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Prologue: Basic FEM terminology

Poisson model problem: Solve
—Au=fin Q Cc R?*, u =0 on 0.

Sobolev space, forms, and norm: Let
a(u,v) ::/VuVU, m(f,v):= fv
Q
172,

[ull iz o) = 1Vullz,@) = alu, )
Hy(Q) = {u s.t. [l 1) < 00, u=0on 9.}
Infinite dimensional vector space.

Weak form: Find u € Hj(f) s.t
a(u,v) =m(f,v), allve H)(Q).

Find basis for H} () ~ infinite-dimensional set of linear equations.
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Euclidean FEM

Mesh: 7T, is a decomposition of €2 into triangles of diameter h.
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Euclidean FEM

Mesh: 7T, is a decomposition of €2 into triangles of diameter h.
Finite element subspace: Elements of S, C H}(2) are

e Continuous

e 0 on 0f)

e polynomials of degree r over each T € T,.

Sy, is a (finite dimensional vector space.
Galerkin’s method: Find u; € S}, s.t.

a(up,vp) = m(f,vy), vy € Sh.
Basis for S, ~ finite dimensional set of linear equations.

Projection property: u;, is the orthogonal projection of u onto Sj w.r.t. a:

lw = unll ) = ;élsfh [l = Xl 2 (0)-
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Basic error estimates

If u is smooth enough,

I =l < inf flu=xllm) < Ch",

= un| o) < CR™E

Relates error to cost and properties of method: h, r.
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Variational crimes/Consistency errors

Variational crimes/Consistency errors: Sometimes we define wuy, via
forms “close to” a and m:

A(uh,vh) = M(uh,vh), all Vp € Sh,
with A ~ a and M ~ m.

Must account for loss of projection property in error analysis:
lu =l < inf |lu—=xl[m@ + A —all +[[M —m]..
XESh

(Effects on convergence rate depend on the situation...).
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1. Laplace-Beltrami problem

Definitions:

e 7 is a compact, 2-dimensional C? surface without boundary in R3.
e fis (given) data satisfying f7 fdo = 0.
o V., A, are the tangential gradient and Laplace-Beltrami operator.

Model problem (strong form):
—A u=f on 7.

Dirichlet form and L, inner product:

a(u,v) :z/Vyuvyvdo, m(f,v) ::/fvda.
Y Y

Weak form of the Laplace-Beltrami problem: Find u € H'(v) s.t.
a(u,v) = m(f,v) for all v € H' (7).

We require f7 udo = 0 to ensure uniqueness.
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Applications of surface PDE

Why solve the Laplace-Beltrami problem?
1. Geometry: Mean curvature flow, etc.
2. Image and surface processing
3. Physical modeling: Surface tension in two-phase flow; biomembranes

4. Shape registration: Spectrum can serve as a “shape DNA”

FEM on surfaces, p.10




Surface FEM

e Base discrete surface: T is a polyhedron with triangular or quad faces.

e Basic mapping assumption: There is a “reasonably nice” map
P:T'—~.

e Polynomial surface approzimation: I' = I P(T') with I}, a degree-k
Lagrange interpolant.
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Surface FEM

e Base discrete surface: T is a polyhedron with triangular or quad faces.

e Basic mapping assumption: There is a “reasonably nice” map
P:T'—~.

e Polynomial surface approzimation: I' = I P(T') with I}, a degree-k
Lagrange interpolant.

o Meshes: T is the set of faces of T, T is the faces of I'.

e Finite element space: St is the piecewise degree-r polynomials over I'.

e Data: f is defined on -, so have to define data F' on I.

o Forms on I':

AU, V) ::/

ViUVVdor, M(E,V):= / FVdor.
r

r

e Finite element method: Find U € Sy such that fr Udor =0 and
AU V)= M(F,V), V€ St.
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Choosing P

Canonical choice historically for C? surfaces: Implicit representation.
Viewpoint: v = {z : d(x) = 0} with d the signed distance function.
Then: For x lying in a sufficiently small tubular neighborhood U of ~,

e Orthogonal closest-point projection onto ~y:

Py(x) =2 —d(x)V(z)
with v = Vd the unit normal on 7.

Ups and downs:

+ Correct theoretical properties in FEM.

- Often difficult to access in codes (explicit formulas only for sphere, torus).

- Surface regularity less than C??

We’ll look at other options later...
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Curvature and the closest point projection

Notes:

o Curvature: k(Pg(x)) = 1/R with R the maximum radius of open balls
tangent to but not intersecting .

e Closest point projection: Uniquely defined on a tubular neighborhood of ~

having width inf,c, m
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Surface regularity and the distance function

Two distinct regimes of surface regularity:
1. v is C1! or smoother (can be locally described via a C!! diffeomorphism):

e The distance function, closest point projection behave as described
above.

e Distance function inherits surface regularity: v is C* = d is also C*.
2. For any v not C1! (say, C1 with a < 1):
e d does NOT inherit surface regularity: d is only Lipschitz.

e P, is not uniquely defined on ANY open neighborhood of ~.
e Established in [Lucas, 1957] and [Federer, 1959].
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Geometric consistency error

Dirichlet consistency matrix: With Ep, a matrix determined by using
change of variables formulas for the mapping Py and U’ = U o P;l,

AU, V) —a(U V) = / Ep,V.,U'V,V'do.

v

e Computing Ep, requires computing distance function d and derivatives.
e Order of consistency error: On a triangle T' of size h,
1Ep, o) S ooy + 17 = Ball] ) S B+ 77 S RE
where  and 7, are normals to v and I'.

e An O(h**!) consistency error is observed essentially independently of the
method used to construct I' (interpolation of Py isn’t necessary in
practice!).
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A priori estimates for surface FEM

Theorem 1 (Dz88, De09). For discrete data F' consistently chosen,

IV (u = Uy S 1Ml
S |l

a1y + I Er o) Vaull o)
Hr+1(7) + thvaUHLM)’

1 '
= UF— / (= U)oy S 7
Y

Sl

Hr+l(y) T HEPd HLoo(’Y) HV’YUHIQ(’)’)

i)+ BV 1)

Notes:

e Error consists of a Galerkin error and a geometric consistency error.
e Geometric error is the same for energy and Ly norms.

e r = k = 1: Previous estimates require C? regularity. This is too much
since C? = u € H*(vy). Requirement is reduced to C? in recent joint work
w/Bonito and Nochetto.
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A (too?) general statement

Metatheorem: Geometric consistency errors are of order k 4+ 1 for any
quantity of interest (various norms, point values...) and any standard surface

FEM (mixed, DG, HDG, cut/trace, FEEC, parabolic problems...) for elliptic
problems on surfaces.

Proof: See lots of FEM literature starting with [Dziuk 88] (also BEM
literature starting with [Nedelec ’78], [Bendali ’84]...)
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A (too?) general statement

Metatheorem: Geometric consistency errors are of order k 4+ 1 for any

quantity of interest (various norms, point values...) and any standard surface
FEM (mixed, DG, HDG, cut/trace, FEEC, parabolic problems...) for elliptic
problems on surfaces.

Proof: See lots of FEM literature starting with [Dziuk 88] (also BEM
literature starting with [Nedelec ’78], [Bendali ’84]...)

Theme of this talk: Things aren’t always that simple!

FEM on surfaces, p.19




Outline

1. Canonical surface FEM
e Implicit surface representations
e FEM

e Consistency errors and a priori estimates

2. Eigenvalue problems
e Definitions
e Results of canonical arguments

e Quadrature-based superconvergence argument

3. A posteriori estimates
e Estimates assuming canonical implicit representation
e Parametric representation of surfaces

e New estimates

4. Conclusion

FEM on surfaces, p.20




Laplace-Beltrami Eigenvalue Problem

e Strong form: Find (u, \) such that:
—Ayu = A,

e Weak eigenvalue problem: Find (u,\) € H'(y)/R x RT such that
a(u,v) = Am(u,v) Yo € H'(y).

¢ Finite element approximation: Find (U, A) € S7/R x R* such that
AU V)=AMU,V), V € Sr.

e Eigenfunction bound: Let P) be the Ly() projection onto eigenspace
associated with A\. For an SFEM eigenpair (U, A) associated to an
eigenvalue A of —A., we have

U = PaUllmi) S 07+ 05
|U = PaUlly) S 0+ A
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Eigenvalue Errors

Theorem 2 (Eigenvalue Bound). Let A be an eigenvalue of the surface

eigenvalue problem and let (U, A) be a surface FEM eigenpair associated with
A. Then
A=Al < U = PaUllp) +A U = PaUIL,
O(h27‘)4?6(h2k+2) O(h2r+2ﬁro(h2k+2)
+Alm(U, U)— MU, U)lJrla(U, U)— AU, U)l

vV VvV
Geometric Geometric

Obvious eigenvalue error bound:

A=Al S0+ ||Ep,||. S A+ R
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Some Test Shapes

Figure 1: Sphere and Dziuk surface used in deal.ii computations of eigenvalues.
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Numerical Experiments: Quadrilateral Elements
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Numerical Experiments: Quadrilateral Elements
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Strange Behavior: Geometric error is O(h?*) rather than the expected
O(hk+1).
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Numerical Experiments: Quadrilateral Elements
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Important observation: deal.ii constructs I' using interpolation of P, at
Gauss-Lobatto interpolation points, NOT canonical Lagrange points.
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An Explanation of Superconvergence

Lemma 1. Up to terms of order h*",

s (Pula)
fviarao > T dom®aa) ™|

where {K;}I_are the principal curvatures of the surface.

m(V, V) = M(V, V)| <
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Geometric Error Acts Like Quadrature Error

e Exploit distance function: The zeros of d(q), {g; }é-vzl, on each face of I'
are the interpolation points used to create I'.

e Create quadrature rule: Use the zeros of d(q) to create a quadrature
rule:

TS WAL S L LR

TcI j=1

Theorem 3 (Quadrature Error). Up to terms of order h?",

V@) d<(>m(z<)13< Dk

v(q)2d<q)zl+d((> (()}),( 4% = QUAD|.

m(V, V) = M(V, V)| <

=

I
—
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Conclusion for quad meshes

Corollary 4 (Superconvergence in deal.ii Computations). If degree — k
interpolation points based on Gauss-Lobatto quadrature are used in the
construction of I, U is the SFEM eigenfunction of A, and P\U has enough
reqularity, then

im(U,U) — M(U,U)| < h*,
la(U,U) — A(U,U)| < b,
and
A — Al < A7 4 B

Note: Tensor product of £ + 1 points used in the 1D Gauss-Lobatto
quadrature rule yields a quadrature rule exact for degree 2k — 1.
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Triangular meshes

Notes:
e Interpolation points are standard Lagrange points.
e Elementwise quadrature error for associated quadrature rule is O(hF*1).

e Computational observation: Expected order h**! for odd k,
superconvergent order h**2 for even k.

e Observed orders were robust: Only exception was nodes perturbed off of
surface with bias in one direction (e.g., outside of surface).

e Could be explained within our framework by known superconvergence
phenomena for semi-structured meshes such as ones in which adjacent
triangles form near-parallelograms.

e We didn’t seem to have such structured meshes, but did not explore
further down the superconvergence rabbit hole.
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Setting

Back to the Laplace-Beltrami source problem:
—Asu = f on 7.
FEM: Find Uy € St s.t.
AUF,V) = (FV), V €Sy
Goal: A posteriori (computable) estimates that bound the error:
V(= Uzl Ly < F(Ur, F) + G(UT, F),

where F is a computable term controlling the Galerkin error and G is a
computable term controlling the geometric error.

Note: Computing G will require computing the map P between I' and ~.
How does our choice of P affect the estimates?
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A posteriori estimates on implicit surfaces

Fundamental assumption: v is represented in implementation using the
closest point projection Py(z) = = — d(x)v(z).

Residual indicator: For T' € T,
nr = hrllF + AvUrl| ey + bl 211V e U]l acom)-

Theorem 5 (De-Dz '07). Assume F(x) = Jp,(f o Py) with Jp, the Jacobian
of Pqg. Then

IV (= Up)[7,0) S Z nr + 1Ep, |7 o IVeUT 12,1
TeT
Notes:

e Galerkin error+geometric consistency error

e Everything is computable IF we can compute d and its derivatives
(needed to compute/estimate Ep,).

e Can also work with a more general level set function, but still need to
approximate d.

FEM on surfaces, p.33




Summary: Estimates on implicit surfaces

Pluses:
+ Geometric error is of order h**!: “Superconvergent”.
Minuses:

- Analytical framework requires C? surface.

- A posteriori estimates require evaluation of distance function:
Only explicitly available for sphere and torus!
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Second option for P

Framework: There is an elementwise-smooth bi-Lipschitz map P : T —
which we have access to in our code.

Simple example: ~ is the graph of a function g over a Euclidean domain 2;
P £ P, is the “vertical” map induced by g.

Advantages:
1. More flexibility in representing smooth surfaces

2. Allows for less then C? surfaces.

Drawback: Theoretical properties aren’t so nice!
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Consistency errors

Assume P is an arbitrary “reasonable” parametric map:
e Error representation: With Ep a matrix derived from change of variables,
AU V)—alUoP ' VoP )= /EPV (Uo P HV,(VoP 1)do.
gl
e Computing Ep only requires access to P.

e Standard arguments for isoparametric FEM yield

IEp|l 1.1 S A"

The moral of the story: O(h*!) geometric errors are observed for smooth
surfaces independent of P used in implementation. Thus we should use P4 for
theoretical purposes.
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A posteriori estimates: Parametric viewpoint

Theorem 6 (BCMMN, 2016). Let F' = Jp(f o P). Then under reasonable
assumptions,

|Vy(u—Uro P)H%Q(w S Z 77:2F + |[V(P — IkP)”%OO(F)'
TeT

Properties:
+ Practical computation uses P: Flexible!
+ Allows for less-than-C? surfaces.
+ AFEM convergence, optimality proved.

- Geometric consistency error ||V(P — I;P)|| ) is only order h*, not

hk—H

order as in the implicit formulation.

- AFEM significantly overrefines to resolve geometric error.
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A posteriori estimates: Merged perspective

Basic idea: Use generic P for implementation, but use P, for theory.

The heart of our result:
1Ep,[loo) S IP = LPllp o + V(P - IkP)Hioo(f) =: €T

Theorem 7 (De.-Bonito). Assume that v is C?, and that a parametric FEM
is used with F' = Jp(f o P). Then under reasonable assumptions,

IV (u — UT)HQLm) S Z I+ €7
TeT

Notes:

1. e7 is computable using only information from the parametric
representation, but heuristically er < hF+1,

2. Central observation in proofs: P, is the closest point projection implies

|z = Pa(z)| < |z —P(z)]
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Numerical experiments

Computational setup for Experiment 1:

e Smooth geometry: < is a half-sphere (smooth) ~» uniform geometric
refinement.

e Rough solution:. u is singular at the north pole ~» localized PDE
refinement at pole.
e Software: Computations were performed using deal.ii.
e Adaptive algorithm: Selectively choose elements to subdivide based on
elementwise quantities:
nr (Galerkin error)

and
either e or [|[V(P — I,P)||1_(r) (geometric error).

e Polynomial degree:. We show results for r =2, k£ = 1.
(Algorithms perform similarly for isoparametrics (r = k = 1)).
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Meshes

Adaptive meshes after 10 AFEM iterations with » = 2, £k = 1: BD refinement
(left) and BCMMN refinement (right).
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Error decrease

error
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Experiment 2

Setup:
e v is a C*“ surface (o = 2/5).
e f =1, uis unknown.
e Can show: u € H37¢, any € > 0.

e Three refinement routines:

1. Uniform (measure geometric error w/BD estimator).
2. AFEM: Q3/Q3 with BCMMN estimator, tolerance 5 x 107,
3. AFEM: Q3/Q2 with BD estimator, tolerance 5 x 10~".
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Adaptive meshes

=3, k=2

Adaptive meshes after 20 AFEM iterations: BD refinement with r

3 (right).

k:

(left) and BCMMN refinement with r
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Error decrease
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Note: Adaptive error decrease is suboptimal for Q3Q3/BCMMN, but NOT

for Q3Q2/BD.
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Conclusions

Some future directions:.

1. Nonsmooth (not C?) surfaces

e Closest point projection isn’t immediately useful.

e So far, only parametric viewpoint has been used in proofs: O(h®)
geometric error on a C1% surface.

e Tmplies O(h®) geometric error on Ch surfaces with o < 1, but O(h?)
on C? surfaces (!).

2. Vector Laplacians/Stokes on surfaces:

e Several recent papers: Metatheorem doesn’t always hold.

e For some methods O(h**1) geometric error can be recovered if a better
approximation to the normal is used in the definition of the discrete
energy inner product.

e For other methods the situation is less clear.
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