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Prologue: Basic FEM terminology

Poisson model problem: Solve

−∆u = f in Ω ⊂ R2, u = 0 on ∂Ω.

Sobolev space, forms, and norm: Let

a(u, v) :=

∫
Ω

∇u∇v, m(f, v) :=

∫
Ω

fv.

‖u‖H1
0 (Ω) = ‖∇u‖L2(Ω) = a(u, u)1/2,

H1
0(Ω) = {u s.t. ‖u‖H1

0 (Ω) <∞, u = 0 on ∂Ω.}
Infinite dimensional vector space.

Weak form: Find u ∈ H1
0(Ω) s.t.

a(u, v) = m(f, v), all v ∈ H1
0(Ω).

Find basis for H1
0(Ω) ; infinite-dimensional set of linear equations.
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Euclidean FEM

Mesh: Th is a decomposition of Ω into triangles of diameter h.
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Euclidean FEM

Mesh: Th is a decomposition of Ω into triangles of diameter h.

Finite element subspace: Elements of Sh ⊂ H1
0(Ω) are

• Continuous

• 0 on ∂Ω

• polynomials of degree r over each T ∈ Th.

Sh is a (finite dimensional vector space.

Galerkin’s method: Find uh ∈ Sh s.t.

a(uh, vh) = m(f, vh), vh ∈ Sh.

Basis for Sh ; finite dimensional set of linear equations.

Projection property: uh is the orthogonal projection of u onto Sh w.r.t. a:

‖u− uh‖H1
0 (Ω) = inf

χ∈Sh

‖u− χ‖H1
0 (Ω).
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Basic error estimates

If u is smooth enough,

‖u− uh‖H1
0 (Ω) ≤ inf

χ∈Sh

‖u− χ‖H1
0 (Ω) ≤ Chr,

‖u− uh‖L2(Ω) ≤ Chr+1.

Relates error to cost and properties of method: h, r.
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Variational crimes/Consistency errors

Variational crimes/Consistency errors: Sometimes we define uh via
forms “close to” a and m:

A(uh, vh) = M(uh, vh), all vh ∈ Sh,

with A ≈ a and M ≈ m.

Must account for loss of projection property in error analysis:

‖u− uh‖H1(Ω) ≤ inf
χ∈Sh

‖u− χ‖H1(Ω) + ‖A− a‖∗ + ‖M −m‖∗.

(Effects on convergence rate depend on the situation...).
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1. Laplace-Beltrami problem

Definitions:

• γ is a compact, 2-dimensional C2 surface without boundary in R3.

• f is (given) data satisfying
∫
γ f dσ = 0.

• ∇γ, ∆γ are the tangential gradient and Laplace-Beltrami operator.

Model problem (strong form):

−∆γu=f on γ.

Dirichlet form and L2 inner product:

a(u, v) :=

∫
γ

∇γu∇γv dσ, m(f, v) :=

∫
γ

fv dσ.

Weak form of the Laplace-Beltrami problem: Find u ∈ H1(γ) s.t.

a(u, v) = m(f, v) for all v ∈ H1(γ).

We require
∫
γ udσ = 0 to ensure uniqueness.
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Applications of surface PDE

Why solve the Laplace-Beltrami problem?

1. Geometry: Mean curvature flow, etc.

2. Image and surface processing

3. Physical modeling: Surface tension in two-phase flow; biomembranes

4. Shape registration: Spectrum can serve as a “shape DNA”
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Surface FEM

• Base discrete surface: Γ is a polyhedron with triangular or quad faces.

• Basic mapping assumption: There is a “reasonably nice” map
P : Γ→ γ.

• Polynomial surface approximation: Γ = IkP(Γ) with Ik a degree-k
Lagrange interpolant.

γ

Γ
Γx

P(x)
IkP(x)
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Surface FEM

• Base discrete surface: Γ is a polyhedron with triangular or quad faces.

• Basic mapping assumption: There is a “reasonably nice” map
P : Γ→ γ.

• Polynomial surface approximation: Γ = IkP(Γ) with Ik a degree-k
Lagrange interpolant.

• Meshes: T is the set of faces of Γ, T is the faces of Γ.

• Finite element space: ST is the piecewise degree-r polynomials over Γ.

• Data: f is defined on γ, so have to define data F on Γ.

• Forms on Γ:

A(U, V ) :=

∫
Γ

∇ΓU∇ΓV dσT , M(F, V ) :=

∫
Γ

FV dσT .

• Finite element method: Find U ∈ ST such that
∫

Γ U dσT = 0 and

A(U, V ) = M(F, V ), V ∈ ST .



FEM on surfaces, p.13

Choosing P

Canonical choice historically for C2 surfaces: Implicit representation.

Viewpoint: γ = {x : d(x) = 0} with d the signed distance function.

Then: For x lying in a sufficiently small tubular neighborhood U of γ,

• Orthogonal closest-point projection onto γ:

Pd(x) := x− d(x)~ν(x)

with ν = ∇d the unit normal on γ.

Ups and downs:

+ Correct theoretical properties in FEM.

- Often difficult to access in codes (explicit formulas only for sphere, torus).

- Surface regularity less than C2?

We’ll look at other options later...
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Curvature and the closest point projection

γ

x

Pd(x)

R

Notes:

• Curvature: κ(Pd(x)) = 1/R with R the maximum radius of open balls
tangent to but not intersecting γ.

• Closest point projection: Uniquely defined on a tubular neighborhood of γ
having width infx∈γ

1
|κ(x)| .
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Surface regularity and the distance function

Two distinct regimes of surface regularity:

1. γ is C1,1 or smoother (can be locally described via a C1,1 diffeomorphism):

• The distance function, closest point projection behave as described
above.

• Distance function inherits surface regularity: γ is Ck ⇒ d is also Ck.

2. For any γ not C1,1 (say, C1,α with α < 1):

• d does NOT inherit surface regularity: d is only Lipschitz.

• Pd is not uniquely defined on ANY open neighborhood of γ.

• Established in [Lucas, 1957] and [Federer, 1959].
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Geometric consistency error

Dirichlet consistency matrix: With EPd
a matrix determined by using

change of variables formulas for the mapping Pd and U ` = U ◦P−1
d ,

A(U, V )− a(U `, V `) =

∫
γ

EPd
∇γU

`∇γV
` dσ.

• Computing EPd
requires computing distance function d and derivatives.

• Order of consistency error: On a triangle T of size h,

‖EPd
‖L∞(T ) . ‖d‖L∞(T ) + ‖~ν − ~νh‖2

L∞(T ) . hk+1 + h2k . hk+1,

where ~ν and ~νh are normals to γ and Γ.

• An O(hk+1) consistency error is observed essentially independently of the
method used to construct Γ (interpolation of Pd isn’t necessary in
practice!).
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A priori estimates for surface FEM

Theorem 1 (Dz88, De09). For discrete data F consistently chosen,

‖∇γ(u− U `)‖L2(γ) . hr‖u‖Hr+1(γ) + ‖EPd
‖L∞(γ)‖∇γu‖L2(γ)

. hr‖u‖Hr+1(γ) + hk+1‖∇γu‖L2(γ),

‖u− U `
T −

1

|γ|

∫
γ

(u− U `
T )‖L2(γ) . hr+1‖u‖Hr+1(γ) + ‖EPd

‖L∞(γ)‖∇γu‖L2(γ)

. hr+1‖u‖Hr+1(γ) + hk+1‖∇γu‖L2(γ).

Notes:

• Error consists of a Galerkin error and a geometric consistency error.

• Geometric error is the same for energy and L2 norms.

• r = k = 1: Previous estimates require C3 regularity. This is too much
since C2 ⇒ u ∈ H2(γ). Requirement is reduced to C2 in recent joint work
w/Bonito and Nochetto.
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A (too?) general statement

Metatheorem: Geometric consistency errors are of order k + 1 for any
quantity of interest (various norms, point values...) and any standard surface
FEM (mixed, DG, HDG, cut/trace, FEEC, parabolic problems...) for elliptic
problems on surfaces.

Proof: See lots of FEM literature starting with [Dziuk 88] (also BEM
literature starting with [Nedelec ’78], [Bendali ’84]...)
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A (too?) general statement

Metatheorem: Geometric consistency errors are of order k + 1 for any
quantity of interest (various norms, point values...) and any standard surface
FEM (mixed, DG, HDG, cut/trace, FEEC, parabolic problems...) for elliptic
problems on surfaces.

Proof: See lots of FEM literature starting with [Dziuk 88] (also BEM
literature starting with [Nedelec ’78], [Bendali ’84]...)

Theme of this talk: Things aren’t always that simple!
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Laplace-Beltrami Eigenvalue Problem

• Strong form: Find (u, λ) such that:

−∆γu = λu,

• Weak eigenvalue problem: Find (u, λ) ∈ H1(γ)/R× R+ such that

a(u, v) = λm(u, v) ∀v ∈ H1(γ).

• Finite element approximation: Find (U,Λ) ∈ ST /R× R+ such that

A(U, V ) = ΛM(U, V ), V ∈ ST .

• Eigenfunction bound: Let P λ be the L2(γ) projection onto eigenspace
associated with λ. For an SFEM eigenpair (U,Λ) associated to an
eigenvalue λ of −∆γ, we have

‖U − P λU‖H1(γ) . hr + hk+1,

‖U − P λU‖L2(γ) . hr+1 + hk+1.



FEM on surfaces, p.22

Eigenvalue Errors

Theorem 2 (Eigenvalue Bound). Let λ be an eigenvalue of the surface
eigenvalue problem and let (U,Λ) be a surface FEM eigenpair associated with
λ. Then

|λ− Λ| ≤ ‖U − P λU‖2
H1(γ)︸ ︷︷ ︸

O(h2r)+O(h2k+2)

+λ ‖U − P λU‖2
L2(γ)︸ ︷︷ ︸

O(h2r+2)+O(h2k+2)

+Λ |m(U,U)−M(U,U)|︸ ︷︷ ︸
Geometric

+ |a(U,U)− A(U,U)|︸ ︷︷ ︸
Geometric

.

Obvious eigenvalue error bound:

|λ− Λ| . h2r + ‖EPd
‖L∞ . h2r + hk+1.
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Some Test Shapes

Figure 1: Sphere and Dziuk surface used in deal.ii computations of eigenvalues.
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Numerical Experiments: Quadrilateral Elements

Looking for : O(hk+1).
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Numerical Experiments: Quadrilateral Elements

Strange Behavior: Geometric error is O(h2k) rather than the expected
O(hk+1).
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Numerical Experiments: Quadrilateral Elements

Important observation: deal.ii constructs Γ using interpolation of Pd at
Gauss-Lobatto interpolation points, NOT canonical Lagrange points.
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An Explanation of Superconvergence

Lemma 1. Up to terms of order h2k,

|m(V, V )−M(V, V )| ≤

∣∣∣∣∣
∫

Γ

V (q)2d(q)
n∑
i=1

κi(Pd(q))

1 + d(q)κi(Pd(q))
dΣ

∣∣∣∣∣ ,
where {κi}ni=1are the principal curvatures of the surface.

γ

Γ
Γx

Pd(x)

q = IkPd(x)
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Geometric Error Acts Like Quadrature Error

• Exploit distance function: The zeros of d(q), {qj}Nj=1, on each face of Γ
are the interpolation points used to create Γ.

• Create quadrature rule: Use the zeros of d(q) to create a quadrature
rule:

QUAD :=
∑
T⊂Γ

N∑
j=1

WjV (qj)
2
�
��
�*0

d(qj)
n∑
i=1

κi(P(qj))

1 + d(qj)κi(P(qj))
= 0

Theorem 3 (Quadrature Error). Up to terms of order h2k,

|m(V, V )−M(V, V )| ≤

∣∣∣∣∣
∫

Γ

V (q)2d(q)
n∑
i=1

κi(P(q))

1 + d(q)κi(P(q))
dΣ

∣∣∣∣∣
=

∣∣∣∣∣
∫

Γ

V (q)2d(q)
n∑
i=1

κi(P(q))

1 + d(q)κi(P(q))
dΣ−QUAD

∣∣∣∣∣ .
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Conclusion for quad meshes

Corollary 4 (Superconvergence in deal.ii Computations). If degree− k
interpolation points based on Gauss-Lobatto quadrature are used in the
construction of Γ, U is the SFEM eigenfunction of Λ, and P λU has enough
regularity, then

|m(U,U)−M(U,U)| . h2k,

|a(U,U)− A(U,U)| . h2k,

and
|λ− Λ| . h2r + h2k.

Note: Tensor product of k + 1 points used in the 1D Gauss-Lobatto
quadrature rule yields a quadrature rule exact for degree 2k − 1.
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Triangular meshes

Notes:

• Interpolation points are standard Lagrange points.

• Elementwise quadrature error for associated quadrature rule is O(hk+1).

• Computational observation: Expected order hk+1 for odd k,
superconvergent order hk+2 for even k.

• Observed orders were robust: Only exception was nodes perturbed off of
surface with bias in one direction (e.g., outside of surface).

• Could be explained within our framework by known superconvergence
phenomena for semi-structured meshes such as ones in which adjacent
triangles form near-parallelograms.

• We didn’t seem to have such structured meshes, but did not explore
further down the superconvergence rabbit hole.
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Setting

Back to the Laplace-Beltrami source problem:

−∆γu = f on γ.

FEM: Find UT ∈ ST s.t.

A(UT , V ) = (F, V ), V ∈ ST .

Goal: A posteriori (computable) estimates that bound the error:

‖∇γ(u− UT )‖L2(γ) ≤ F(UT , F ) + G(UT , F ),

where F is a computable term controlling the Galerkin error and G is a
computable term controlling the geometric error.

Note: Computing G will require computing the map P between Γ and γ.
How does our choice of P affect the estimates?
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A posteriori estimates on implicit surfaces

Fundamental assumption: γ is represented in implementation using the
closest point projection Pd(x) = x− d(x)~ν(x).

Residual indicator: For T ∈ T ,

ηT = hT‖F + ∆ΓUT ‖L2(T ) + h
1/2
T ‖J∇ΓUT K‖L2(∂T ).

Theorem 5 (De-Dz ’07). Assume F (x) = JPd
(f ◦Pd) with JPd

the Jacobian
of Pd. Then

‖∇γ(u− U `
T )‖2

L2(γ) .
∑
T∈T

η2
T + ‖EPd

‖2
L∞(Γ)‖∇ΓUT ‖2

L2(Γ).

Notes:

• Galerkin error+geometric consistency error

• Everything is computable IF we can compute d and its derivatives
(needed to compute/estimate EPd

).

• Can also work with a more general level set function, but still need to
approximate d.
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Summary: Estimates on implicit surfaces

Pluses:

+ Geometric error is of order hk+1: “Superconvergent”.

Minuses:

- Analytical framework requires C2 surface.

- A posteriori estimates require evaluation of distance function:
Only explicitly available for sphere and torus!
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Second option for P

Framework: There is an elementwise-smooth bi-Lipschitz map P : Γ→ γ

which we have access to in our code.

Simple example: γ is the graph of a function g over a Euclidean domain Ω;
P 6= Pd is the “vertical” map induced by g.

Advantages:

1. More flexibility in representing smooth surfaces

2. Allows for less then C2 surfaces.

Drawback: Theoretical properties aren’t so nice!
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Consistency errors

Assume P is an arbitrary “reasonable” parametric map:

• Error representation: With EP a matrix derived from change of variables,

A(U, V )− a(U ◦ P−1, V ◦ P−1) =

∫
γ

EP∇γ(U ◦ P−1)∇γ(V ◦ P−1) dσ.

• Computing EP only requires access to P.

• Standard arguments for isoparametric FEM yield

‖EP‖L∞(T ) . hk.

The moral of the story: O(hk+1) geometric errors are observed for smooth
surfaces independent of P used in implementation. Thus we should use Pd for
theoretical purposes.
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A posteriori estimates: Parametric viewpoint

Theorem 6 (BCMMN, 2016). Let F = JP(f ◦P). Then under reasonable
assumptions,

‖∇γ(u− UT ◦P)‖2
L2(γ) .

∑
T∈T

η2
T + ‖∇(P− IkP)‖2

L∞(Γ)
.

Properties:

+ Practical computation uses P: Flexible!

+ Allows for less-than-C2 surfaces.

+ AFEM convergence, optimality proved.

- Geometric consistency error ‖∇(P− IkP)‖L∞(Γ) is only order hk, not

order hk+1 as in the implicit formulation.

- AFEM significantly overrefines to resolve geometric error.
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A posteriori estimates: Merged perspective

Basic idea: Use generic P for implementation, but use Pd for theory.

The heart of our result:

‖EPd
‖L∞(γ) . ‖P− IkP‖L∞(Γ) + ‖∇(P− IkP)‖2

L∞(Γ)
=: εT .

Theorem 7 (De.-Bonito). Assume that γ is C2, and that a parametric FEM
is used with F = JP(f ◦P). Then under reasonable assumptions,

‖∇γ(u− UT )‖2
L2(γ) .

∑
T∈T

η2
T + ε2T .

Notes:

1. εT is computable using only information from the parametric
representation, but heuristically εT . hk+1.

2. Central observation in proofs: Pd is the closest point projection implies

|x−Pd(x)| ≤ |x−P(x)|.
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Numerical experiments

Computational setup for Experiment 1:

• Smooth geometry: γ is a half-sphere (smooth) ; uniform geometric
refinement.

• Rough solution:. u is singular at the north pole ; localized PDE
refinement at pole.

• Software: Computations were performed using deal.ii.

• Adaptive algorithm: Selectively choose elements to subdivide based on
elementwise quantities:

ηT (Galerkin error)

and
either εT or ‖∇(P− IkP)‖L∞(T ) (geometric error).

• Polynomial degree:. We show results for r = 2, k = 1.
(Algorithms perform similarly for isoparametrics (r = k = 1)).
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Meshes

Adaptive meshes after 10 AFEM iterations with r = 2, k = 1: BD refinement
(left) and BCMMN refinement (right).
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Error decrease
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2T (residual/BCMMN)
6T (geometric/BCMMN)
DOF!1=2

Error (BD)
2T (residual/BD)
0T (geometric/BD)
DOF!1
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Experiment 2

Setup:

• γ is a C2,α surface (α = 2/5).

• f ≡ 1, u is unknown.

• Can show: u ∈ H3−ε, any ε > 0.

• Three refinement routines:

1. Uniform (measure geometric error w/BD estimator).

2. AFEM: Q3/Q3 with BCMMN estimator, tolerance 5× 10−7.

3. AFEM: Q3/Q2 with BD estimator, tolerance 5× 10−7.
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Adaptive meshes

Adaptive meshes after 20 AFEM iterations: BD refinement with r = 3, k = 2
(left) and BCMMN refinement with r = k = 3 (right).
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Error decrease
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Note: Adaptive error decrease is suboptimal for Q3Q3/BCMMN, but NOT
for Q3Q2/BD.
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Conclusions

Some future directions:.

1. Nonsmooth (not C2) surfaces

• Closest point projection isn’t immediately useful.

• So far, only parametric viewpoint has been used in proofs: O(hα)
geometric error on a C1,α surface.

• Implies O(hα) geometric error on C1,α surfaces with α < 1, but O(h2)
on C2 surfaces (!).

2. Vector Laplacians/Stokes on surfaces:

• Several recent papers: Metatheorem doesn’t always hold.

• For some methods O(hk+1) geometric error can be recovered if a better
approximation to the normal is used in the definition of the discrete
energy inner product.

• For other methods the situation is less clear.


