Analysis of block GMRES using a new *-algebra-based approach

Kirk M. Soodhalter

Trinity College Dublin The University of Dublin Ireland http://math.soodhalter.com ksoodha@maths.tcd.ie

4. November 2021

with Marie Kubínová (formerly, Czech Acad. Science Ostrava)

Trinity College Dublin Coláiste na Trionóide, Baile Átha Cliath The University of Dublin

Soodhalter

Trinity College - Dublin

Projection methods in computational mathematics

A common recipe

Generate a **finite dimensional subspace** onto which we **project** a large/infinite dimension problem arising from a mathematical model.

- Generate a "good" subspace
- Project problem onto subspace
- Solve smaller problem
- Project solution back to original space
- Often multiple levels of projection
- \rightarrow Finite differences/elements/volumes
- \rightarrow Integral equation discretization
- \rightarrow Many iterative methods (e.g., Krylov methods, steepest descent, Gauss-Seidel)
- $\rightarrow\,$ Fourier- and wavelet-based approaches

Operator equation

Let $T \in \mathcal{L}(\mathcal{X})$ where \mathcal{X} is a separable Hilbert space. We approximate the solution of

$$Tx = y$$

Discretization process (simplified setting)

We choose approximation $x_h \in \mathcal{X}_h \subset \mathcal{X}$ with dim $\mathcal{X}_h = n < \infty$

- $\mathcal{X}_h = \operatorname{span} \{\phi_1, .\phi_2, \ldots, \phi_n\} \implies x_h = \sum_{i=1}^n x_i \phi_i$
- Need n constraints determine x_h
 - $\implies \text{ weak formulation: find } x_h \in \mathcal{X}_h \text{ such that} \\ \langle \phi_i, Tx_h \rangle_{\mathcal{X}} = \langle \phi_i, y \rangle_{\mathcal{X}} \text{ for all } i$
- System of *n* equations (for each *i*) and *n* unknowns $\{x_i\}_i$
- Let $\mathbf{A} = (\langle \phi_i, T \phi_j \rangle_{\mathcal{X}})_{ij}, \mathbf{x} = (x_i)_i$, and $\mathbf{b} = (\langle \phi_i, y \rangle_{\mathcal{X}})_i$

Direct Methods for Solving Linear Systems

Decompose the matrix into a product of matrices.

Gaussian Elimination/LU-Decomposition

- Compute decomposition $\mathbf{A} = \mathbf{L}\mathbf{U}$ where \mathbf{L} is lower-triangular and \mathbf{U} is upper-triangular
- Solve $\mathbf{L}\mathbf{U}\mathbf{x} = \mathbf{b} \longrightarrow \mathbf{U}\mathbf{x} = \mathbf{L}^{-1}\mathbf{b} \longrightarrow \mathbf{x} = \mathbf{U}^{-1}\mathbf{L}^{-1}\mathbf{b}$
- Triangular systems can be solved stably and efficiently.

When Direct Methods Are Not Appropriate

- As *n* gets larger, these methods do not scale well (increased communication/memory constraints)
- We may only possess a procedure which computes the product $\mathbf{v}\to\mathbf{A}\mathbf{v}$

Approximate the solution to a large, (often) sparse linear system,

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 where $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $n \gg 0$

- Sparse means most of the matrix entries are zero.
- Amenable to fast application (e.g., FFT-based "sparse" in some basis)
- Heirarchical matrices
- Matrices where we only have a procedure $\mathbf{v} \to \mathbf{A} \mathbf{v}$

Iterative Methods

- Generate a sequence of approximations $\{\mathbf{x}_j\}$ such that $\mathbf{x}_j \longrightarrow \mathbf{x}$
- Convergence should be rapid
- Convergence may be in the limit or not

General Framework

1. Generate two nested sequences of subspaces

$$\mathcal{K}_1 \subset \mathcal{K}_2 \subset \cdots \subset \mathcal{K}_n$$
 and $\mathcal{L}_1 \subset \mathcal{L}_2 \subset \cdots \subset \mathcal{L}_n$

2. dim
$$\mathcal{K}_j = \dim \mathcal{L}_j = j$$

- 3. At step j, select $\mathbf{x}_j \in \mathcal{K}_j$ such that $\mathbf{r}_j \perp \mathcal{L}_j$ where $\mathbf{r}_j = \mathbf{b} \mathbf{A}\mathbf{x}_j$
- 4. Continue until $\|\mathbf{r}_j\| < \varepsilon$ where $\varepsilon > 0$ is some desired threshold.

Calculating an approximation to $\mathbf{x} \Leftrightarrow$ calculating coefficients in a basis

We select $\mathbf{x}_j \in \mathcal{K}_j$ such that $\mathbf{r}_j \perp \mathcal{L}_j$ where $\mathbf{r}_j = \mathbf{b} - \mathbf{A}\mathbf{x}_j$

- Let $\mathbf{x}_0 = \mathbf{0}$ (wLog for simplicity here)
- $\mathbf{K}_j, \mathbf{L}_j \in \mathbb{R}^{n \times j}$ have columns spanning \mathcal{K}_j and \mathcal{L}_j , resp.
- We must calculate $\mathbf{y}_j \in \mathbb{R}^j$ and set $\mathbf{x}_j = \mathbf{K}_j \mathbf{y}_j$
- $\bullet \ \Leftrightarrow \mathbf{L}_{j}^{T}\left(\mathbf{b} \mathbf{A}\mathbf{K}_{j}\mathbf{y}_{j}\right) = \mathbf{0} \ \Leftrightarrow \mathbf{L}_{j}^{T}\mathbf{A}\mathbf{K}_{j}\mathbf{y}_{j} = \mathbf{L}_{j}^{T}\mathbf{b}$
- The choice of subspaces $\mathcal{K}_j, \mathcal{L}_j$ and their bases $\mathbf{K}_j, \mathbf{L}_j$ dictate effectiveness and implementability of the method

Given **A** and **b**, the *j*th Krylov subspace is defined

$$\mathcal{K}_j(\mathbf{A}, \mathbf{b}) = \operatorname{span} \left\{ \mathbf{b}, \mathbf{A}\mathbf{b}, \dots, \mathbf{A}^{j-1}\mathbf{b}
ight\}.$$

Thus, $\mathbf{u} \in \mathcal{K}_j(\mathbf{A}, \mathbf{b})$ is such that

$$\mathbf{u} = p(\mathbf{A})\mathbf{b}$$

where p(x) is a polynomial of degree less than j.

Definition

The basis $\{\mathbf{b}, \mathbf{A}\mathbf{b}, \dots, \mathbf{A}^{j-1}\mathbf{b}\}$ is called a **Krylov basis**.

Selecting Approximations from $\mathcal{K}_j(\mathbf{A}, \mathbf{b})$

• In many Krylov subspace methods, we select $\mathbf{x}_j \in \mathcal{K}_j(\mathbf{A}, \mathbf{b})$, so that

$$\mathbf{x}_j = p_j(\mathbf{A})\mathbf{b}$$

Why?

• The inverse \mathbf{A}^{-1} of any nonsingular matrix \mathbf{A} can be written as

$$\mathbf{A}^{-1} = q(\mathbf{A})$$

where q(x) is a polynomial of degree less than n.

• We want $p_j(x)$ to be a low-degree "approximation" to q(x)...

 \rightarrow only need to approximate action $p_j(\mathbf{A})\mathbf{b} \approx q(\mathbf{A})\mathbf{b}$

GMRES

A General Linear System

$$\mathbf{A}(\mathbf{x}_0 + \mathbf{t}) = \mathbf{b}$$
 with $\mathbf{A} \in \mathbb{C}^{n \times n}$, $\mathbf{b} \in \mathbb{C}^n$

- For \mathbf{x}_0 , let $\mathbf{r}_0 = \mathbf{b} \mathbf{A}\mathbf{x}_0 \implies \mathbf{A}\mathbf{t} = \mathbf{r}_0$
- Krylov subspace: $\mathcal{K}_j := \mathcal{K}_j(\mathbf{A}, \mathbf{r}_0).$
- Choose $\mathbf{x}_j = \mathbf{x}_0 + \mathbf{t}_j, \mathbf{t}_j \in \mathcal{K}_j$. Let $\mathbf{r}_j = \mathbf{b} \mathbf{A}\mathbf{x}_j$.
- GMRES Generalized Minimum Residual Method
- For GMRES, construct $\mathbf{x}_j = \mathbf{x}_0 + \mathbf{t}_j$ such that \mathbf{t}_j minimizes

$$\min_{\mathbf{t}\in\mathcal{K}_j}\|\mathbf{b}-\mathbf{A}(\mathbf{x}_0+\mathbf{t})\|$$

- This is equivalent to $\mathbf{r}_j \perp \mathbf{A} \mathcal{K}_j$
- Sibling method: Full Orthogonalization Method (FOM) – r_j ⊥ K_j

Role of eigenvalues in residual convergence

GMRES polynomial minimization problem

$$\begin{split} \mathbf{r}_{j} \| &= \min_{\substack{q \in \Pi_{j} \\ q(0)=1}} \| q(\mathbf{A}) \mathbf{r}_{0} \| \\ &\leq \mathcal{K}_{2}(\mathbf{X}) \min_{\substack{q \in \Pi_{j} \\ q(0)=1}} \max_{\lambda \in \sigma(\mathbf{A})} |q(\lambda)| \, \| \mathbf{r}_{0} \| \end{split}$$

Soodhalter

Trinity College - Dublin

Block GMRES Convergence

Theorem (Greenbaum, Ptàk, and Strakoš 1996)

Given any non-increasing sequence

$$f(0) \ge f(1) \ge \dots \ge f(n-1) > 0,$$

there exists matrices $\mathbf{A} \in \mathbb{C}^{n \times n}$ and vectors \mathbf{r}_0 , $\|\mathbf{r}_0\| = f(0)$ such that GMRES applied to $\mathbf{At} = \mathbf{r}_0$ produces residuals \mathbf{r}_k , $\|\mathbf{r}_k\| = f(k)$ for all k.

An \mathbf{A} can be constructed to have any eigenvalues.

Selected previous work analyzing GMRES/FOM

The relationship between GMRES and FOM

- Relationship of FOM/GMRES convergence: [Walker '95], [Zhou and Walker '94], [Brown '91], [Saad '03]
- Galerkin/norm minimizing pairs of methods (e.g., BiCG/QMR): [Cullum '95], [Cullum and Greenbaum '96]
- Geometric analysis: [Eiermann and Ernst '01]

Constructing matrices with predetermined GMRES convergence

- Any nonincreasing convergence curve is possible for GMRES: [Greenbaum et al, 1996]
- Parameterization of the pairs (**A**, **b**) producing specific convergence: [Arioli et al, 1998]
- Any Admissible Ritz/harmonic Ritz values: [Du et al, 2017], [Tebbens and Meurant, 2012]

What happens if one has multiple right-hand sides?

Soodhalter

Trinity College - Dublin

Block GMRES Convergence

Block Krylov subspaces

- Consider: $\mathbf{A}\mathbf{X} = \mathbf{B} = \begin{bmatrix} \mathbf{b}^{(1)} & \mathbf{b}^{(2)} & \cdots & \mathbf{b}^{(s)} \end{bmatrix} \in \mathbb{C}^{n \times s}, s > 1$
- Let $\mathbf{X}_0 \in \mathbb{C}^{n \times s}$ and

$$\mathbf{F}_0 = \mathbf{B} - \mathbf{A}\mathbf{X}_0 = \begin{bmatrix} \mathbf{f}_0^{(1)} & \mathbf{f}_0^{(2)} & \mathbf{f}_0^{(3)} & \cdots & \mathbf{f}_0^{(s)} \end{bmatrix} \in \mathbb{C}^{n \times s}.$$

• Then we have the **block Krylov subspace**

$$\mathbb{K}_j(\mathbf{A}, \mathbf{F}_0) = \mathcal{K}_j(\mathbf{A}, \mathbf{f}_0^{(1)}) + \mathcal{K}_j(\mathbf{A}, \mathbf{f}_0^{(2)}) + \dots + \mathcal{K}_j(\mathbf{A}, \mathbf{f}_0^{(s)}).$$

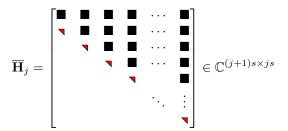
• Assumption: dim $\mathbb{K}_j(\mathbf{A}, \mathbf{F}_0) = js$

Block Arnoldi process

- Let $\mathbf{F}_0 = \mathbf{V}_1 \mathbf{S}_0$ be a skinny QR-factorization.
- At step j, compute $\mathbf{V}_{j+1} \in \mathbb{C}^{n \times s}$

•
$$\mathbf{V}_{j+1}^* \mathbf{V}_{j+1} = \mathbf{I}_s, \, \mathbf{V}_{j+1}^* \mathbf{V}_i = \mathbf{0}_{s \times s}$$

- $\mathbf{W}_j = \begin{bmatrix} \mathbf{V}_1, & \dots, & \mathbf{V}_j \end{bmatrix} \in \mathbb{C}^{n \times js}$ is basis of $\mathbb{K}_j(\mathbf{A}, \mathbf{F}_0)$
- Arnoldi relation: $\mathbf{AW}_j = \mathbf{W}_{j+1} \overline{\mathbf{H}}_j$
- $\overline{\mathbf{H}}_j = (\mathbf{H}_{ik})_{ik} \in \mathbb{C}^{(j+1)s \times js}$ is block upper Hessenberg
- For \blacksquare , $\P \in \mathbb{C}^{s \times s}$ and \P upper triangular



From scalars to $s \times s$ matrices

• Orthogonalization:

$$\mathbf{v} \leftarrow \mathbf{v} - \underbrace{(\mathbf{q}^* \mathbf{v})}_{\in \mathbb{C}} \mathbf{q} \qquad \text{becomes} \qquad \mathbf{V} \leftarrow \mathbf{V} - \mathbf{Q} \underbrace{(\mathbf{Q}^* \mathbf{V})}_{\in \mathbb{C}^{s \times s}}$$

• Linear combinations:

Block GMRES and Block FOM

Block GMRES and Block FOM valid for all $s \geq 1$

• Build an orthonormal basis for $\mathbb{K}_m(\mathbf{A}, \mathbf{F}_0)$

- For block GMRES Compute $\mathbf{Y}_m^{(G)} = \underset{Y \in \mathbb{C}^{ms \times s}}{\operatorname{argmin}} \left\| \overline{\mathbf{H}}_m \mathbf{Y} - \mathbf{E}_1^{(m+1)} \mathbf{S}_0 \right\|_F^a$ Set $\mathbf{X}_m^{(G)} = \mathbf{X}_0 + \mathbf{W}_m \mathbf{Y}_m^{(G)}, \ \mathbf{R}_m^{(G)} = \mathbf{B} - \mathbf{A} \mathbf{X}_m^{(G)}$
- For block FOM

Compute
$$\mathbf{Y}_m^{(F)} = \mathbf{H}_m^{-1} \mathbf{E}_1^{[m]} \mathbf{S}_0^{\ b}$$

Set $\mathbf{X}_m^{(F)} = \mathbf{X}_0 + \mathbf{W}_m \mathbf{Y}_m^{(F)}, \ \mathbf{R}_m^{(F)} = \mathbf{B} - \mathbf{A} \mathbf{X}_m^{(F)}$

 ${}^{a}\mathbf{E}_{1}^{(m+1)} \in \mathbb{C}^{(m+1)s \times s}$ has appropriate columns of an identity matrix ${}^{b}\mathbf{E}_{1}^{[m]} \in \mathbb{C}^{ms \times s}$ has appropriate columns of an identity matrix

Pros and cons of block Krylov methods

Pros

- Constraining residuals over larger subspaces
 - $\rightarrow\,$ Leads to convergence in fewer iterations
- Block matrix-vector product has more efficient data movement characteristics

Cons

- More operations per iteration
- Increased operation cost thought to not justify by increase in convergence rate
- Interactions between systems makes analysis more difficult

Renewed interest in block methods in HPC setting necessitates new analysis to extend existing non-block results to block Krylov subspace case

Selected previous work on analysis of block GMRES

- Convergence analysis: [Simoncini and Gallopoulos; 1997]
- Block Grade: [Gutknecht and Schmelzer; 2009]
- Relationship to block FOM and characterization of stagnation [S.; 2017]
- *-algebra framework [Frommer, Lund, Szyld; 2017]

We follow [Frommer et al 2017] and consider the problem over *-algebra S of complex $s \times s$ matrices. We define a framework of corresponding objects and operations over \mathbb{C} and over S.

- $\mathbf{A} \in \mathbb{C}^{ns \times ns} \to \mathbf{A} \in \mathbb{S}^{n \times n}$
- $\mathbf{B} \in \mathbb{C}^{ns} \to \mathbf{B} \in \mathbb{S}^n$
- $\mathbb{K}_j(\mathbf{A}, \mathbf{B}) = \operatorname{blockspan}\{\mathbf{B}, \mathbf{AB}, \dots, \mathbf{A}^{j-1}\mathbf{B}\}$
- $\sum_{i=1}^{j} \mathbf{V}_i \mathbf{D}_i$, $\mathbf{D}_i \in \mathbb{C}^{s \times s}$ is a block linear combination
- $\{\mathbf{V}_1, \dots, \mathbf{V}_j\}$ is the basis of this subspace

System and right-hand side can be extended, without loss of generality, such that dimension is a multiple of s.

The *-algebra framework - definitions

standard	block
C	$\mathbb{S} = \mathbb{C}^{s \times s}$
\mathbb{R}^+	\mathbb{S}^+ upper- Δ with positive diag. entries
\mathbb{R}^+_0	\mathbb{S}_0^+ upper- Δ with nonnegative diag. entries
0	singular $s \times s$ matrix (zero divisors!)
1	Ι

The *-algebra framework - properties I

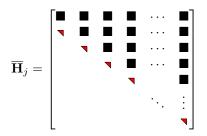
standard	block
$a, b \in \mathbb{C}$	$\mathbf{A},\mathbf{B}\in\mathbb{S}$
$ a = \sqrt{a^*a} \in \mathbb{R}_0^+$	$ \mathbf{A} = \sqrt{\mathbf{A}^* \mathbf{A}} \equiv \mathrm{cholUT}(\mathbf{A}^* \mathbf{A}) \in \mathbb{S}_0^+$
$ a \in \mathbb{R}^+ \Longleftrightarrow a \neq 0$	$ \mathbf{A} \in \mathbb{S}^+ \iff \mathbf{A}$ nonsingular

The *-algebra framework - properties II

standard	block
$\mathbf{x},\mathbf{y}\in\mathbb{C}^n$	$\mathbf{X},\mathbf{Y}\in\mathbb{S}^n(=\mathbb{C}^{ns imes s})$
$\langle {f x}, {f y} angle \equiv {f y}^* {f x} \in {\Bbb C}$	$\langle\langle \mathbf{X},\mathbf{Y} angle angle\equiv\mathbf{Y}^{*}\mathbf{X}\in\mathbb{S}$
$\langle {f x}, {f y} angle = \left\langle {f y}, {f x} ight angle^*$	$\langle\langle {f X},{f Y} angle angle=\langle\langle {f Y},{f X} angle angle^*$
$\langle \mathbf{x}a, \mathbf{y} angle = \langle \mathbf{x}, \mathbf{y} angle a$	$\langle\langle \mathbf{X}\mathbf{A},\mathbf{Y} angle angle=\langle\langle \mathbf{X},\mathbf{Y} angle angle\mathbf{A}$
$\langle {f x}, {f y} a angle = a^* \langle {f x}, {f y} angle$	$\langle\langle \mathbf{X},\mathbf{Y}\mathbf{A} angle angle=\mathbf{A}^*\langle\langle \mathbf{X},\mathbf{Y} angle angle$
$\ \mathbf{x}\ \equiv\sqrt{\langle\mathbf{x},\mathbf{x} angle}\in\mathbb{R}_{0}^{+}$	$ \mathbf{X} \equiv \sqrt{\langle\langle \mathbf{X},\mathbf{X} angle angle}\in\mathbb{S}_{0}^{+}$
$\langle \mathbf{x}, \mathbf{y} \rangle = \ \mathbf{x}\ \ \mathbf{y}\ \cos \theta_{\mathbf{x}, \mathbf{y}}$	$\langle \langle \mathbf{X}, \mathbf{Y} \rangle \rangle = \mathbf{Y} ^* \mathbf{U} \operatorname{diag}(c_i) \mathbf{V}^* \mathbf{X} $

Block Arnoldi revisited

- Let $\mathbf{F}_0 = \mathbf{V}_1 \mathbf{S}_0$; $\mathbf{V}_1 \in \mathbb{S}^n$ and $\mathbf{S}_0 = |||\mathbf{F}_0||| \in \mathbb{S}^+$
- The **block Arnoldi process** is generally performed in terms of $\langle\langle\cdot,\cdot\rangle\rangle$
- $\mathbf{W}_j = \begin{bmatrix} \mathbf{V}_1, & \dots, & \mathbf{V}_j \end{bmatrix} \in \mathbb{S}^{n \times j}$ has orthonormal columns
- Arnoldi relation: $\mathbf{AW}_j = \mathbf{W}_{j+1}\overline{\mathbf{H}}_j$
- $\overline{\mathbf{H}}_j = (\mathbf{H}_{ik})_{ik} \in \mathbb{S}^{(j+1) \times j}$ is upper Hessenberg
- For $\blacksquare \in \mathbb{S}$ and $\neg \in \mathbb{S}^+$



Peak-plateau relationship between blFOM and blGMRES

Proposition (Kubínová and S. 2020)

The blGMRES and blFOM residuals satisfy:

$$\langle \langle \mathbf{R}_k^F, \mathbf{R}_k^F \rangle \rangle^{-1} = \langle \langle \mathbf{R}_k^G, \mathbf{R}_k^G \rangle \rangle^{-1} - \langle \langle \mathbf{R}_{k-1}^G, \mathbf{R}_{k-1}^G \rangle \rangle^{-1}$$

Applying this relation recursively, we obtain

$$\langle \langle \mathbf{R}_k^G, \mathbf{R}_k^G \rangle \rangle^{-1} = \sum_{i=0}^k \langle \langle \mathbf{R}_i^F, \mathbf{R}_i^F \rangle \rangle^{-1}.$$

Soodhalter

Generalize the ordering of nonnegative real numbers \mathbb{R}_0^+ to upper triangular matrices with nonnegative diagonal entries \mathbb{S}_0^+ as follows:

$$\begin{split} |\mathbf{A}| \prec |\mathbf{B}| &\iff \mathbf{A}^* \mathbf{A} \stackrel{\text{Löwner}}{\prec} \mathbf{B}^* \mathbf{B}, \\ |\mathbf{A}| \preceq |\mathbf{B}| &\iff \mathbf{A}^* \mathbf{A} \stackrel{\text{Löwner}}{\preceq} \mathbf{B}^* \mathbf{B}. \end{split}$$

Peak-plateau result has some nontrivial consequences for the convergence behavior of blGMRES. In particular, the ordering of the residual norms Theorem (Kubínová and S. 2020)

 $The \ blGMRES \ residuals \ satisfy$

$$|||\mathbf{R}_0||| \succeq |||\mathbf{R}_1^G||| \succeq \cdots \succeq |||\mathbf{R}_{n-1}^G||| \succeq 0.$$

Definition (Admissible convergence sequence)

Any sequence $\{\mathbf{F}_k\}_{k=0}^{n-1} \subset \mathbb{S}^+$ that satisfies

$$\mathbf{F}_0 \succeq \mathbf{F}_1 \succeq \cdots \succeq \mathbf{F}_{n-1} \succ \mathbf{0}$$

is called an admissible convergence sequence.

Note: One can construct non-trivial examples of inadmissible sequences where the individual column norms decrease monotonically

Prescribing convergence of blGMRES

Theorem (Kubínová and S. 2020)

Let $\{\mathbf{F}_k\}_{k=0}^{n-1} \subset \mathbb{S}^+$ be an admissible convergence sequence. The following are equivalent:

- Residuals of blGMRES(\mathbf{A}, \mathbf{B}) satisfy $|||\mathbf{R}_k^G||| = \mathbf{F}_k \forall k$
- The \mathbf{A} and \mathbf{B} satisfy

$$\mathbf{A} = \mathbf{W} \hat{\mathbf{R}} \hat{\mathbf{H}} \mathbf{W}^* \quad and \quad \mathbf{B} = \mathbf{W} \mathbf{G},$$

where **W** is unitary, $\hat{\mathbf{R}} \in \mathbb{S}^{n \times n}$ nonsing., upper block Δ ,

$$\hat{\mathbf{H}} = \begin{pmatrix} 0 & \langle \langle \mathbf{B}, \mathbf{W}_n \rangle \rangle^{-1} \\ I & \ddots & -\langle \langle \mathbf{B}, \mathbf{W}_1 \rangle \rangle \langle \langle \langle \mathbf{B}, \mathbf{W}_n \rangle \rangle^{-1} \\ & \ddots & 0 & \vdots \\ & I & -\langle \langle \mathbf{B}, \mathbf{W}_{n-1} \rangle \rangle \langle \langle \mathbf{B}, \mathbf{W}_n \rangle \rangle^{-1} \end{pmatrix}$$

and the blocks of **G** are $\sqrt{\langle\langle \mathbf{F}_{k-1}, \mathbf{F}_{k-1} \rangle\rangle - \langle\langle \mathbf{F}_k, \mathbf{F}_k \rangle\rangle}$

Choosing $\hat{\mathbf{R}}$ as

$\hat{\mathbf{R}} \equiv \hat{\mathbf{H}}^{-1} \mathbf{C}.$

we can make \mathbf{A} similar to any block companion matrix \mathbf{C} .

Lemma (Kubínová and S. 2020)

Assume that \mathbf{A} is of the form $\mathbf{A} = \mathbf{W}\hat{\mathbf{R}}\hat{\mathbf{H}}\mathbf{W}^*$. Then, for any sequence $\mathbf{C}_0, \ldots, \mathbf{C}_n, \mathbf{C}_k \in \mathbb{S}, k = 0, \ldots, n-1, \mathbf{C}_0$ nonsingular, there exists $\hat{\mathbf{R}}$, such that \mathbf{A} is similar to

$$\mathbf{C} = egin{pmatrix} \mathbf{0} & \mathbf{C}_0 \ \mathbf{I} & \ddots & \mathbf{C}_1 \ & \ddots & \mathbf{0} & \vdots \ & \mathbf{I} & \mathbf{C}_{n-1} \end{pmatrix}$$

.

Specifying solvents (i.e., "block eigenvalues")

 $\bullet~{\bf C}$ is the block companion matrix to

$$\mathbf{M}(\lambda) = \mathbf{I}\lambda^n - \sum_{j=0}^{n-1} \mathbf{C}_k \lambda^k = \prod_{i=1}^n \left(\mathbf{I}\lambda - \mathbf{S}_k\right)$$

- "Block eigenvalues" $\mathbf{S}_k \in \mathbb{S}$ are called *solvents*.
- Eigenvalues of the solvents $\mathbf{S}_k \in \mathbb{S}$, $k = 1, \dots, n$, are also the eigenvalues of \mathbf{C}
- Prescribing solvents is however stronger than prescribing just the scalar eigenvalues,
 - $\rightarrow\,$ since there are multiple block companion matrices similar to each other

Interpretation: more right-hand sides can reduce predictive value of the eigenvalues

Specifying Ritz solvents

We can specify Ritz solvents $\mathbf{C}_{k}^{(j)}$ (solvents of \mathbf{H}_{j} , j = 1, 2, ...).

Let
$$\mathbf{U} = \begin{bmatrix} I & -\mathbf{C}_0^{(1)} & -\mathbf{C}_0^{(2)} & \cdots & -\mathbf{C}_0^{(n-1)} \\ & I & -\mathbf{C}_1^{(2)} & \cdots & \vdots \\ & & \ddots & \ddots & \vdots \\ & & & I & -\mathbf{C}_{n-2}^{(n-1)} \\ & & & & I \end{bmatrix}^{-1}$$

and

$$\mathbf{D}_{\Sigma} = \operatorname{diag}\left(I, \Sigma_1, \Sigma_1 \Sigma_2, \dots, \prod_{k=1}^{n-1} \Sigma_k\right) \in \left(\mathbb{S}^+\right)^{n \times n}$$

Then $\mathbf{A} = \mathbf{W} \mathbf{D}_{\Sigma} \mathbf{U} \mathbf{C} \mathbf{U}^{-1} \mathbf{D}_{\Sigma}^{-1} \mathbf{W}^*$ has the specified solvents, produces the specified Ritz solvents during block Arnoldi, and $\mathbf{W} \mathbf{E}_1 = \mathbf{V}_1$ should be our chosen starting vector (normalized)

We provided:

- an explicit peak-plateau relation for blFOM and blGMRES;
- an explicit characterization of admissible convergence behavior of blGMRES;

and showed that:

- any admissible convergence behavior is also attainable by blGMRES;
- arbitrary spectral properties of **A** can be enforced, while preserving the convergence behavior.

Conclusion: the *-algebra approach is a correct way to analyse block Krylov subspace method behavior.

- handling of linear dependence
 - $\rightarrow \mathbf{V}_{j+1}$ is rank-deficient $\iff |||\mathbf{V}_{j+1}|||$ is singular
 - $\rightarrow\,$ Zero-divisors complicate the analysis
- analysis of restarted block GMRES
- iterative methods for systems over *-algebras.
- analyze other block-level structural characteristics of matrices and matrix algorithms
 - $\rightarrow\,$ Understanding of "geometric" relationships of elements of the *-algebra as well as of vectors and systems built from them

Results in this talk are available in two papers

- Kubínová and S. Prescribing convergence behavior of block Arnoldi and GMRES, SIMAX, 2020
- S. Stagnation of block GMRES and its relationship to block FOM, ETNA, 2017

For more information: http://math.soodhalter.com

Thank you! Questions?

Soodhalter