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Projection methods in computational mathematics

A common recipe
Generate a finite dimensional subspace onto which we
project a large/infinite dimension problem arising from a
mathematical model.
• Generate a “good” subspace
• Project problem onto subspace
• Solve smaller problem
• Project solution back to original space
• Often multiple levels of projection

→ Finite differences/elements/volumes
→ Integral equation discretization
→ Many iterative methods (e.g., Krylov methods, steepest

descent, Gauss-Seidel)
→ Fourier- and wavelet-based approaches
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Example: operator on a Hilbert space

Operator equation
Let T ∈ L (X ) where X is a separable Hilbert space. We
approximate the solution of

Tx = y

Discretization process (simplified setting)
We choose approximation xh ∈ Xh ⊂ X with dimXh = n <∞
• Xh = span {φ1, .φ2, . . . , φn} =⇒ xh =

∑n
i=1 xiφi

• Need n constraints determine xh
=⇒ weak formulation: find xh ∈ Xh such that

〈φi, Txh〉X = 〈φi, y〉X for all i
• System of n equations (for each i) and n unknowns {xi}i
• Let A =

(
〈φi, Tφj〉X

)
ij
, x = (xi)i, and b = (〈φi, y〉X )i
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Direct Methods for Solving Linear Systems

Decompose the matrix into a product of matrices.
Gaussian Elimination/LU-Decomposition
• Compute decomposition A = LU where L is lower-

triangular and U is upper-triangular
• Solve LUx = b −→ Ux = L−1b −→ x = U−1L−1b

• Triangular systems can be solved stably and efficiently.

When Direct Methods Are Not Appropriate
• As n gets larger, these methods do not scale well

(increased communication/memory constraints)
• We may only possess a procedure which computes the

product v→ Av
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The Discretized Problem

Approximate the solution to a large, (often) sparse linear
system,

Ax = b where A ∈ Rn×n and n� 0

• Sparse means most of the matrix entries are zero.
• Amenable to fast application (e.g., FFT-based – “sparse” in

some basis)
• Heirarchical matrices
• Matrices where we only have a procedure v→ Av
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Iterative Methods

• Generate a sequence of approximations {xj} such that
xj −→ x

• Convergence should be rapid
• Convergence may be in the limit or not

General Framework
1. Generate two nested sequences of subspaces

K1 ⊂ K2 ⊂ · · · ⊂ Kn and L1 ⊂ L2 ⊂ · · · ⊂ Ln

2. dimKj = dimLj = j

3. At step j, select xj ∈ Kj such that rj ⊥ Lj where rj =
b−Axj

4. Continue until ‖rj‖ < ε where ε > 0 is some desired thresh-
old.
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Some linear algebra tools

Calculating an approximation to x ⇔ calculating coefficients in
a basis

We select xj ∈ Kj such that rj ⊥ Lj where rj = b−Axj

• Let x0 = 0 (wLog for simplicity here)
• Kj ,Lj ∈ Rn×j have columns spanning Kj and Lj , resp.
• We must calculate yj ∈ Rj and set xj = Kjyj

• ⇔ LTj (b−AKjyj) = 0 ⇔ LTj AKjyj = LTj b

• The choice of subspaces Kj ,Lj and their bases Kj ,Lj
dictate effectiveness and implementability of the method
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Krylov Subspaces

Given A and b, the jth Krylov subspace is defined

Kj(A,b) = span
{
b,Ab, . . . ,Aj−1b

}
.

Thus, u ∈ Kj(A,b) is such that

u = p(A)b

where p(x) is a polynomial of degree less than j.

Definition

The basis
{
b,Ab, . . . ,Aj−1b

}
is called a Krylov basis.
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Selecting Approximations from Kj(A,b)

• In many Krylov subspace methods, we select
xj ∈ Kj(A,b), so that

xj = pj(A)b

Why?
• The inverse A−1 of any nonsingular matrix A can be

written as
A−1 = q(A)

where q(x) is a polynomial of degree less than n.
• We want pj(x) to be a low-degree “approximation” to
q(x). . .
→ only need to approximate action pj(A)b ≈ q(A)b
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GMRES

A General Linear System

A (x0 + t) = b with A ∈ Cn×n, b ∈ Cn

• For x0, let r0 = b−Ax0 =⇒ At = r0

• Krylov subspace: Kj := Kj(A, r0).
• Choose xj = x0 + tj , tj ∈ Kj . Let rj = b−Axj .
• GMRES - Generalized Minimum Residual Method
• For GMRES, construct xj = x0 + tj such that tj minimizes

min
t∈Kj

‖b−A(x0 + t)‖

• This is equivalent to rj ⊥ AKj
• Sibling method: Full Orthogonalization Method
(FOM) – rj ⊥ Kj
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Role of eigenvalues in residual convergence

GMRES polynomial minimization problem

‖rj‖ = min
q∈Πj
q(0)=1

‖q(A)r0‖

≤ K2(X) min
q∈Πj
q(0)=1

max
λ∈σ(A)

|q(λ)| ‖r0‖
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Properties of the A determining residual convergence

Theorem (Greenbaum, Ptàk, and Strakoš 1996)
Given any non-increasing sequence

f(0) ≥ f(1) ≥ · · · ≥ f(n− 1) > 0,

there exists matrices A ∈ Cn×n and vectors r0, ‖r0‖ = f(0) such
that GMRES applied to At = r0 produces residuals rk,
‖rk‖ = f(k) for all k.

An A can be constructed to have any eigenvalues.
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Selected previous work analyzing GMRES/FOM

The relationship between GMRES and FOM
• Relationship of FOM/GMRES convergence: [Walker ’95],

[Zhou and Walker ’94], [Brown ’91], [Saad ’03]
• Galerkin/norm minimizing pairs of methods (e.g.,

BiCG/QMR): [Cullum ’95], [Cullum and Greenbaum ’96]
• Geometric analysis: [Eiermann and Ernst ’01]

Constructing matrices with predetermined GMRES
convergence
• Any nonincreasing convergence curve is possible for

GMRES: [Greenbaum et al, 1996]
• Parameterization of the pairs (A,b) producing specific

convergence: [Arioli et al, 1998]
• Any Admissible Ritz/harmonic Ritz values: [Du et al,

2017], [Tebbens and Meurant, 2012]
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What happens if one has
multiple right-hand sides?

Soodhalter Trinity College - Dublin Block GMRES Convergence



Block Krylov subspaces

• Consider: AX = B =
[
b(1) b(2) · · · b(s)

]
∈ Cn×s, s > 1

• Let X0 ∈ Cn×s and

F0 = B−AX0 =
[
f

(1)
0 f

(2)
0 f

(3)
0 · · · f

(s)
0

]
∈ Cn×s.

• Then we have the block Krylov subspace

Kj(A,F0) = Kj(A, f (1)
0 ) +Kj(A, f (2)

0 ) + · · ·+Kj(A, f (s)
0 ).

• Assumption: dimKj(A,F0) = js
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Block Arnoldi process

• Let F0 = V1S0 be a skinny QR-factorization.
• At step j, compute Vj+1 ∈ Cn×s

• V∗j+1Vj+1 = Is, V∗j+1Vi = 0s×s

• Wj =
[
V1, . . . , Vj

]
∈ Cn×js is basis of Kj(A,F0)

• Arnoldi relation: AWj = Wj+1Hj

• Hj = (Hik)ik ∈ C(j+1)s×js is block upper Hessenberg
• For �, ∈ Cs×s and upper triangular

Hj =



� � � � · · · �
� � � · · · �

� � · · · �
� · · · �

�
. . .

...


∈ C(j+1)s×js
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From scalars to s× s matrices

• Orthogonalization:

v← v − (q∗v)︸ ︷︷ ︸
∈C

q becomes V← V −Q (Q∗V)︸ ︷︷ ︸
∈Cs×s

• Linear combinations:

u =

k∑
i=1

αi︸︷︷︸
C

vi︸︷︷︸
Cn

becomes U =
k∑
i=1

Vi︸︷︷︸
Cn×s

αi︸︷︷︸
Cs×s
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Block GMRES and Block FOM

Block GMRES and Block FOM valid for all s ≥ 1

• Build an orthonormal basis for Km(A,F0)

• For block GMRES
Compute Y

(G)
m = argmin

Y ∈Cms×s

∥∥∥HmY −E
(m+1)
1 S0

∥∥∥
F

a

Set X(G)
m = X0 + WmY

(G)
m , R(G)

m = B−AX
(G)
m

• For block FOM
Compute Y

(F )
m = H−1

m E
[m]
1 S0

b

Set X(F )
m = X0 + WmY

(F )
m , R(F )

m = B−AX
(F )
m

aE
(m+1)
1 ∈ C(m+1)s×s has appropriate columns of an identity matrix

bE
[m]
1 ∈ Cms×s has appropriate columns of an identity matrix
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Pros and cons of block Krylov methods

Pros
• Constraining residuals over larger subspaces
→ Leads to convergence in fewer iterations

• Block matrix-vector product has more efficient data
movement characteristics

Cons
• More operations per iteration
• Increased operation cost thought to not justify by increase

in convergence rate
• Interactions between systems makes analysis more difficult

Renewed interest in block methods in HPC setting necessitates
new analysis to extend existing non-block results to block
Krylov subspace case
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Selected previous work on analysis of block GMRES

• Convergence analysis: [Simoncini and Gallopoulos; 1997]
• Block Grade: [Gutknecht and Schmelzer; 2009]
• Relationship to block FOM and characterization of

stagnation [S.; 2017]
• *-algebra framework [Frommer, Lund, Szyld; 2017]
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The ∗-algebra framework

We follow [Frommer et al 2017] and consider the problem over
∗-algebra S of complex s× s matrices. We define a framework of
corresponding objects and operations over C and over S.
• A ∈ Cns×ns → A ∈ Sn×n

• B ∈ Cns → B ∈ Sn

• Kj(A,B) = blockspan{B,AB, . . . ,Aj−1B}
•
∑j

i=1 ViDi, Di ∈ Cs×s is a block linear combination
• {V1, . . . ,Vj} is the basis of this subspace

System and right-hand side can be extended, without loss of
generality, such that dimension is a multiple of s.
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The ∗-algebra framework - definitions

standard block

C S = Cs×s

R+ S+. . . upper-∆ with positive diag. entries

R+
0 S+

0 . . . upper-∆ with nonnegative diag. entries

0 singular s× s matrix (zero divisors!)

1 I
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The ∗-algebra framework - properties I

standard block

a, b ∈ C A,B ∈ S
|a| =

√
a∗a ∈ R+

0 |A| =
√
A∗A ≡ cholUT(A∗A) ∈ S+

0

|a| ∈ R+ ⇐⇒ a 6= 0 |A| ∈ S+ ⇐⇒ A nonsingular
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The ∗-algebra framework - properties II

standard block

x,y ∈ Cn X,Y ∈ Sn(= Cns×s)
〈x,y〉 ≡ y∗x ∈ C 〈〈X,Y〉〉 ≡ Y∗X ∈ S
〈x,y〉 = 〈y,x〉∗ 〈〈X,Y〉〉 = 〈〈Y,X〉〉∗

〈xa,y〉 = 〈x,y〉a 〈〈XA,Y〉〉 = 〈〈X,Y〉〉A
〈x,ya〉 = a∗〈x,y〉 〈〈X,YA〉〉 = A∗〈〈X,Y〉〉
‖x‖ ≡

√
〈x,x〉 ∈ R+

0 |||X||| ≡
√
〈〈X,X〉〉 ∈ S+

0

〈x,y〉 = ‖x‖ ‖y‖ cos θx,y 〈〈X,Y〉〉 = |||Y|||∗U diag(ci)V
∗|||X|||
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Block Arnoldi revisited

• Let F0 = V1S0; V1 ∈ Sn and S0 = |||F0||| ∈ S+

• The block Arnoldi process is generally performed in
terms of 〈〈·, ·〉〉
• Wj =

[
V1, . . . , Vj

]
∈ Sn×j has orthonormal columns

• Arnoldi relation: AWj = Wj+1Hj

• Hj = (Hik)ik ∈ S(j+1)×j is upper Hessenberg
• For � ∈ S and ∈ S+

Hj =



� � � � · · · �
� � � · · · �

� � · · · �
� · · · �

�
. . .

...
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Peak-plateau relationship between blFOM and blGMRES

Proposition (Kubínová and S. 2020)

The blGMRES and blFOM residuals satisfy:

〈〈RF
k ,R

F
k 〉〉−1 = 〈〈RG

k ,R
G
k 〉〉−1 − 〈〈RG

k−1,R
G
k−1〉〉−1.

Applying this relation recursively, we obtain

〈〈RG
k ,R

G
k 〉〉−1 =

k∑
i=0

〈〈RF
i ,R

F
i 〉〉−1.
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Generalization of the ordering of R+
0

Generalize the ordering of nonnegative real numbers R+
0 to

upper triangular matrices with nonnegative diagonal entries S+
0

as follows:

|A| ≺ |B| ⇐⇒ A∗A
Löwner
≺ B∗B,

|A| � |B| ⇐⇒ A∗A
Löwner
� B∗B.

Peak-plateau result has some nontrivial consequences for the
convergence behavior of blGMRES. In particular, the ordering
of the residual norms
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blGMRES residual norm ordering

Theorem (Kubínová and S. 2020)
The blGMRES residuals satisfy

|||R0||| � |||RG
1 ||| � · · · � |||RG

n−1||| � 0.

Definition (Admissible convergence sequence)

Any sequence {Fk}n−1
k=0 ⊂ S+ that satisfies

F0 � F1 � · · · � Fn−1 � 0

is called an admissible convergence sequence.

Note: One can construct non-trivial examples of inadmissible
sequences where the individual column norms decrease
monotonically
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Prescribing convergence of blGMRES

Theorem (Kubínová and S. 2020)

Let {Fk}n−1
k=0 ⊂ S+ be an admissible convergence sequence. The

following are equivalent:
• Residuals of blGMRES(A,B) satisfy |||RG

k ||| = Fk ∀ k
• The A and B satisfy

A = WR̂ĤW∗ and B = WG,

where W is unitary, R̂ ∈ Sn×n nonsing., upper block ∆,

Ĥ =


0 〈〈B,Wn〉〉−1

I
. . . −〈〈B,W1〉〉〈〈B,Wn〉〉−1

. . . 0
...

I −〈〈B,Wn−1〉〉〈〈B,Wn〉〉−1

 ,

and the blocks of G are
√
〈〈Fk−1,Fk−1〉〉 − 〈〈Fk,Fk〉〉
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All solvents are possible

Choosing R̂ as
R̂ ≡ Ĥ−1C.

we can make A similar to any block companion matrix C.

Lemma (Kubínová and S. 2020)

Assume that A is of the form A = WR̂ĤW∗. Then, for any
sequence C0, . . . ,Cn, Ck ∈ S, k = 0, . . . , n− 1, C0 nonsingular,
there exists R̂, such that A is similar to

C =


0 C0

I
. . . C1

. . . 0
...

I Cn−1

 .
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Specifying solvents (i.e., “block eigenvalues”)

• C is the block companion matrix to

M(λ) = Iλn −
n−1∑
j=0

Ckλ
k =

n∏
i=1

(Iλ− Sk)

• “Block eigenvalues” Sk ∈ S are called solvents.
• Eigenvalues of the solvents Sk ∈ S , k = 1, . . . , n, are also

the eigenvalues of C
• Prescribing solvents is however stronger than prescribing

just the scalar eigenvalues,
→ since there are multiple block companion matrices

similar to each other
Interpretation: more right-hand sides can reduce predictive
value of the eigenvalues
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Specifying Ritz solvents

We can specify Ritz solvents C(j)
k (solvents of Hj , j = 1, 2, . . .).

Let U =



I −C(1)
0 −C(2)

0 · · · −C(n−1)
0

I −C(2)
1 · · ·

...
. . .

. . .
...

I −C(n−1)
n−2

I



−1

and

DΣ = diag

(
I,Σ1,Σ1Σ2, . . . ,

n−1∏
k=1

Σk

)
∈
(
S+
)n×n

.

Then A = WDΣUCU−1D−1
Σ W∗ has the specified solvents,

produces the specified Ritz solvents during block Arnoldi, and
WE1 = V1 should be our chosen starting vector (normalized)
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Conclusions

We provided:
• an explicit peak-plateau relation for blFOM and blGMRES;
• an explicit characterization of admissible convergence

behavior of blGMRES;
and showed that:
• any admissible convergence behavior is also attainable by

blGMRES;
• arbitrary spectral properties of A can be enforced, while

preserving the convergence behavior.
Conclusion: the ∗-algebra approach is a correct way to
analyse block Krylov subspace method behavior.
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Future work

• handling of linear dependence
→ Vj+1 is rank-deficient ⇐⇒ |||Vj+1||| is singular
→ Zero-divisors complicate the analysis

• analysis of restarted block GMRES
• iterative methods for systems over ∗-algebras.
• analyze other block-level structural characteristics of

matrices and matrix algorithms
→ Understanding of “geometric” relationships of elements

of the ∗-algebra as well as of vectors and systems built
from them
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Thank you! Questions?
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