Geometric errors in surface finite element methods

Alan Demlow Texas A&M University

parts joint work with

Andrea Bonito (TAMU) and Justin Owen (Sandia)

Partially supported by NSF grant DMS-1720369

Outline

- 1. Canonical surface FEM
 - Implicit surface representations
 - FEM
 - Consistency errors and a priori estimates
- 2. Eigenvalue problems
 - Definitions
 - Results of canonical arguments
 - Quadrature-based superconvergence argument
- 3. A posteriori estimates
 - Estimates assuming canonical implicit representation
 - Parametric representation of surfaces
 - New estimates
- 4. Conclusion

Outline

- 1. Canonical surface FEM
 - Implicit surface representations
 - FEM
 - Consistency errors and a priori estimates
- 2. Eigenvalue problems
 - Definitions
 - Results of canonical arguments
 - Quadrature-based superconvergence argument
- 3. A posteriori estimates
 - Estimates assuming canonical implicit representation
 - Parametric representation of surfaces
 - New estimates
- 4. Conclusion

Prologue: Basic FEM terminology

Poisson model problem: Solve

$$-\Delta u = f \text{ in } \Omega \subset \mathbb{R}^2, \ u = 0 \text{ on } \partial \Omega.$$

Sobolev space, forms, and norm: Let

$$\begin{aligned} a(u,v) &:= \int_{\Omega} \nabla u \nabla v, \quad m(f,v) := \int_{\Omega} fv. \\ \|u\|_{H_0^1(\Omega)} &= \|\nabla u\|_{L_2(\Omega)} = a(u,u)^{1/2}, \\ H_0^1(\Omega) &= \{u \ s.t. \ \|u\|_{H_0^1(\Omega)} < \infty, \ u = 0 \text{ on } \partial\Omega. \} \end{aligned}$$

Infinite dimensional vector space.

Weak form: Find $u \in H_0^1(\Omega)$ s.t.

$$a(u,v) = m(f,v), \quad \text{all } v \in H^1_0(\Omega).$$

Find basis for $H^1_0(\Omega) \rightsquigarrow$ infinite-dimensional set of linear equations.

Euclidean FEM

Mesh: \mathcal{T}_h is a decomposition of Ω into triangles of diameter h.

Euclidean FEM

Mesh: \mathcal{T}_h is a decomposition of Ω into triangles of diameter h.

Finite element subspace: Elements of $S_h \subset H_0^1(\Omega)$ are

- Continuous
- \bullet 0 on $\partial \Omega$
- polynomials of degree r over each $T \in \mathcal{T}_h$.

 S_h is a (finite dimensional vector space.

Galerkin's method: Find $u_h \in S_h$ s.t.

$$a(u_h, v_h) = m(f, v_h), \quad v_h \in S_h.$$

Basis for $S_h \sim finite$ dimensional set of linear equations.

Projection property: u_h is the orthogonal projection of u onto S_h w.r.t. a:

$$||u - u_h||_{H_0^1(\Omega)} = \inf_{\chi \in S_h} ||u - \chi||_{H_0^1(\Omega)}.$$

Basic error estimates

If u is smooth enough,

$$\|u - u_h\|_{H^1_0(\Omega)} \le \inf_{\chi \in S_h} \|u - \chi\|_{H^1_0(\Omega)} \le Ch^r,$$
$$\|u - u_h\|_{L_2(\Omega)} \le Ch^{r+1}.$$

Relates error to cost and properties of method: h, r.

Variational crimes/Consistency errors

Variational crimes/Consistency errors: Sometimes we define u_h via forms "close to" a and m:

$$A(u_h, v_h) = M(u_h, v_h), \text{ all } v_h \in S_h,$$

with $A \approx a$ and $M \approx m$.

Must account for loss of projection property in error analysis:

$$||u - u_h||_{H^1(\Omega)} \le \inf_{\chi \in S_h} ||u - \chi||_{H^1(\Omega)} + ||A - a||_* + ||M - m||_*.$$

(Effects on convergence rate depend on the situation...).

1. Laplace-Beltrami problem

Definitions:

- γ is a compact, 2-dimensional C^2 surface without boundary in \mathbb{R}^3 .
- f is (given) data satisfying $\int_{\gamma} f \, d\sigma = 0$.
- ∇_{γ} , Δ_{γ} are the tangential gradient and Laplace-Beltrami operator.

Model problem (strong form):

$$-\Delta_{\gamma} u = f \text{ on } \gamma.$$

Dirichlet form and L_2 inner product:

$$a(u,v) := \int_{\gamma} \nabla_{\gamma} u \nabla_{\gamma} v \, \mathrm{d}\sigma, \quad m(f,v) := \int_{\gamma} f v \, \mathrm{d}\sigma.$$

Weak form of the Laplace-Beltrami problem: Find $u \in H^1(\gamma)$ s.t.

$$a(u, v) = m(f, v)$$
 for all $v \in H^1(\gamma)$.

We require $\int_{\gamma} u \, d\sigma = 0$ to ensure uniqueness.

Applications of surface PDE

Why solve the Laplace-Beltrami problem?

- 1. Geometry: Mean curvature flow, etc.
- 2. Image and surface processing
- 3. Physical modeling: Surface tension in two-phase flow; biomembranes
- 4. Shape registration: Spectrum can serve as a "shape DNA"

Surface FEM

- Base discrete surface: $\overline{\Gamma}$ is a polyhedron with triangular or quad faces.
- Basic mapping assumption: There is a "reasonably nice" map $\mathbf{P}: \overline{\Gamma} \to \gamma$.
- Polynomial surface approximation: $\Gamma = I_k \mathbf{P}(\overline{\Gamma})$ with I_k a degree-k Lagrange interpolant.

Surface FEM

- Base discrete surface: $\overline{\Gamma}$ is a polyhedron with triangular or quad faces.
- Basic mapping assumption: There is a "reasonably nice" map $\mathbf{P}: \overline{\Gamma} \to \gamma$.
- Polynomial surface approximation: $\Gamma = I_k \mathbf{P}(\overline{\Gamma})$ with I_k a degree-k Lagrange interpolant.
- Meshes: $\overline{\mathcal{T}}$ is the set of faces of $\overline{\Gamma}$, \mathcal{T} is the faces of Γ .
- Finite element space: $S_{\mathcal{T}}$ is the piecewise degree-*r* polynomials over Γ .
- Data: f is defined on γ , so have to define data F on Γ .
- Forms on Γ :

$$A(U,V) := \int_{\Gamma} \nabla_{\Gamma} U \nabla_{\Gamma} V \, \mathrm{d}\sigma_{\mathcal{T}}, \quad M(F,V) := \int_{\Gamma} F V \, \mathrm{d}\sigma_{\mathcal{T}}.$$

• Finite element method: Find $U \in S_{\mathcal{T}}$ such that $\int_{\Gamma} U \, d\sigma_{\mathcal{T}} = 0$ and

$$A(U,V) = M(F,V), \quad V \in S_{\mathcal{T}}.$$

Choosing P

Canonical choice historically for C^2 surfaces: Implicit representation. Viewpoint: $\gamma = \{x : d(x) = 0\}$ with d the signed distance function.

Then: For x lying in a sufficiently small tubular neighborhood U of γ ,

• Orthogonal closest-point projection onto γ :

$$\mathbf{P}_d(x) := x - d(x)\vec{\nu}(x)$$

with $\nu = \nabla d$ the unit normal on γ .

Ups and downs:

- + Correct theoretical properties in FEM.
 - Often difficult to access in codes (explicit formulas only for sphere, torus).
 - Surface regularity less than C^2 ?

We'll look at other options later...

Curvature and the closest point projection

Notes:

- Curvature: $\kappa(\mathbf{P}_d(x)) = 1/R$ with R the maximum radius of open balls tangent to but not intersecting γ .
- Closest point projection: Uniquely defined on a tubular neighborhood of γ having width $\inf_{x \in \gamma} \frac{1}{|\kappa(x)|}$.

Surface regularity and the distance function

Two distinct regimes of surface regularity:

- 1. γ is $C^{1,1}$ or smoother (can be locally described via a $C^{1,1}$ diffeomorphism):
 - The distance function, closest point projection behave as described above.
 - Distance function inherits surface regularity: γ is $C^k \Rightarrow d$ is also C^k .
- 2. For any γ not $C^{1,1}$ (say, $C^{1,\alpha}$ with $\alpha < 1$):
 - $\bullet~d$ does NOT inherit surface regularity: d is only Lipschitz.
 - \mathbf{P}_d is not uniquely defined on ANY open neighborhood of γ .
 - Established in [Lucas, 1957] and [Federer, 1959].

Geometric consistency error

Dirichlet consistency matrix: With $\mathbf{E}_{\mathbf{P}_d}$ a matrix determined by using change of variables formulas for the mapping \mathbf{P}_d and $U^{\ell} = U \circ \mathbf{P}_d^{-1}$,

$$A(U,V) - a(U^{\ell},V^{\ell}) = \int_{\gamma} \mathbf{E}_{\mathbf{P}_d} \nabla_{\gamma} U^{\ell} \nabla_{\gamma} V^{\ell} \,\mathrm{d}\sigma.$$

- Computing $\mathbf{E}_{\mathbf{P}_d}$ requires computing distance function d and derivatives.
- Order of consistency error: On a triangle T of size h,

$$\|\mathbf{E}_{\mathbf{P}_d}\|_{L_{\infty}(T)} \lesssim \|d\|_{L_{\infty}(T)} + \|\vec{\nu} - \vec{\nu}_h\|_{L_{\infty}(T)}^2 \lesssim h^{k+1} + h^{2k} \lesssim h^{k+1},$$

where $\vec{\nu}$ and $\vec{\nu}_h$ are normals to γ and Γ .

• An $O(h^{k+1})$ consistency error is observed essentially independently of the method used to construct Γ (interpolation of \mathbf{P}_d isn't necessary in practice!).

A priori estimates for surface FEM

Theorem 1 (Dz88, De09). For discrete data F consistently chosen,

$$\begin{split} \|\nabla_{\gamma}(u-U^{\ell})\|_{L_{2}(\gamma)} &\lesssim h^{r} \|u\|_{H^{r+1}(\gamma)} + \|\mathbf{E}_{\mathbf{P}_{d}}\|_{L_{\infty}(\gamma)} \|\nabla_{\gamma}u\|_{L_{2}(\gamma)} \\ &\lesssim h^{r} \|u\|_{H^{r+1}(\gamma)} + h^{k+1} \|\nabla_{\gamma}u\|_{L_{2}(\gamma)}, \\ \|u-U_{\mathcal{T}}^{\ell} - \frac{1}{|\gamma|} \int_{\gamma} (u-U_{T}^{\ell})\|_{L_{2}(\gamma)} &\lesssim h^{r+1} \|u\|_{H^{r+1}(\gamma)} + \|\mathbf{E}_{\mathbf{P}_{d}}\|_{L_{\infty}(\gamma)} \|\nabla_{\gamma}u\|_{L_{2}(\gamma)} \\ &\lesssim h^{r+1} \|u\|_{H^{r+1}(\gamma)} + h^{k+1} \|\nabla_{\gamma}u\|_{L_{2}(\gamma)}. \end{split}$$

Notes:

- Error consists of a Galerkin error and a geometric consistency error.
- Geometric error is the same for energy and L_2 norms.
- r = k = 1: Previous estimates require C^3 regularity. This is too much since $C^2 \Rightarrow u \in H^2(\gamma)$. Requirement is reduced to C^2 in recent joint work w/Bonito and Nochetto.

A (too?) general statement

Metatheorem: Geometric consistency errors are of order k + 1 for any quantity of interest (various norms, point values...) and any standard surface FEM (mixed, DG, HDG, cut/trace, FEEC, parabolic problems...) for elliptic problems on surfaces.

Proof: See lots of FEM literature starting with [Dziuk 88] (also BEM literature starting with [Nedelec '78], [Bendali '84]...)

A (too?) general statement

Metatheorem: Geometric consistency errors are of order k + 1 for any quantity of interest (various norms, point values...) and any standard surface FEM (mixed, DG, HDG, cut/trace, FEEC, parabolic problems...) for elliptic problems on surfaces.

Proof: See lots of FEM literature starting with [Dziuk 88] (also BEM literature starting with [Nedelec '78], [Bendali '84]...)

Theme of this talk: Things aren't always that simple!

Outline

- 1. Canonical surface FEM
 - Implicit surface representations
 - FEM
 - Consistency errors and a priori estimates
- 2. Eigenvalue problems
 - Definitions
 - Results of canonical arguments
 - Quadrature-based superconvergence argument
- 3. A posteriori estimates
 - Estimates assuming canonical implicit representation
 - Parametric representation of surfaces
 - New estimates
- 4. Conclusion

Laplace-Beltrami Eigenvalue Problem

• Strong form: Find (u, λ) such that:

$$-\Delta_{\gamma}u = \lambda u,$$

- Weak eigenvalue problem: Find $(u, \lambda) \in H^1(\gamma)/\mathbb{R} \times \mathbb{R}^+$ such that $a(u, v) = \lambda m(u, v) \quad \forall v \in H^1(\gamma).$
- Finite element approximation: Find $(U, \Lambda) \in S_T/\mathbb{R} \times \mathbb{R}^+$ such that $A(U, V) = \Lambda M(U, V), V \in S_T.$
- Eigenfunction bound: Let P_{λ} be the $L_2(\gamma)$ projection onto eigenspace associated with λ . For an SFEM eigenpair (U, Λ) associated to an eigenvalue λ of $-\Delta_{\gamma}$, we have

$$\begin{aligned} \|U - \boldsymbol{P}_{\lambda} U\|_{H^{1}(\gamma)} &\lesssim \boldsymbol{h}^{r} + \boldsymbol{h}^{k+1}, \\ \|U - \boldsymbol{P}_{\lambda} U\|_{L_{2}(\gamma)} &\lesssim \boldsymbol{h}^{r+1} + \boldsymbol{h}^{k+1} \end{aligned}$$

Eigenvalue Errors

Theorem 2 (Eigenvalue Bound). Let λ be an eigenvalue of the surface eigenvalue problem and let (U, Λ) be a surface FEM eigenpair associated with λ . Then

$$\begin{aligned} |\lambda - \Lambda| &\leq \underbrace{\|U - \boldsymbol{P}_{\lambda}U\|_{H^{1}(\gamma)}^{2}}_{O(h^{2r}) + O(h^{2k+2})} + \lambda \underbrace{\|U - \boldsymbol{P}_{\lambda}U\|_{L_{2}(\gamma)}^{2}}_{O(h^{2r+2}) + O(h^{2k+2})} \\ + \Lambda \underbrace{|m(U, U) - M(U, U)|}_{Geometric} + \underbrace{|a(U, U) - A(U, U)|}_{Geometric}. \end{aligned}$$

Obvious eigenvalue error bound:

$$|\lambda - \Lambda| \lesssim h^{2r} + \|\mathbf{E}_{\mathbf{P}_d}\|_{L_\infty} \lesssim h^{2r} + h^{k+1}$$

Some Test Shapes

Figure 1: Sphere and Dziuk surface used in deal.ii computations of eigenvalues.

Numerical Experiments: Quadrilateral Elements

Looking for : $O(h^{k+1})$.

Numerical Experiments: Quadrilateral Elements

Strange Behavior: Geometric error is $O(h^{2k})$ rather than the expected $O(h^{k+1})$.

Numerical Experiments: Quadrilateral Elements

Important observation: deal.ii constructs Γ using interpolation of \mathbf{P}_d at Gauss-Lobatto interpolation points, NOT canonical Lagrange points.

An Explanation of Superconvergence

Lemma 1. Up to terms of order h^{2k} ,

$$|m(V,V) - M(V,V)| \le \left| \int_{\Gamma} V(q)^2 d(q) \sum_{i=1}^n \frac{\kappa_i(\mathbf{P}_d(q))}{1 + d(q)\kappa_i(\mathbf{P}_d(q))} \, d\Sigma \right|,$$

where $\{\kappa_i\}_{i=1}^n$ are the principal curvatures of the surface.

Geometric Error Acts Like Quadrature Error

- Exploit distance function: The zeros of d(q), $\{q_j\}_{j=1}^N$, on each face of Γ are the interpolation points used to create Γ .
- Create quadrature rule: Use the zeros of d(q) to create a quadrature rule:

$$QUAD := \sum_{T \subset \Gamma} \sum_{j=1}^{N} W_j V(q_j)^2 \underline{d(q_j)}^0 \sum_{i=1}^{n} \frac{\kappa_i(\mathbf{P}(q_j))}{1 + \underline{d(q_j)}\kappa_i(\mathbf{P}(q_j))} = 0$$

Theorem 3 (Quadrature Error). Up to terms of order h^{2k} ,

$$\begin{split} |m(V,V) - M(V,V)| &\leq \left| \int_{\Gamma} V(q)^2 d(q) \sum_{i=1}^n \frac{\kappa_i(\mathbf{P}(q))}{1 + d(q)\kappa_i(\mathbf{P}(q))} \, d\Sigma \right| \\ &= \left| \int_{\Gamma} V(q)^2 d(q) \sum_{i=1}^n \frac{\kappa_i(\mathbf{P}(q))}{1 + d(q)\kappa_i(\mathbf{P}(q))} \, d\Sigma - QUAD \right|. \end{split}$$

Conclusion for quad meshes

Corollary 4 (Superconvergence in deal.ii Computations). If degree – kinterpolation points based on Gauss-Lobatto quadrature are used in the construction of Γ , U is the SFEM eigenfunction of Λ , and $\mathbf{P}_{\lambda}U$ has enough regularity, then

 $|m(U,U) - M(U,U)| \lesssim h^{2k},$ $|a(U,U) - A(U,U)| \lesssim h^{2k},$

and

$$|\lambda - \Lambda| \lesssim \frac{h^{2r}}{h^{2r}} + h^{2k}.$$

Note: Tensor product of k + 1 points used in the 1D Gauss-Lobatto quadrature rule yields a quadrature rule exact for degree 2k - 1.

Triangular meshes

Notes:

- Interpolation points are standard Lagrange points.
- Elementwise quadrature error for associated quadrature rule is $O(h^{k+1})$.
- Computational observation: Expected order h^{k+1} for odd k, superconvergent order h^{k+2} for even k.
- Observed orders were robust: Only exception was nodes perturbed off of surface with bias in one direction (e.g., outside of surface).
- Could be explained within our framework by known superconvergence phenomena for semi-structured meshes such as ones in which adjacent triangles form near-parallelograms.
- We didn't seem to have such structured meshes, but did not explore further down the superconvergence rabbit hole.

Outline

- 1. Canonical surface FEM
 - Implicit surface representations
 - FEM
 - Consistency errors and a priori estimates
- 2. Eigenvalue problems
 - Definitions
 - Results of canonical arguments
 - Quadrature-based superconvergence argument
- 3. A posteriori estimates
 - Estimates assuming canonical implicit representation
 - Parametric representation of surfaces
 - New estimates
- 4. Conclusion

Setting

Back to the Laplace-Beltrami source problem:

$$-\Delta_{\gamma} u = f \text{ on } \gamma.$$

FEM: Find $U_{\mathcal{T}} \in S_{\mathcal{T}}$ s.t.

$$A(U_{\mathcal{T}},V) = (F,V), \quad V \in S_{\mathcal{T}}.$$

Goal: A posteriori (computable) estimates that bound the error:

$$\|\nabla_{\gamma}(u-U_{\mathcal{T}})\|_{L_2(\gamma)} \leq \mathcal{F}(U_{\mathcal{T}},F) + \mathcal{G}(U_{\mathcal{T}},F),$$

where \mathcal{F} is a computable term controlling the Galerkin error and \mathcal{G} is a computable term controlling the geometric error.

Note: Computing \mathcal{G} will require computing the map \mathbf{P} between Γ and γ . How does our choice of \mathbf{P} affect the estimates?

A posteriori estimates on implicit surfaces

Fundamental assumption: γ is represented in implementation using the closest point projection $\mathbf{P}_{\mathbf{d}}(x) = x - d(x)\vec{\nu}(x)$.

Residual indicator: For $T \in \mathcal{T}$,

 $\eta_T = h_T \|F + \Delta_{\Gamma} U_{\mathcal{T}}\|_{L_2(T)} + h_T^{1/2} \|\llbracket \nabla_{\Gamma} U_{\mathcal{T}} \rrbracket \|_{L_2(\partial T)}.$

Theorem 5 (De-Dz '07). Assume $F(x) = J_{\mathbf{P}_d}(f \circ \mathbf{P}_d)$ with $J_{\mathbf{P}_d}$ the Jacobian of \mathbf{P}_d . Then

$$\|\nabla_{\gamma}(u-U_{\mathcal{T}}^{\ell})\|_{L_{2}(\gamma)}^{2} \lesssim \sum_{T\in\mathcal{T}} \eta_{T}^{2} + \|\mathbf{E}_{\mathbf{P}_{d}}\|_{L_{\infty}(\Gamma)}^{2} \|\nabla_{\Gamma}U_{\mathcal{T}}\|_{L_{2}(\Gamma)}^{2}.$$

Notes:

- Galerkin error+geometric consistency error
- Everything is computable IF we can compute d and its derivatives (needed to compute/estimate $\mathbf{E}_{\mathbf{P}_d}$).
- Can also work with a more general level set function, but still need to approximate d.

Summary: Estimates on implicit surfaces

Pluses:

+ Geometric error is of order h^{k+1} : "Superconvergent".

Minuses:

- Analytical framework requires C^2 surface.
- A posteriori estimates require evaluation of distance function: Only explicitly available for sphere and torus!

Second option for P

Framework: There is an elementwise-smooth bi-Lipschitz map $\mathbf{P}: \overline{\Gamma} \to \gamma$ which we have access to in our code.

Simple example: γ is the graph of a function g over a Euclidean domain Ω ; $\mathbf{P} \neq \mathbf{P}_d$ is the "vertical" map induced by g.

Advantages:

- 1. More flexibility in representing smooth surfaces
- 2. Allows for less then C^2 surfaces.

Drawback: Theoretical properties aren't so nice!

Consistency errors

Assume P is an arbitrary "reasonable" parametric map:

• Error representation: With \mathbf{E}_{P} a matrix derived from change of variables,

$$A(U,V) - a(U \circ \mathbf{P}^{-1}, V \circ \mathbf{P}^{-1}) = \int_{\gamma} \mathbf{E}_{\mathbf{P}} \nabla_{\gamma} (U \circ \mathbf{P}^{-1}) \nabla_{\gamma} (V \circ \mathbf{P}^{-1}) \, \mathrm{d}\sigma.$$

- Computing $\mathbf{E}_{\mathbf{P}}$ only requires access to \mathbf{P} .
- Standard arguments for isoparametric FEM yield

$$\|\mathbf{E}_{\mathbf{P}}\|_{L_{\infty}(T)} \lesssim h^{k}.$$

The moral of the story: $O(h^{k+1})$ geometric errors are observed for smooth surfaces independent of **P** used in implementation. Thus we should use \mathbf{P}_d for theoretical purposes.

A posteriori estimates: Parametric viewpoint

Theorem 6 (BCMMN, 2016). Let $F = J_{\mathbf{P}}(f \circ \mathbf{P})$. Then under reasonable assumptions,

$$\|\nabla_{\gamma}(u - U_{\mathcal{T}} \circ \mathbf{P})\|_{L_{2}(\gamma)}^{2} \lesssim \sum_{T \in \mathcal{T}} \eta_{T}^{2} + \|\nabla(\mathbf{P} - I_{k}\mathbf{P})\|_{L_{\infty}(\overline{\Gamma})}^{2}$$

Properties:

- + Practical computation uses \mathbf{P} : Flexible!
- + Allows for less-than- C^2 surfaces.
- + AFEM convergence, optimality proved.
 - Geometric consistency error $\|\nabla(\mathbf{P} I_k \mathbf{P})\|_{L_{\infty}(\overline{\Gamma})}$ is only order h^k , not order h^{k+1} as in the implicit formulation.
- AFEM significantly overrefines to resolve geometric error.

A posteriori estimates: Merged perspective

Basic idea: Use generic **P** for *implementation*, but use \mathbf{P}_d for theory. **The heart of our result:**

$$\|\mathbf{E}_{\mathbf{P}_d}\|_{L_{\infty}(\gamma)} \lesssim \|\mathbf{P} - I_k \mathbf{P}\|_{L_{\infty}(\overline{\Gamma})} + \|\nabla(\mathbf{P} - I_k \mathbf{P})\|_{L_{\infty}(\overline{\Gamma})}^2 =: \epsilon_{\mathcal{T}}.$$

Theorem 7 (De.-Bonito). Assume that γ is C^2 , and that a parametric FEM is used with $F = J_{\mathbf{P}}(f \circ \mathbf{P})$. Then under reasonable assumptions,

$$\|\nabla_{\gamma}(u-U_{\mathcal{T}})\|_{L_{2}(\gamma)}^{2} \lesssim \sum_{T \in \mathcal{T}} \eta_{T}^{2} + \epsilon_{\mathcal{T}}^{2}.$$

Notes:

- 1. $\epsilon_{\mathcal{T}}$ is computable using only information from the parametric representation, but heuristically $\epsilon_{\mathcal{T}} \lesssim h^{k+1}$.
- 2. Central observation in proofs: \mathbf{P}_d is the closest point projection implies

$$|x - \mathbf{P}_d(x)| \le |x - \mathbf{P}(x)|.$$

Numerical experiments

Computational setup for Experiment 1:

- Smooth geometry: γ is a half-sphere (smooth) \rightsquigarrow uniform geometric refinement.
- Rough solution:. u is singular at the north pole \sim localized PDE refinement at pole.
- Software: Computations were performed using deal.ii.
- Adaptive algorithm: Selectively choose elements to subdivide based on elementwise quantities:

 η_T (Galerkin error)

and

either ϵ_T or $\|\nabla (\mathbf{P} - I_k \mathbf{P})\|_{L_{\infty}(T)}$ (geometric error).

• Polynomial degree:. We show results for r = 2, k = 1. (Algorithms perform similarly for isoparametrics (r = k = 1)).

Adaptive meshes after 10 AFEM iterations with r = 2, k = 1: BD refinement (left) and BCMMN refinement (right).

Error decrease

Experiment 2

Setup:

- γ is a $C^{2,\alpha}$ surface ($\alpha = 2/5$).
- $f \equiv 1, u$ is unknown.
- Can show: $u \in H^{3-\epsilon}$, any $\epsilon > 0$.
- Three refinement routines:
 - 1. Uniform (measure geometric error w/BD estimator).
 - 2. AFEM: Q3/Q3 with BCMMN estimator, tolerance 5×10^{-7} .
 - 3. AFEM: Q3/Q2 with BD estimator, tolerance 5×10^{-7} .

Adaptive meshes after 20 AFEM iterations: BD refinement with r = 3, k = 2 (left) and BCMMN refinement with r = k = 3 (right).

Error decrease

Outline

- 1. Canonical surface FEM
 - Implicit surface representations
 - FEM
 - Consistency errors and a priori estimates
- 2. Eigenvalue problems
 - Definitions
 - Results of canonical arguments
 - Quadrature-based superconvergence argument
- 3. A posteriori estimates
 - Estimates assuming canonical implicit representation
 - Parametric representation of surfaces
 - \bullet New estimates
- 4. Conclusion

Conclusions

Some future directions:.

- 1. Nonsmooth (not C^2) surfaces
 - Closest point projection isn't immediately useful.
 - So far, only parametric viewpoint has been used in proofs: $O(h^{\alpha})$ geometric error on a $C^{1,\alpha}$ surface.
 - Implies $O(h^{\alpha})$ geometric error on $C^{1,\alpha}$ surfaces with $\alpha < 1$, but $O(h^2)$ on C^2 surfaces (!).
- 2. Vector Laplacians/Stokes on surfaces:
 - Several recent papers: Metatheorem doesn't always hold.
 - For some methods $O(h^{k+1})$ geometric error can be recovered if a better approximation to the normal is used in the definition of the discrete energy inner product.
 - For other methods the situation is less clear.