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1. Motivation

Air-cooled high-voltage transformer
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1. Motivation

L-joint

T-joint

window

yoke

outer leg

Magnetic circuit of a transformer with iron sheets — orthotropic
homogeneous nonlinear material, height = 5 m, power 400 MW.
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1. Motivation
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The associated 3× 3 matrix A = A(u) of heat conductivities is diagonal
and such that a11 6= a22 = a33. The Kirchhoff transformation cannot be
applied in the case of anisotropic nonlinear media.
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1. Motivation

Stator of a rotary machine — anisotropic nonhomogeneous and nonlinear
material, aii(Cu) = 332 W/(mK), a11(Is) = 0.2 W/(mK), a22(Is) = 0.5
W/(mK), R = 1 m, power 50 MW.
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1. Motivation

A challenge for numerical mathematics:

1. The main goal of the lecture is to show why it is important to deal
with Hilbert spaces, imbedding theorems, weak convergence, monotone
operators, compact sets, etc., in solving real-life technical problems.

2. We also hope that it will be clear why it is important to deal with
material anisotropy, inhomogeneities, various nonlinearities and
complicated geometry of electrical machines.

3. Such facts do not occur when solving academic examples with the
Laplace operator on a square or circle.
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2. Classical formulation

The problem of a stationary heat conduction in nonhomogeneous,
anisotropic and nonlinear media consists of finding u ∈ C 1(Ω) ∩ C 2(Ω)
such that

(P) −div(A(x , u)grad u) = f in Ω,

αu + nTA(s, u)grad u = g on ∂Ω,

where Ω ⊂ Rd , d ∈ {1, 2, 3}, is a bounded domain with Lipschitz
continuous boundary ∂Ω, n is the outward unit normal to ∂Ω, u is the
temperature, f ∈ L2(Ω) is the density of volume heat sources,
g ∈ L2(∂Ω) is the density of surface heat sources, α ∈ L∞(∂Ω) is the
heat transfer coefficient such that

(C ) α(s) ≥ C > 0 ∀s ∈ Γ,

where C is a constant, and Γ ⊂ ∂Ω has a positive measure.
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2. Classical formulation

Assume further that

(A) A = (Aij)
d
i ,j=1 ∈ (L∞(Ω))d×d

is a matrix function of heat conductivities such that there exist positive
constants CE and CL for which

(E ) ηTA(x , ξ)η ≥ CE‖η‖
2 ∀x ∈ Ω ∀ξ ∈ R1 ∀η ∈ Rd

and

(L) |Aij(x , ζ) − Aij(x , ξ)| ≤ CL|ζ − ξ| ∀x ∈ Ω ∀ζ, ξ ∈ R1.

Theorem. Let (A), (C), (E), (L) hold and let A be a diagonal matrix
such that Aii are continuously differentiable on Ω× R1 in all arguments.
Then there exists at most one solution of the classical problem.

See I. Hlaváček, M. Kř́ıžek, Stab. Appl. Anal. Contin. Media 3 (1993),
85–97.
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2. Classical formulation

results0 e1 e2

NumericalDiscreteMathematicalPhysical
reality model modele

General computational scheme

e0 – modelling error

e1 – discretization error

e2 – computational error (iteration and rounding errors)

|e0| ≤ |e1|+ |e2|+ |e3|

where e3 = e0 + e1 + e2 is the total error.
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3. Weak formulation

From now on, we shall assume that conditions (C ), (E ), and (L) hold
almost everywhere on Γ and Ω. Set

a(y ;w , v) = (A(y)gradw , grad v)0,Ω + 〈αw , v〉0,∂Ω,

F (v) = (f , v)0,Ω + 〈g , v〉0,∂Ω,

where v ,w , y ∈ V = H1(Ω), A(y) = A(·, y), and 〈., .〉0,∂Ω stands for the
usual scalar product in L2(∂Ω).

A function u ∈ V is said to be a weak solution of the problem (P) if

a(u; u, v) = F (v) ∀v ∈ V .

Using Green’s theorem, we can check that the classical solution of (P) is
also the weak solution.
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3. Weak formulation

To prove the existence of a weak solution u ∈ V we cannot apply the
Minty–Browder theorem for monotone operators, since our problem does
not lead to a monotone operator, in general. To see this we put d = 1,
Ω = (0, 1), α = 1/50 on Γ = ∂Ω, and let A be given as follows

0

1

3

2 4

Define a nonlinear operator A : V → V by the Riesz reprezentation
theorem

〈Aw , v〉 = a(w ;w , v), v ,w ∈ V ,

where 〈· , ·〉 is the H1(Ω)-scalar product.
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3. Weak formulation

We see that the functions v(x) = 2x and w(x) = x + 4 violate the
monotonicity condition for the operator A, since

〈Av − Aw , v − w〉 = a(v ; v , v − w)− a(w ;w , v − w)

=

∫ 1

0

(A(v)v ′ − A(w)w ′)(v ′ − w ′) dx +
1

50

∫

Γ

(v − w)2 ds

=

∫ 1

0

(1× 2− 3× 1)(2− 1) dx +
1

50

(

(v(1)− w(1))2 + (v(0)− w(0))2
)

= −1 +
1

2
< 0,

where v ′ denotes the derivative with respect to x .

Th. Let J : V → R1 be Gâteaux differentiable and 〈Av ,w〉 := J ′(v ;w).
Then J is (strictly) convex iff A is (strictly) monotone.

Unfortunately, problem (P) is nonmonotone and is also nonpotential.
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4. Nonuniqueness and uniqueness

Set A(x , ξ) =
1

u′i (x)
for x ∈ [0, 1], ξ = ui (x), i = 1, 2.

0 1

Then by Tietze’s extension theorem (see [Rudin]) there exists a
continuous extension (still denoted by A) so that A(· , ·) : Ω× R1 → R1

is bounded and (A), (C ), and (E ) hold. We see that

−(A(x , ui )u
′

i )
′ = 0 for i = 1, 2,

i.e., u1 and u2 are solutions of (P) with nonhomogeneous boundary
conditions and f = 0.
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4. Nonuniqueness and uniqueness

However, in this case it is not difficult to check that A is not Lipschitz
continuous (with respect to the second variable) near those points, where
u1 and u2 bifurcate. The condition (L) is essential:

Theorem. Let (A), (C), (E), (L) hold and let u1, u2 ∈ V be two weak
solutions of problem (P). Then u1 = u2 a.e. in Ω.

For the proof see I. Hlaváček, M. Kř́ıžek, J. Malý: On Galerkin
approximations of a quasilinear nonpotential elliptic problem of a
nonmonotone type. J. Math. Anal. Appl. 184 (1994), 168–189.

Remark. Another uniqueness theorems for nonlinear elliptic problems
with Dirichlet boundary conditions are given in Boccardo, Gallouët,
Murat (1992) and Jensen (1988).
If a nonlinear elliptic equation is not in the divergence form, there exist
examples of nonunique solutions, see, e.g., Gilbarg, Trudinger (1977) or
Meyers (1963). For semiconductor equations see Markowich et al. (1986,
1990).
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4. Nonuniqueness and uniqueness

Assume that there exists a positive constant CH such that

(H) |Aij(x , ζ)− Aij(x , ξ)| ≤ CH |ζ − ξ|e ∀x ∈ Ω ∀ζ, ξ ∈ R1,

where e ∈
[

1
2
, 1
]

is a given Hölder exponent, i.e., A(·, ·) is e-Hölder
continuous with respect to the last variable.

Theorem. Let (C), (E), (H) hold and let u1, u2 ∈ V be two weak
solutions of problem (P). Then u1 = u2 a.e. in Ω.

For the proof see M. Kř́ıžek: The uniqueness of the solution of a
nonlinear heat conduction problem under Hölder’s continuity condition.
Appl. Math. Lett. 103 (2020), Article 106214, 1–6.
The proof involves also a nonlinear dependence of f and g on u, and
mixed Dirichlet-Newton boundary conditions.
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5. Comparison principle

Comparison and maximum principles are important features of second
order equations that distinguish them from higher order equations and
systems of equations.

Theorem. Let (A), (C), (E), (L) hold and let u1, u2 ∈ V be two weak
solutions of problem (P) corresponding to f1, f2 ∈ L2(Ω) and
g1, g2 ∈ L2(∂Ω), respectively. Assume that

f1 ≥ f2 a.e. in Ω

and
g1 ≥ g2 a.e. on ∂Ω.

Then u1 ≥ u2 a.e. in Ω.

Note that the comparison principle immediately implies the uniqueness of
the weak solution. The comparison principle also yields a natural
assertion: Any rise of the density of heat sources always causes that the
temperature will not decrease in any point. This confirms that the
nonlinear mathematical model (P) of stationary heat conduction has
reasonable properties.
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6. Existence of weak and discrete solutions

Theorem. Let (A), (C), (E), (L) hold and let Vh ⊂ C (Ω) be a nonempty
finite-dimensional subspace. Then there is a Galerkin solution uh ∈ Vh

such that

(G) a(uh; uh, vh) = F (vh) ∀vh ∈ Vh.

See Hlaváček, Kř́ıžek, Malý (1994). The proof is based on the Brouwer
fixed-point theorem.

Remark. The uniqueness of uh was recently proved by Pollock and Zhu
in Numer. Math. 2018.
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6. Existence of weak and discrete solutions

Let {Vh}h→0 be a family of finite-dimensional subspaces of
H1(Ω) ∩ C (Ω) such that

(D) ∀v ∈ C∞(Ω) ∃{vh}h→0 : vh ∈ Vh, ‖v − vh‖1,Ω → 0 as h → 0.

Theorem. Let (A), (C), (D), (E), (L) hold and let {uh}h→0, uh ∈ Vh, be
a sequence of Galerkin solutions satisfying (G). Then there exist a
subsequence (denoted in the same way) and u ∈ H1(Ω) such that

(W ) uh ⇀ u (weakly) in H1(Ω) as h → 0,

and u is a weak solution of problem (P).

See Hlaváček, Kř́ıžek, Malý (1994). The proof is based on the
Eberlein-Schmulyan theorem. It can be generalized to the so-called
variational crimes.
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7. Convergence of finite element approximations

From the weak convergence (W ) and the compactness of the imbedding
operator H1(Ω) → L2(Ω) (the Rellich theorem) we can easily prove the
convergence of the Galerkin solutions in the ‖.‖0,Ω-norm. To prove even
the (strong) convergence in the ‖.‖1,Ω-norm, we shall, in addition, require
that

(B) Vh ⊂ W 1
4 (Ω), ‖vh‖1,4,Ω ≤ C (v) ∀h ∈ (0, h0),

where v ∈ C∞(Ω), vh satisfies (D), h0 > 0, and C (v) is a constant
independent of h. Functions vh can be defined as the Vh-interpolant
The next theorem establishes convergence of the sequence {uh}h→0

without any regularity assumptions on the weak solution u.

Theorem. Let (A), (B), (C), (D), (E), and (L) hold. Then the
convergence (W) is strong, i.e.,

‖u − uh‖1,Ω → 0 as h → 0.

See Hlaváček, Kř́ıžek, Malý (1994).
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8. A priori error estimates

Consider the Dirichlet problem

(P ′) −div(A(x , u)grad u) = f in Ω,

u = 0 on ∂Ω,

where f ∈ L2(Ω) and A is an L∞ matrix function which is Lipschitz
continuous with respect to the last variable and is uniformly positive
definite, i.e., (E ) holds.
The weak formulation of (P ′) consists of finding u ∈ V such that

a(u; u, v) = F (v) ∀v ∈ V = H1
0 (Ω),

where

a(y ;w , v) = (A(y) gradw , grad v)0,Ω and F (v) = (f , v)0,Ω

for y ,w , v ∈ H1(Ω).

Let the Galerkin solution uh belong to the space

Vh = {vh ∈ V | vh|K ∈ PK ∀K ∈ Th},

where PK ⊃ Pk(K ) and k ≥ 1 is an integer.
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8. A priori error estimates

Introduce the adjoint problem: Find φ ∈ H1
0 (Ω) such that

−div(AT (x , u)gradφ) + (grad u)TBT (x , u)gradφ = ζ,

where u is the weak solution of (P ′), ζ ∈ L2(Ω), B = (Bij),
Bij(x , ξ) = ∂Aij(x , ξ)/∂ξ and, moreover, we assume that

(F ) ‖φ‖2,Ω ≤ C‖ζ‖0,Ω.

Theorem. Let u ∈ Hk+1(Ω), k ≥ 1, be the solution of (P’), let (A), (E),
(F), and (L) hold, let the derivatives ∂Aij/∂ξ and ∂2Aij/∂ξ

2 be bounded
and continuous on Ω× R1 and let {Th}h→0 be a regular family of
triangulations. Then there exists h0 > 0 such that for any h ∈ (0, h0) we
have

‖u − uh‖0,Ω + h‖u − uh‖1,Ω ≤ Chk+1,

where C depends on the norm ‖u‖k+1,Ω.
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9. Superconvergence by post-processing

First define a one-dimensional operator on a uniform mesh by

I k+1
2h u(pi ) = u(pi ), i = 1, 2, 3, k ≥ 1,

∫

ℓj

I k+1
2h u ds =

∫

ℓj

u ds, j = 1, 2, k ≥ 2,

∫

L

I k+1
2h uv ds =

∫

L

uv ds ∀v ∈ Pk−3(L)/P0(L), L = ℓ1 ∪ ℓ2, k ≥ 3.

Set I k+1
2h (x1, x2) := I k+1

2h (x1)⊗ I k+1
2h (x2).

Theorem. Let (A), (B), (C), (D), (E), and (L) hold. Then we have

‖u − I k+1
2h uh‖1 ≤ Chk+1‖u‖k+2, k ≥ 1,

‖u − I k+1
2h uh‖0 ≤ Chk+2‖u‖k+2, k ≥ 2.

See L. Liu, T. Liu, M. Kř́ıžek, T. Lin, S. Zhang (2004).
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10. Radiation boundary conditions

Each body loses heat energy from its surface by electromagnetic waves.
This phenomenon is called radiation. Losses of energy are proportional to
the fourth power of the surface temperature (the Kirchhoff law). This
effect is small at room temperature. But the radiation should not be
neglected when the surface temperature is high. It is represented by the
nonlinear Stefan-Boltzmann boundary condition

αu + nTA grad u + βu4 = g ,

on some part of the boundary ∂Ω, where β = σfem, σ = 5.669× 10−8

Wm−2K−4 is the Stefan-Boltzmann constant, 0 ≤ fem ≤ 1 is the relative
emissivity function.

If A is independent of the solution u, the heat radiation problem can be
transformed to the minimization of a nonquadratic functional over a
nonempty convex set. The existence and uniqueness of the weak solution
u is guaranteed.
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11. Numerical example
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11. Numerical example
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11. Numerical example

Let A(x , u) = A(x) and

J(v) =
1

2
a(v , v) +

1

5

∫

Γ2

βv5ds − F (v), v ∈ H1(Ω)

The integral is finite, since ‖v‖0,q,∂Ω ≤ Cq‖v‖1,2,Ω. The functional J is
not convex. Thus, we have restricted ourselves to v ≥ 0.

We used Kačanov’s method (= the method of secant modules = the
method of freezing coefficients) over a finite element space Vh.
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11. Numerical example
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Here f = 15 000 W/m3, g = 0, αleft = 0, αright = 10 and 100
Wm−1K−1 otherwise.
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12. Discrete maximum principle

Consider the problem

−div(λ(x , u, grad u)grad u) = f in Ω ⊂ R3

with the zero Dirichlet boundary conditions, where λ is a sufficiently
smooth function such that 0 < c1 ≤ λ(·, ·, ·) ≤ c2. The corresponding
continuous maximum principle takes the from

f ≤ 0 =⇒ u ≤ 0.

By M. Kř́ıžek, Qun Lin (1995) the following discrete maximum principle
holds

f ≤ 0 =⇒ uh ≤ 0.

for linear tetrahedral elements. In addition the effect of numerical
integration was analyzed and the DMP was proved for nonobtuse
tetrahedral elements, see also J. Karátson, S. Korotov, M. Kř́ıžek (2007).
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13. Final remarks

Finally, consider a stationary heat conduction problem in a bounded
homogeneous and isotropic medium Ω ⊂ Rd , d ∈ {1, 2, . . .},

−div(λ(u)grad u) = f in Ω

with mixed boundary conditions

u = 0 on Γ1 6= ∅ and n⊤λ(u)grad u = 0 on Γ2,

where Γ1 and Γ2 are relatively open sets in the boundary ∂Ω,

Γ1 ∪ Γ2 = ∂Ω, Γ1 ∩ Γ2 = ∅,

λ : R1 → R1 is a measurable bounded function such that

λ(ξ) ≥ C > 0 ∀ξ ∈ R1,

i.e. A(·, u) = λ(u)I , where I is the identity matrix.
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13. Final remarks

This nonlinear problem can be converted by the well-known Kirchhoff
transformation

K(U) =

∫ U

0

λ(ξ) dξ, U ∈ R1,

to the linear problem
−∆z = f in Ω

with mixed boundary conditions

z = 0 on Γ1 and n⊤grad z = 0 on Γ2,

where z(x) = K(u(x)) . We observe that K is an increasing function,
i.e., its inverse K−1 exists and we have

u(x) = K−1(z(x)).

Open problem: Define an analogue of the Kirchhoff transformation

for anisotropic material.
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I. Hlaváček, M. K.: On a superconvergent finite element scheme for
elliptic systems, Parts I-III, Apl. Mat. 32 (1987), 131–154, 200–213,
276–289.
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