2016
P. E. Farrell, Á. Birkisson, S. W. Funke, SISC 2015
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Deflation8

Let F (x) : Rm → Rn be a function and r be a known solution
to the equation F (x) = 0. Let

Mp,α(x; r) =

(
1

‖x− r‖p
+ α

)
I, G(x) = Mp,α(x; r)F (x).

→ G(x) = 0 is the deflated problem.
→ Apply Newton’s method to solve this problem.

P. E. Farrell, Á. Birkisson, S. W. Funke, SISC 2015
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1D Minimization Example

Consider the function

f(x) =
1

54
x4 − 1

52
x2 + 1, f ′(x) =

4

54
x3 − 2

52
x.
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Deflation for Functionals
Consider F(u) : U → Rn

• U is some function space

• Solving F(u) = 0, know F(r) = 0

Define

Mp,α(u; r) =

(
1

‖u− r‖pU
+ α

)
I,

where I is the n-dimensional identity.
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Deflation for Functionals
Consider F(u) : U → Rn

• U is some function space

• Solving F(u) = 0, know F(r) = 0

Define

Mp,α(u; r) =

(
1

‖u− r‖pU
+ α

)
I,

where I is the n-dimensional identity. Then, we solve

G(u) = Mp,α(u; r)F(u) = 0.
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Freedericksz Bifurcation9

Bifurcation occurs with increasing applied voltage gap

• Alignment with electric field overpowers elastic effects

Maximum tilt angle (left), free energy (right), as a function of
V

Adler, Emerson, Farrell, MacLachlan, SISC 2017
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Cholesteric Liquid Crystals

• Cholesteric LCs are similar to nematics

• Inherent chirality breaks some symmetry
I Distinguishable configurations due to “handedness”

• For given parameter, preferred thickness to layers formed
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Cholesteric Liquid Crystals

• Cholesteric LCs are similar to nematics

• Inherent chirality breaks some symmetry
I Distinguishable configurations due to “handedness”

• For given parameter, preferred thickness to layers formed

C(n) =
K1

2
‖∇ · n‖2

0 +
K2

2
‖n ·∇× n+ t0‖2

0 +
K3

2
‖n×∇× n‖2

0

= F(n) +K2〈t0,n ·∇× n〉0 +
K2

2
‖t0‖2,

where t0 is a constant depending on liquid crystal type.
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Simple Cholesteric10

• Elastic-only model, no electric terms

• K1 = 1.0, K2 = 3.0, K3 = 1.2

• Cholesteric parameter: t0 = −2π (left-handed)

• Deflation parameters: p = 3.0 and α = 1.0

Start with 3 initial guesses, then run Newton + Deflation

Adler, Emerson, Farrell, MacLachlan, SISC 2017
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Simple Cholesteric10

Computed solutions, found left-to-right order

• computed free energies are 59.218, 56.553, and 3× 10−8

Adler, Emerson, Farrell, MacLachlan, SISC 2017
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Simple Cholesteric10

Computed solutions, found left-to-right order

• computed free energies are 59.378, 56.553, and 31.821

Adler, Emerson, Farrell, MacLachlan, SISC 2017
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Simple Cholesteric10

Additional computed solution with p = 2.0 and α = 1.0

• computed free energy is 41.480

Adler, Emerson, Farrell, MacLachlan, SISC 2017
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Simple Cholesteric10

Newton iteration counts
Grid (1) (2) (3) (4) (5) (6) Total Anon.
8× 8 46 56 50 − − − 100

16× 16 1 22 19 87 55 − 100
32× 32 1 12 10 8 12 − 228
64× 64 1 7 5 4 7 − 233

128× 128 1 2 2 2 2 63 200
256× 256 1 2 2 2 2 2 253

Adler, Emerson, Farrell, MacLachlan, SISC 2017
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Simple Cholesteric10

Average multigrid iteration counts

Grid (1) (2) (3) (4) (5) (6)

8× 8 46.2 52.9 11.3 − − −
16× 16 66.0 54.3 9.0 67.7 66.8 −
32× 32 65.0 33.2 8.0 53.9 34.1 −
64× 64 61.0 28.4 8.0 35.8 26.9 −

128× 128 62.0 33.0 9.0 52.5 32.5 29.0

256× 256 78.0 30.5 9.5 46.0 30.0 18.5

Work Units 100.7 103.7 28.5 156.9 108.7 493.0

1 WU = equivalent MG V-cycles on finest grid (256× 256)

Adler, Emerson, Farrell, MacLachlan, SISC 2017
Finite-Element Modelling of Liquid Crystal Equilibria- p.32



Geometric Frustration
Interesting Physics happens with cholesteric LCs in elliptical
domains

• In circular domains, cholesterics can form layers matching
preferred pitch, just as in rectangular case

• As aspect-ratio varies, promote competition between this
desire to form layers and shape of domain

• This frustration leads to potentially large numbers of
solutions, particularly as cholesteric pitch increases

Consider ellipses of area 3π/2

• K1 = 1.0, K2 = 3.2, K3 = 1.1

• Vary aspect ratio, µ, and cholesteric pitch, q0
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Interesting Physics happens with cholesteric LCs in elliptical
domains

• In circular domains, cholesterics can form layers matching
preferred pitch, just as in rectangular case

• As aspect-ratio varies, promote competition between this
desire to form layers and shape of domain

• This frustration leads to potentially large numbers of
solutions, particularly as cholesteric pitch increases

Consider ellipses of area 3π/2

• K1 = 1.0, K2 = 3.2, K3 = 1.1

• Vary aspect ratio, µ, and cholesteric pitch, q0
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First Example: µ = 1.5, q0 = 8

10.506 

8.730 

10.872 11.118 

9.067 18.742 A

B

C

None of these is a minimizer of the energy!
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8.730 

10.872 11.118 
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B

C

None of these is a minimizer of the energy!
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Ground State and Stability

Believe we should have unique stable “ground-state solution”
to equilibrium equations

How do we compute stability?

• Discretized system is of saddle-point form, given
constrained free-energy density

• Solution is stable if Hessian projected onto nullspace of
the linearized constraints is positive-definite

• Relate this to number of negative eigenvalues of
saddle-point system, count these using LDLT

factorization
11

Nocedal and Wright, Numerical Optimization (Springer Verlag, 2006).
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How Reliable Is Deflation + Nested
Iteration?

Consider two-dimensional parameter space

• 7 values of µ: 1.0, 1.15, 1.35, 1.5, 1.65, 1.85, 2.0

• 8 values of q0: 3, 4, 5, 6, 7, 8, 9, 10

Out of 56 trials, 10 yield lowest-energy solutions that are
unstable

• Occur for both small and large µ, q0

Use deflation + continuation to more reliably identify ground
states
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Bifurcation for µ = 1.1512
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Bifurcation for µ = 1.513
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Effects of Temperature
Spectrum of behaviours of liquid crystals

• At sufficiently high temperatures, they act like liquids

• As temperature drops, enter nematic phase

• As temperature drops further, enter smectic phases

• At sufficiently low temperatures, they act like solids

In nematic phase, see no long-range ordering in alignment
between crystals

In smectic phases, we do see long-range ordering, as well as
asymmetry in behaviour
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Models for Smectic A LCs14

Various models for Smectic A LCs - we use

F (δρ,Q) =

∫
Ω

[
a

2
(δρ)2 +

b

3
(δρ)3 +

c

4
(δρ)4

+B

∣∣∣∣D2δρ+ q2

(
Q+

Id
d

)
δρ

∣∣∣∣2 +
K

2
|∇Q|2 + lfn(Q)

]
,

with

fn(Q) =

{
− (tr(Q2)) + (tr(Q2))

2
in 2D

−1
2

(tr(Q2))− 1
3

(tr(Q3)) + 1
2

(tr(Q2))
2

in 3D

Xia, MacLachlan, Atherton, Farrell, Phys. Rev. Lett. 2021
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Q-tensor
Choice of fn(Q) weakly enforces that

Q = n⊗ n− Id
d
,

where n is the same director as in nematic case.

With this, dominant term for density variation is∫
Ω

∣∣∣∣D2δρ+ q2

(
Q+

Id
d

)
δρ

∣∣∣∣2 =

∫
Ω

∣∣D2δρ+ q2n⊗ nδρ
∣∣2

• Energy is quadratic in Hessian of δρ

• Expect solutions like δρ ∼ eıqn·x
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Discretization and Well-Posedness15

Analysis of well-posedness has several pieces

• Fourth-order term in δρ

• Coupling between δρ and Q

• Wave-like behaviour

• Penalty terms

We consider a variety of discretizations

• Conforming (too expensive)

• C0 interior penalty methods (no efficient solvers)

• Mixed formulations (harder theory)

Have variety of results around well-posedness and error
estimates

A. Hamdan’s Ph.D. thesis, in progress
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Some simulations16

Two 2D simulations, visualize δρ:

• Periodic rectangular domain, anchor n to fixed angle, θ0,
at top and bottom of domain. How does lowest-energy
solution structure change with θ0?

• Rectangular domain of aspect ratio τ , anchor n to be
horizontal on bottom, vertical on other 3 sides. How does
lowest-energy solution change with τ?

One 3D simulation, visualize zero isosurfaces of δρ:

• Fix n to be radially oriented on bottom of a box

• Fix n to be tilted, π/12 from vertical, on top

• Find 3 solutions that are close in energy

Xia, MacLachlan, Atherton, Farrell, Phys. Rev. Lett. 2021
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Smectic C Models17

Near crystal regime, enter Smectic C phase

• n orients at fixed angle, θ, to layer normal, a

• Layer tangent vector, c, gives n = a cos θ + c sin θ

• Marked by strong anisotropy in energy coefficients

Elastic energy density is given by

K1

2
(∇ · a)2 +

K2

2
(∇ · c)2

+
K3

2
(a · ∇ × c)2 +

K4

2
(c · ∇ × c)2 +

K5

2
((a× c) · ∇ × c)2

+K6(∇ · a)((a× c) · ∇ × c) +K7(a · ∇ × c)(c · ∇ × c)
+K8(∇ · c)((a× c) · ∇ × c) +K9(∇ · a)(∇ · c)

Have K1, K5, K6 � 1, other constants O(1)

with J. Jackaman, in progress
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Summary and Future Work

• LC models are complicated, best understood from energy
perspective

• Finite-element framework is natural

• Need advanced nonlinear solvers to see interesting
physical behaviours
I Deflation, continuation, damping of Newton, . . .

• Also need advanced linear solvers to efficiently compute in
parallel

• Working frameworks for nematics, smectic A, and smectic
C LCs

Simulations have caught up to known physics, now exploring
new questions
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