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Numerical Simulation

The point of numerical simulation is to use computers to
answer science and engineering questions
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Numerical Simulation

The point of numerical simulation is to use computers to
answer science and engineering questions

The Question

i
Mathematical Model

1

Discrete Model

1

Numerical Simulation

1

Data/Answer
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Mathematical Models

Often use PDE models, based on conservation principles
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Mathematical Models
Often use PDE models, based on conservation principles
Consider a fluid moving with velocity v

® |et L be the density of a conserved quantity

® |et () be an arbitrary control volume within the flow

A
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Mathematical Models

Often use PDE models, based on conservation principles

Write conservation of L as

i LdQ:—/ Lv~nds+/QdQ
dt Jq o0 Q

where
® 7 is the outward unit normal, and

® () represents internal sources and sinks of L
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Mathematical Models

Often use PDE models, based on conservation principles

Apply Leibnitz rule and Divergence theorem to get

/Q%Ldﬂz—/gv-(Lv)dQ—l—/QQdQ

L(g—?JrV-(Lv)—Q)dQ:O

This holds for an arbitrary control volume, €2, so need

or

oL
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Euler Equations

Applying conservation to mass, momentum, and energy gives:

dp B

a%—v-(pv)—()
0
pa—:;+p'v‘Vv—|—Vp:pg
o
E—FV'((E-F]))U):O

® Need equation of state to close system
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Navier-Stokes Equations

Applying conservation to mass and momentum, adding
assumptions that the fluid is

® Incompressible: p is constant

® Newtonian: viscous stress is linear in local strain rate

9
Ay VU—R—V2U+Vp:f

ot
V.-v=0
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PDE-based Simulation

Lots of effort invested in developing simulation tools for
PDE-based mathematical models

Spatial discretization tools:

Finite Differences

Finite Elements

Finite Volumes
® Spectral Methods
Temporal integration tools:
® Runge-Kutta methods
e Multistep (BDF, Adams) methods, predictor-corrector
® Space-Time discretizations

These are our “go-to” tools for many problems
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PDE-based Simulation Failures

Difficulties arise in this framework when PDEs under
consideration don't have unique solutions
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PDE-based Simulation Failures

Difficulties arise in this framework when PDEs under
consideration don't have unique solutions

Difficulties in Mathematical Modeling
® PDE models can also come from equilibrium conditions
® These are sufficient conditions to be a physical solution

® Need to distinguish between multiple solutions
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PDE-based Simulation Failures

Difficulties arise in this framework when PDEs under
consideration don't have unique solutions
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PDE-based Simulation Failures

Difficulties arise in this framework when PDEs under
consideration don't have unique solutions

Difficulties in Mathematical Modeling
® PDE models can also come from equilibrium conditions
® These are sufficient conditions to be a physical solution
® Need to distinguish between multiple solutions

Need underlying energy model to identify meaningful solutions

® Mathematical /numerical treatment of constraints,
mathematical reformulations can change picture of energy
landscape
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Nematic liquid crystals

n“
® Substances which possess liquid
and crystalline properties.

e Nematic liquid crystals: rod
shaped molecules with a
preferred local average direction.

® The director, n(x,y,z) € R?, is

unit length. Local average direction, n.

J. P. Lagerwall and G. Scalia, 2012.
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Nematic liquid crystals

Free-energy minimization of Lagrangian:

L(’n,E,/\):/wp(n)—%D-E—P-E—l—/\(n-n—l)dV
Q

where

1 1 1
wr(n) = 5Kl (V.n)2+§K2(n-V xn)2—|—§K3 In x V xn|

DZEQEJ_E—FEOEG('I’L'E)TL
P=c,(V-n)n+enxVxn

Considering the case where constants are anisotropic
e K, K5, K3 not all the same

° ¢, #0
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Elastic Free Energy Density

= 2 W)
= =

= Y //
Kl(séléyn)Q Kg(nTVQStx n)?2  Ksln Eenvd x n?

K, K5, and K3 depend on temperature and liquid crystal
type.
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Frank-Oseen Elastic Free Energy Density

1 1 1
wp(n) = 5[(1(V-71,)2—l— §K2(n.V X n)2+§K3]n x V xnl|.

A common analytical technique relies on the “one-constant

approximation”

1
K=K, = K3 = wp(n) = §K1|Vn|2

A. Ramage and E. Gartland, SISC 2013
H. Wu, X. Xu, and C. Liu, Arch. Rational Mech. Anal. 2013.
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Frank-Oseen Elastic Free Energy Density

1 1 1
wr(n) = 5[(1(V-77,)2—1—§K2('n.v ><n)2—|—§K3]n x V xnl|.

A common analytical technique relies on the “one-constant

approximation”

1
K=K, = K3 = wp(n) = §K1|Vn|2

In contrast, we'll take
Z=rmen+I-nen)=I1—-(1-rknen,

where Kk = K5/ K3 with Ky, K3 > 0 and write

wi(n) = %Kl(V ) + %Kg (ZV xn)- (V xn)

A. Ramage and E. Gartland, SISC 2013
H. Wu, X. Xu, and C. Liu, Arch. Rational Mech. Anal. 2013.
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Electric Effects

External static electric fields affect energy and orientation

Augment elastic free energy by

1 1
—§D -E = —5 (eoeL E + cpea(n - E)n) - E

where
€y = permittivity of free space,
€, = perpendicular permittivity of the dielectric,
€ = parallel permittivity of the dielectric,

€a = €| —€L.

Alsoneedtoensure V-D =0, VX E =0
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Electric Potential

Write E = V¢
® Ensures Faraday's Law satisfied

Static electric field augmentation becomes

—%D E— —% (01 V- Vb + coea(m - V&) - (n- Vo))

where
€y = permittivity of free space,
¢, = perpendicular permittivity of the dielectric,
€ = parallel permittivity of the dielectric,

€a = €| —€L.

Still need to ensure V- D =0
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Flexoelectric Effects

Polarization induced by curvature
® Several causes:
» shape asymmetry
» quadrupolar molecules
P effects of splay and bend on association between
molecules

® important in conversion of mechanical to electrical energy
Gives total electric displacement as

Dyt = D+ P = €pe L E + €peo(n - E)n + P
P=c¢,(V-n)n+enxVxn

Augment energy density by
—P-E=—(e;(V-n)n+enxVxn) Vo
Need V - Dtatal =0
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Unit Length Constraint

Need to ensure director field is unit length pointwise:
n-n=1

Impose this using Lagrange multiplier, .
e Augment physical energy density by A (n-n — 1)
® When satisfied, contributes no energy

® Could also use penalty approach

P> Avoids adding extra variable
P Leads to less accurate solutions
P Linearized systems are harder to solve

Adler, Emerson, MacLachlan, Manteuffel, SISC 2016
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Complete Lagrangian

Free-energy minimization of Lagrangian:

L’(n,gb,/\):/pr(n)—%D-E—P-E+)\(n-n—1)dv.

where

1 1 1
wr(n) = 5Kl (V.n)2+§K2(n.V ><n)2+§K3 In x V xn|

E=V¢
D = eye  E + peo(n - E)n
P=c,(V-n)n+enxVxn

Additionally, need V - (D + P) = 0
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First-Order Optimality Conditions

Minimize Lagrangian when first variations are zero:

Ln[v] = %E(n, $,\)[v] =0, Yo € HYC(Q),
Lolt) = Lo W] =0, ¥ e (@),
Ll = 2Lm o A =0, Wy e IXQ).

O\

Necessary function spaces:

2@ ={r: [ <0}

H'(Q) ={¢ € L*(Q) : V¥ € L*(Q)}
HY(Q) = {yp € H(Q) : (x) = 0 Y € 90}

Finite-Element Modelling of Liquid Crystal Equilibria-

p.18



First-Order Optimality Conditions

Minimize Lagrangian when first variations are zero:

0

Ln[v] = %E(n, $,\)[v] =0, Yo € HYC(Q),
Lolt) = Lo W] =0, ¥ e (@),
Ll = 2Lm o A =0, Wy e IXQ).

oA
Necessary function spaces:
H(curl, Q) = {v € L*(Q): V x v € L*(Q)}
H(div, Q) = {v € L2(Q) : V- v € L*(Q)}
HPC(Q) = {v € H(div,Q) N H(curl,Q) : B(v) =0}
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Nonlinearities

First-order optimality equations are nonlinear variational forms
® \Weak form of Euler-Lagrange equations
® Could extract these as PDEs and continue in classical way

® |nstead, ask for weak solution directly
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Nonlinearities

First-order optimality equations are nonlinear variational forms
® Weak form of Euler-Lagrange equations
® Could extract these as PDEs and continue in classical way
® |nstead, ask for weak solution directly

Use Newton's method to linearize variational system

Lon Lns Ly on L
Lon Loy O 6p | =—| Ly
Lo O 0 o\ L
for all (v, 1, 7)
Ngi1 = N +won

Then update ¢py1 = ¢p +wdo
)\k+1 - )\]g +w (5)\
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Discretization

Linearized variational system pairs naturally with finite-element
discretization

Use standard uniform tensor-product meshes in 2D
® Represent three-dimensional “slab” geometry

® Functions vary smoothly over rectangular elements

Restrict all functions to finite-dimensional subspaces:

® n,, dn, v as continuous piecewise biquadratic vector
fields

® ¢, 0¢, 1Y as continuous piecewise biquadratic functions

® )\, 0\, v as discontinuous piecewise constant functions
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Well-Posedness

Relying on two key facts:
® Solution satisfies first-order optimality conditions
» Ensure weak satisfaction of V- (D + P) =0
® Newton's method will converge to a solution
P Use nested-iteration or trust-region methods to ensure

Adler, Atherton, Emerson, MacLachlan, SINUM 2015
Adler, Atherton, Benson, Emerson, Maclachlan, SISC 2015
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Well-Posedness

Relying on two key facts:
® Solution satisfies first-order optimality conditions
» Ensure weak satisfaction of V- (D + P) =0
® Newton's method will converge to a solution
P Use nested-iteration or trust-region methods to ensure

Need to ensure each linearization step has unique solution

® Weak form has saddle-point structure
® Existence and uniqueness of solutions to update equations
not immediately guaranteed
P> Make use of weak coercivity arguments at discrete level
» Show discretized linear systems have unique solutions
when ‘“close enough” to a continuum solution
P Also need weak(?) assumptions on physical parameters

Adler, Atherton, Emerson, MacLachlan, SINUM 2015
Adler, Atherton, Benson, Emerson, Maclachlan, SISC 2015
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Sketch of Proof

Consider “elastic” problem (no ¢), of saddle-point form:

a(dm,v) +b(v,0\) = G(v), vu € HYC (),
b(om, ) = H(7), vy € L*(Q).

Under reasonable assumptions:
® a(u,v) and b(v,~) are continuous

e If )\, is pointwise non-negative, there exist €1, €5 > 0 such
that if 1 — ey < kK < 1+ €1, then a(u,v) is coercive on V},

® For properly chosen V}, and @,

b(v,
sup PO S cnale, vy e @

vEV), ||U||DC

® Finite-element pair is convergent but sub-optimal

Adler, Atherton, Emerson, MacLachlan, SINUM 2015
Adler, Atherton, Benson, Emerson, Maclachlan, SISC 2015
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Sketch of Proof

Adding electric effects gives 3 x 3 block system

‘Cnn £n¢ ‘Cn)\ 5nH ﬁn
E(;ﬁn £¢¢ 0 5¢H = — £¢
Ly, O 0 Oy Ly

For invertibility, need
® Maintain coercivity of a(u,v)
» Natural if ¢, < 0, or if [V¢y| is not too large
e Weak coercivity of b(v, )
® Negative definiteness of L4
P Natural if €, > 0, or if |ng| < 8 < €1 /|ed]

Benzi, Golub, Liesen, Acta Numerica 2005
Adler, Atherton, Benson, Emerson, MacLachlan, SISC 2015
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Simplest Test Problems

() consists of parallel substrates distance 1 apart.
Periodic boundary conditions along x =0 and z = 1.
Dirichlet boundary conditions on the y-boundaries.

n may have a non-zero z component, but g—’; =0.
» 2-D domain: Q@ = {(z,y) | 0 < z,y < 1}.
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n lies parallel to x-axis on boundaries.
¢(y=1)=1and ¢(y = 0) =0.

Ky =1, Ky =0.62903, K3
€0 = 1.42809, ¢ = 18.5,

= 1.32258.

=17, €, =11.5.
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Left: Degenerate solution with free energy, —6.05.
Right: Energy-minimizing solution with free energy, —6.78.

Adler, Emerson, Farrell, MacLachlan, SISC 2017
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Bistability

Free Energy vs. Flexoelectric Constants

161 20
A8 {
—*-T/4
S14 -=-3n/8
5 -n/2
(=4
Wy —&
g '
w
T 10
£
kS
8
Y
8o 15 20 25
(es—eb)/K1

Free Energy for different values
of 8 as a function of flexoelectric
constants

Nano-patterned boundary
conditions

Adler, Atherton, Benson, Emerson, MacLachlan, SISC 2015
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Finding Multiple Solutions

Brute-force approaches to finding more solutions are natural
® Multistart methods
P Aim for initial guesses to sample solution space

e Difficulty when solution space is high-dimensional

We use an approach that augments Newton functional
Use Newton's method to find a solution, r, to F/(z) =0
Construct new functional, G(x), such that
» For all z # r such that F'(z) =0, G(z) =0
G(r)#0
Now apply Newton's method to G(x) = 0

J. Larson, S. M. Wild, Optim Eng 2016
P. E. Farrell, A. Birkisson, S. W. Funke, SISC 2015
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Deflation

Let F'(x) : R™ — R"™ be a function and 7 be a known solution
to the equation F'(z) = 0. Let

1
[l —=r[|P

Myaloir) = ( Fa) I, 6) = Myu(ain)F (o),

— G(x) = 0 is the deflated problem.
— Apply Newton's method to solve this problem.

P. E. Farrell, A. Birkisson, S. W. Funke, SISC 2015
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1D Minimization Example

Consider the function

f(m)—5—14 4—%:102—1—1, f(z) = =2’ — Sz

Original Function First Derivative Deflated First Derivative
Y Y Y
2.0, 1.0 1.0
!
1.8 |
I 16 ] 0.5, ! 0.5
1 ] /
\ 1.4 1 /
\ J R
| 12 ! 6 A4 2 24 6 i =2 7 7 6%
\ 1 /
\ 1/0-- N 1 I'
\ 7 \ 1 h
\ s 08 ~_7 ! -05 -05
!
0.6 H
S B !
-6 -4 -2 2 4 6 -1.0 -1.0
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Deflation for Functionals

Consider F(u) : U — R"

® U is some function space

e Solving F(u) = 0, know F(r) =0
Define

1
M, o(u;r) = (|— + a> I,

Ju— [l

where I is the n-dimensional identity.
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Deflation for Functionals

Consider F(u) : U — R"

® U is some function space

e Solving F(u) = 0, know F(r) =0
Define

1
M, o(u;r) = (— +a> I
8 Ju— 7[5
where I is the n-dimensional identity. Then, we solve

G(u) = My o(u;r)F(u) = 0.
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Freedericksz Bifurcation

Bifurcation occurs with increasing applied voltage gap
e Alignment with electric field overpowers elastic effects

Freedericksz Solutions' Free Energy

Freedericksz Transition Bifurcation

E o =° [\}
1.+ s Uniform - o7
C == == Freed-Pos -
[ = = Freed-Neg .°
[ . »
0.5: ’p 5 -5.1
¥ » 2
[ o o o & o o [Im]
F 0.2 0.4 0.6 &8 1. 12 14 []
r . S 0.t
. h & | Unif A
0.5 . s Uniform N
F Sv. = = Freedericksz X
Yoo \
f T T
v 02 04 06 08 1. 1.2 14
\ Vv

Maximum tilt angle (left), free energy (right), as a function of
v

Adler, Emerson, Farrell, MacLachlan, SISC 2017
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Cholesteric Liquid Crystals

® Cholesteric LCs are similar to nematics
® |nherent chirality breaks some symmetry
» Distinguishable configurations due to “handedness”

® For given parameter, preferred thickness to layers formed

1.0

) ) N ) ) i) )
N L L VLN L )
LUV NVULVYY Yy Y e e
R 2 T T AT Y S Y
C O ¢ ¢ ¢ ¢ ¢ & & & & e
@ e 60 @0 0 D - - - -
0.5 0 o -
o o o o o e e ) ) ) D) A D e
LD D 0 2 0 2 e © &
L@ @ @ @ @ 6 66 6 O
@ & 6 6 686 6 ¢ O© O OOV
© 0O OOV YTYTYT YT YT Y N
0.0 == o= o o o e e D D ED D e D e

0.0 0.5 1.0
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Cholesteric Liquid Crystals

® Cholesteric LCs are similar to nematics
® |nherent chirality breaks some symmetry
» Distinguishable configurations due to “handedness”

® For given parameter, preferred thickness to layers formed

K K K
C(n) = IV -l + Z2ln -V x ot tofd + =l x V x nl?
Ky 9
:.F(n)+K2<t0,’I’L'VX’I’L>0+7”t0|| 5

where %, is a constant depending on liquid crystal type.
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Simple Cholesteric

® Elastic-only model, no electric terms

e K1 =10, K,=30, K3=1.2

e Cholesteric parameter: t, = —27 (left-handed)
® Deflation parameters: p = 3.0 and a = 1.0

Start with 3 initial guesses, then run Newton + Deflation

Adler, Emerson, Farrell, MacLachlan, SISC 2017
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Simple Cholesteric
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Computed solutions, found left-to-right order
e computed free energies are 59.218, 56.553, and 3 x 1078

Adler, Emerson, Farrell, MacLachlan, SISC 2017
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Simple Cholesteric
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Computed solutions, found left-to-right order
® computed free energies are 59.378, 56.553, and 31.821

Adler, Emerson, Farrell, MacLachlan, SISC 2017
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Simple Cholesteric

10} o o v b b b
NS v uuli=mdouwls
AR LA W A A Y
Nee s (\N=gle
R R A R A W N
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- - P e e

05 e e e B
Pl =sdvec N d
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Additional computed solution with p = 2.0 and a = 1.0
® computed free energy is 41.480

Adler, Emerson, Farrell, MacLachlan, SISC 2017
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Simple Cholesteric

Newton iteration counts

Grid (1)1 (2) | (3) | (4) | (5) | (6) | Total Anon.
8 x 8 46 |56 | B0 | — | — | — 100
16 x 16 1 122]19 | 87 |55 | — 100
32 x 32 1 1210 ] 8 |12 | — 228
64 x 64 1 7 5 4 7T - 233
128 x 128 || 1 2 2 2 2 | 63 200
256 x 256 || 1 2 2 2 2 2 253

Adler, Emerson, Farrell, MacLachlan, SISC 2017

Finite-Element Modelling of Liquid Crystal Equilibria- p.32



Simple Cholesteric

Average multigrid iteration counts
Gid | W [ @ [ ® ]G ]®
8 x 8 46.2 | 52.9 | 11.3 — — —
16 x 16 66.0 | 54.3 | 9.0 | 67.7 | 66.8 —
32 x 32 65.0 | 33.2 | 80 | 539 | 34.1 —
64 x 64 61.0 | 284 | 8.0 | 358 | 26.9 —
128 x 128 || 62.0 | 33.0 | 9.0 | 52,5 | 32,5 | 29.0
256 x 256 78.0 | 30.5 | 9.5 | 46.0 | 30.0 | 185

| Work Units || 100.7 | 103.7 | 28.5 [ 156.9 [ 108.7 [ 493.0 |

1 WU = equivalent MG V-cycles on finest grid (256 x 256)

Adler, Emerson, Farrell, MacLachlan, SISC 2017
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Geometric Frustration

Interesting Physics happens with cholesteric LCs in elliptical
domains
® In circular domains, cholesterics can form layers matching
preferred pitch, just as in rectangular case
® As aspect-ratio varies, promote competition between this
desire to form layers and shape of domain
® This frustration leads to potentially large numbers of
solutions, particularly as cholesteric pitch increases
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Geometric Frustration

Interesting Physics happens with cholesteric LCs in elliptical
domains
® In circular domains, cholesterics can form layers matching
preferred pitch, just as in rectangular case

® As aspect-ratio varies, promote competition between this
desire to form layers and shape of domain

® This frustration leads to potentially large numbers of
solutions, particularly as cholesteric pitch increases

Consider ellipses of area 37/2
L Kl - 10, K2 - 32, Kg - 11
® Vary aspect ratio, u, and cholesteric pitch, gy
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First Example: © = 1.5, ¢qp =8
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First Example: © = 1.5, ¢qp =8
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Ground State and Stability

Believe we should have unique stable “ground-state solution”
to equilibrium equations

How do we compute stability?

Nocedal and Wright, Numerical Optimization (Springer Verlag, 2006).
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Ground State and Stability

Believe we should have unique stable “ground-state solution’
to equilibrium equations

How do we compute stability?

® Discretized system is of saddle-point form, given
constrained free-energy density

® Solution is stable if Hessian projected onto nullspace of
the linearized constraints is positive-definite

® Relate this to number of negative eigenvalues of
saddle-point system, count these using LDL”
factorization

Nocedal and Wright, Numerical Optimization (Springer Verlag, 2006).
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How Reliable Is Deflation + Nested

Iteration?
Consider two-dimensional parameter space

® 7 values of u: 1.0, 1.15, 1.35, 1.5, 1.65, 1.85, 2.0
e 8 values of ¢qo: 3,4,5,6,7,8,9, 10

Out of 56 trials, 10 yield lowest-energy solutions that are
unstable

® Occur for both small and large p, qo
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How Reliable Is Deflation + Nested

Iteration?
Consider two-dimensional parameter space

® 7 values of u: 1.0, 1.15, 1.35, 1.5, 1.65, 1.85, 2.0
e 8 values of ¢qo: 3,4,5,6,7,8,9, 10

Out of 56 trials, 10 yield lowest-energy solutions that are
unstable

® Occur for both small and large p, qo

Use deflation + continuation to more reliably identify ground
states
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Bifurcation for 1 =1.15
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Emerson, Farrell, Adler, MacLachlan, Atherton, Liquid Crystals 2018
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Bifurcation for © = 1.5
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Bifurcation for © = 1.5
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Bifurcation for © = 1.5
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Cholesteric pitch g,
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Effects of Temperature

Spectrum of behaviours of liquid crystals
e At sufficiently high temperatures, they act like liquids
® As temperature drops, enter nematic phase
® As temperature drops further, enter smectic phases
e At sufficiently low temperatures, they act like solids

In nematic phase, see no long-range ordering in alignment
between crystals
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Effects of Temperature

Spectrum of behaviours of liquid crystals
e At sufficiently high temperatures, they act like liquids
® As temperature drops, enter nematic phase
® As temperature drops further, enter smectic phases
e At sufficiently low temperatures, they act like solids

In nematic phase, see no long-range ordering in alignment
between crystals

In smectic phases, we do see long-range ordering, as well as
asymmetry in behaviour
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Models for Smectic A LCs

Various models for Smectic A LCs - we use

Fon.Q) - |

[ {g (00" + 2 (60" + £ (50

2

v8[25+ ¢ (%) oo] + 5 VQF +11,(@)].

with

— (tr(Q?)) + (tr(Q2))? in 2D

Xia, MacLachlan, Atherton, Farrell, Phys. Rev. Lett. 2021
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Q-tensor
Choice of f,(Q)) weakly enforces that

Iy
Q_n®n_ga

where n is the same director as in nematic case.

With this, dominant term for density variation is

J

® Energy is quadratic in Hessian of dp

2
= / |D?*6p + ¢*n @ ndp‘Q
Q

I
D25p + ¢ (Q + f) Sp

® Expect solutions like dp ~ e"™®
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Discretization and Well-Posedness

Analysis of well-posedness has several pieces
® Fourth-order term in dp
® Coupling between dp and @
® Wave-like behaviour
® Penalty terms
We consider a variety of discretizations
¢ Conforming (too expensive)
e (Y interior penalty methods (no efficient solvers)
e Mixed formulations (harder theory)

Have variety of results around well-posedness and error
estimates

A. Hamdan's Ph.D. thesis, in progress
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Some simulations

Two 2D simulations, visualize dp:

® Periodic rectangular domain, anchor n to fixed angle, 6y,
at top and bottom of domain. How does lowest-energy
solution structure change with 6,7

® Rectangular domain of aspect ratio 7, anchor n to be
horizontal on bottom, vertical on other 3 sides. How does
lowest-energy solution change with 77

One 3D simulation, visualize zero isosurfaces of Jp:
® Fix n to be radially oriented on bottom of a box
e Fix n to be tilted, 7/12 from vertical, on top

® Find 3 solutions that are close in energy

Xia, MacLachlan, Atherton, Farrell, Phys. Rev. Lett. 2021
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Smectic C Models

Near crystal regime, enter Smectic C phase
® n orients at fixed angle, 6, to layer normal, a
® | ayer tangent vector, ¢, gives n = a cosf + csin6

® Marked by strong anisotropy in energy coefficients
Elastic energy density is given by

K

2 Ko 2
5 (V-a)+—(V-c)

2
—|—%(a-vxc)2+%(c-Vxc)2+%((axc)~ch)2
+ K¢(V-a)((axc)-Vxe)+Kr(a-Vxce)(c-V xe)
+ Ks(V-c)((axc)-Vxec)+ Ky(V-a)V-c)

Have Ky, K5, K¢ > 1, other constants O(1)

with J. Jackaman, in progress
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Summary and Future Work

® | C models are complicated, best understood from energy
perspective

® Finite-element framework is natural

® Need advanced nonlinear solvers to see interesting
physical behaviours

» Deflation, continuation, damping of Newton, ...

® Also need advanced linear solvers to efficiently compute in
parallel

® Working frameworks for nematics, smectic A, and smectic
C LGCs

Simulations have caught up to known physics, now exploring
new questions

Finite-Element Modelling of Liquid Crystal Equilibria- p.45



