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Plan :

1 Motivation : SPDE & SDE

2 SDE & uniform step methods

3 Introduce Stochastic PDE and uniform step methods
4 Adaptive method & selection of time step

I Backstop (SPDE example with Multiplicative noise)
Numerical results

I A.S. finite N (SPDE example with Additive noise)
Numerical results

5 Deterministic application ?

I Deterministic adaptive time stepping : local error control.
I Setting here : adapt for stability.

Let’s look at some adaptive results
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1. Stochastic Swift-Hohenberg - additive noise

dX = βX − (1 + ∆)2X + cX 2 − X 3dt + BdW
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2. Stochastic Kuramoto-Sivashinsky - multiplicative

dX = (−Xxxxx − Xxx − XXx)dt + X
2 dW
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Motivating SDE Example:
Deterministic ODE with non-globally Lipschitz nonlinearity:

X ′(t) = −X 3, given X (0) = X0, t ≥ 0.

X (t) ≡ 0 is globally asymptotically stable.
Explicit Euler discretization:

Yn+1 = Yn −∆tY 3
n , n ∈ N.

Yn ≡ 0 locally asy, stable for Y0 ∈
(
−
√

2/∆t,
√

2/∆t
)

Unstable 2-cycle :
{
−
√

2/∆t,
√

2/∆t
}

If Y0 /∈
[
−
√

2/∆t,
√

2/∆t
]

then limn→∞ |Yn| =∞.
For each fixed ∆t > 0 dynamics is different

As ∆t → 0 the scheme converges.

Now include a stochastic perturbation · · ·
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Motivating Example: Stochastic
Consider the map

Yn+1 = Yn −∆tY 3
n + ∆βn+1︸ ︷︷ ︸

:=N(0,∆t)

, n ∈ N.

I For fixed ∆t the stochastic perturbation ∆βn+1 can push trajectories

out of basin of attraction
(
−
√

2/∆t,
√

2/∆t
)

I Problem with growth of Yn with n!

In this talk we think about changing ∆t to ∆tn+1.

Idea : Pick a ∆tn+1 depending Yn to stay in
(
−
√

2/∆tn,
√

2/∆tn
)

In fact β from Browmian motion: ∆βn+1 = (β(tn+1)− β(tn))
Stochastic map is the explicit Euler-Maruyama approximation of SDE

X (tn+1) = X (tn)−
∫ tn+1

tn

X (s)3ds +

∫ tn+1

tn

dβ(s)

dX (t) = −X (t)3 + dβ(t).
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Euler-Maruyama and growth : (e.g. f (X ) = −X 3, g = 1.)

SDE: dX = f (X )dt + g(X )dβ.

I Suppose f or g
1 are not globally Lipschitz
2 and satisfy polynomial growth condition

Then E
[
‖X‖P

]
<∞.

Euler-Maruyama method: Yn+1 = Yn + ∆tf (Yn) + g(Yn)∆βn+1.

For numerics would like :
Bounded moments : E [‖Yn‖p] <∞, p > 0
Strong convergence : E

[
|X (tn)− Yn|2

]
< C∆tq, q > 0.

However
Fixed step ∆t : [Mattingly, Stuart, Higham 2002]

I Second moment instability :

lim
n→∞

E
[
|Yn|2

]
=∞.

Non-convergence: [Hutzenthaler, Jentzen, Kloeden 2011].
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Some Explicit Methods for SDEs that work ...
I Tamed Methods : Eg [Hutzenthaler et al 2012], [Wang&Gan 2013],
[Hutzenthaler&Jentzen 2014], [Sabanis 2013, ...],...
Eg : Drift-tamed Euler-Maruyama

Yn+1 = Yn +
∆t

1 + ∆t‖f (Yn)‖
f (Yn) + g(Yn)∆βn+1

I Basic Idea : Introduce a perturbation
• Balanced Methods : Eg [Tretyakov, Zhang 2013],...
• Truncated Methods : Eg [Mao 2016, Liu& Mao 2017]
• Projected Methods : Eg [Beyn, Isaak, Kruse 2015]
1. Prove Moment bounds

sup
n∈N

sup
n∈{0,1,...,N}

E[‖Yn‖p] <∞.

2. Prove strong convergence(
E
[
‖X (t)− Ȳt‖p

])1/p ≤ Cp∆t1/2.

Alternatively try adapting the step size.
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Stochastic PDE :
We saw at start Stochastic Swift-Hohenberg :

dX = βX − (1 + ∆)2X + cX 2 − X 3dt + BdW

Write our SPDEs as ODE on Hilbert space H :

dX = −AX + F (X )dt + B(X )dW

We assume :

−A : D(−A)→ H the generator of analytic semigroup
S(t) = e−tA, t ≥ 0.

B(X ) globally Lipschitz

‖B(X )− B(Y )‖L2
0
≤ L‖X − Y ‖, X ,Y ∈ H∥∥∥(−A)r/2B(X )
∥∥∥
L2

0

≤ L(1 + ‖X‖r ).
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Stochastic PDE :dX = −AX + F (X )dt + B(X )dW

I Define the Wiener process with covariance Q by

W (x , t) =
∞∑
k=1

µ
1/2
k φk(x)βk(t).

I βk(t), be independent identically distributed Brownian motions.
I φk e.func. of Q, an orthonormal basis of L2.
(Often assume same e.func. as linear operator −A).
I µk > 0 are e.values of covariance operator Q for Wiener process.
Determine spatial correlation :
Below :- parameter r . (r = −0.5, Q = I , d = 1).

Note - most applications do not have globally Lipschitz reaction terms F
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SPDEs: dX = −AX + F (X )dt + B(X )dW
Mild solution

X (t) = S(t)X0 +

∫ t

0
S(t−s)F (X (s))ds +

∫ t

0
S(t−s)B(X (s))dW (s).

With S(t) := e−tA.

Discretize in space -
e.g by Finite Elements or spectral Galerkin: X (t) ≈ Y (t), Ah ≈ A.
Approximation in time to the mild solution:

Y (tn+1) = Sh(∆tn+1)Y (tn)+

∫ tn+1

tn

Sh(tn+1−s)F (Y (s))ds+

∫ tn+1

tn

S(tn+1−s)B(Y )dW .

where, ∆tn+1 := tn+1 − tn and Sh(∆tn+1) := e−∆tn+1Ah .

Yn+1 := Sh(∆tn+1) (Yn + ∆tn+1F (Yn) + B(Yn)∆Wn+1)

Exponential integrator... still issue with nonlinearity.
(Will also consider semi-implicit).
• Uniform ∆t : Many authors : see for example [L & Rougemont],
[Jentzen], [Wang], [Cohen], [Tambue], ...
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SPDES : Tamed/Stopped methods
With non-globally Lipschitz F , there are four basic approaches :

1 Explicit tamed Euler-Maruyama [Gyongy etal 2016].
Similar in approach to tamed methods for SDEs.
Perturbation of F to control growth,

F̃ (X ) ≈ F (X )

1 +
√

∆t ‖F (X )‖
(1)

2 “nonlinearity stopped” method of [Jentzen & Pusnik 2015].
Exponential integrator with use of indicator function to turn off
non-linearities if

‖F (X )‖ ≥
(

1

∆t

)θ
, θ ∈ (0,

1

4
]. (2)

3 Splitting based methods - often require exact nonlinear flow.
[Bréhier, Cui & Hong 2019, Bréhier & Goudènege 2019, Cai, Gan & Wang
2021]

4 Adapt the time step ...
[Campbell & L. ], [Hausenblas et al, 2020], [Chen, Dang, Hong]

Gabriel Lord Adaptive time-stepping for S(P)DEs December 2, 2021 12 / 35



Adaptive time-stepping:

I Issues from Adaptivity:

1 Increments ∆βn+1 depend on Yn.
Using that ∆tn+1 is a bounded Ftn stopping time
by Doob optional sampling theorem [Shirayev 96]

E [∆βn+1|Ftn ] = 0 a.s.

E
[
|∆βn+1|2|Ftn

]
= ∆tn+1 a.s.

2 Random time steps with tn =
∑n−1

j=0 ∆tn+1.

- need to assume each ∆tn+1 is Ftn measurable.
- there is a random integer N to arrive at a final time T .
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Adaptive Time-stepping: Upper and Lower bounds

Have random N, ∆tn+1

How to ensure we reach our final time T ?

want finite number of random steps N a.s. and ∆tn+1 6= 0

need control on ∆tn+1 to examine convergence.

Hence require that :
0 < ∆tn+1 ≤ ∆tmax.
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Two Approaches : to get to final time T
1 Introduce ∆tmin and fix deterministic ρ = ∆tmax/∆tmin.

0 < ∆tmin ≤ ∆tn+1 ≤ ∆tmax.

I When ∆tn+1 > ∆tmin use the standard method.
I When ∆tn+1 ≤ ∆tmin Introduce a ’backstop’ method and set

∆tn+1 = ∆tmin.

Example strategy :∆tn+1 ≤ ∆tmax
‖Yn‖
‖F (Yn)‖

For SDEs : [Kelly & L, 2017,2018]
For SPDEs : [Campbell & L. ]
I Can then show P [∆tn+1 ≤ ∆tmin] < ε. (See [Kelly, L. & Sun]).

2 For particular strategy for picking ∆tn+1 show N a.s. finite.
Example strategy:

∆tn+1 ≤ ∆tmax
(1 + ‖Yn‖2)

(1 + ‖F (Yn)‖2)
.

For SDEs : [Fang & Giles 2016, 2020]
For McKean Vlasov : [Reisinger & Stockinger, 2021]
For SPDEs : [Chen, Dang, Hong], [Campbell & L.]
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Two Approaches : to get to final time T
1 Introduce ∆tmin and fix deterministic ρ = ∆tmax/∆tmin.

0 < ∆tmin ≤ ∆tn+1 ≤ ∆tmax.

I When ∆tn+1 > ∆tmin use the standard method.
I When ∆tn+1 ≤ ∆tmin Introduce a ’backstop’ method and set

∆tn+1 = ∆tmin.

Example strategy :∆tn+1 ≤ ∆tmax
‖Yn‖
‖F (Yn)‖

For SDEs : [Kelly & L, 2017,2018]
For SPDEs : [Campbell & L. ] (multiplicative noise)
I Can then show P [∆tn+1 ≤ ∆tmin] < ε. (See [Kelly, L. & Sun]).

2 For particular strategy for picking ∆tn+1 show N a.s. finite.
Example strategy:

∆tn+1 ≤ ∆tmax
(1 + ‖Yn‖)

(1 + ‖F (Yn)‖)
.

For SDEs : [Fang & Giles 2016, 2020]
For McKean Vlasov : [Reisinger & Stockinger, 2021]
For SPDEs : [Chen, Dang, Hong], [Campbell & L.] (SPDE additive noise)
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Backstop Approach : multiplicative noise

dX = [−AX + F (X )]dt + B(X )dW

On a Hilbert space H with norm ‖.‖
I Assumptions on F .

F satisfies one sided Lipschitz growth condition, X ,Y ∈ H

〈F (X )− F (Y ),X − Y 〉 ≤ LF ‖X − Y ‖2 .

‖DF (X )‖L(H) ≤ c1(1 + ‖X‖c2).

for some LF , c1, c2 > 0.

I Method :

Discretize in space :
eg spectral Galerkin Y (t) =

∑J
j yj(t)φj(x) ≈ X (t)

In time : Y n ≈ Y (tn)
I ∆tn+1 > ∆tmin : exponential approximation in time.
I ∆tn+1 ≤ ∆tmin : backstop with ∆tn+1 = ∆tmin

e.g. nonlinear stopped method [Jentzen & Pusnik 2015].
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Backstop: ρ = ∆tmax/∆tmin.
Example Adaptive Strategy: Pick ∆tn+1 so that

∆tn+1 ≤ ∆tmax
‖Yn‖
‖F (Yn)‖

.

∆tn+1 < ∆tmin then we use a backstop method

∆tn+1 ≥ ∆tmin then use standard exponential method.

‖F (Yn)‖ ≤ ∆tmax

∆tn+1
‖Yn‖ ≤ ρ‖Yn‖.

To bound non-global Lipschitz nonlinearity: (avoid bound on E [‖Yn‖p]).

‖F (Yn)− F (X (tn))‖2 ≤ 2‖F (Yn)‖2 + 2‖F (X (tn))‖2

≤ 2ρ2‖Yn‖2 + 2‖F (X (tn))‖2

Now add in and subtract X (tn) so that Yn = X (tn)− Yn − X (tn)

‖F (Yn)− F (X (tn))‖2 ≤ 4ρ2‖En‖2 + 4ρ‖X (tn)‖2 + 2‖F (X (tn))‖2
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Strong Convergence [Stuart Campbell, L.]

Let X (T ) be the mild solution to SPDE.
Let YN be the numerical approximation defined over {tn}n∈N, an
admissible time-stepping strategy.
For X0 ∈ L2(D,D((−A)1/2)), ε > 0
I Multiplicative noise : r ∈ (0, 1)(

E
∥∥∥X (T )− Y h

N

∥∥∥2
)1/2

≤ C (T )(∆x1+r + ∆t
1
2
−ε

max + λ
− 1+r

2
+ε

M+1 ).

(restrictive conditions on nonlinearity - eg not X − X 3).
Proof : outline

Need to deal with conditional expectation.
E.g. to use E

[
|∆βn+1|2|Ftn

]
= ∆tn+1 a.s.

Need to look at error over 1-step (not final time estimate)

Need to combine adaptive scheme and backstop and deal with
random number of steps N.
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dX = ∆X + X − X 3dt + BXdW

x = [0, 2π],

ρ = 100,

T = 5,

∆tn ≤
∆tmax

‖F (X )‖
,

Nx = 512,

B = 1,

r = 0.
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Numerical Methods

Compare 4 numerical methods

Adaptive
Y h
n+1 = Sh(∆tn+1)

(
Y h
n + F (Y h

n )∆tn+1 + B(Y h
n )∆Wn+1

)
Stopped
Y h
n+1 =

Sh(∆t)

(
Y h
n +

{
F (Y h

n )∆t + B(Y h
n )∆Wn+1

}
1‖F (Y h

n )‖≤( 1
∆t )

θ

)
Tamed Exponential (no proof)

Y h
n+1 = Sh(∆t)

(
Y h
n + F̃ (Y h

n )∆t + B(Y h
n )∆Wn+1

)
Tamed Euler-Maruyama
Y h
n+1 = Y h

n + C̃ (Y h
n )∆t + B(Y h

n )∆Wn+1

where C (X ) = −AX + F (X ) and f̃ (X ) = f (X )

1+
√

∆t‖f (X )‖ .

For fixed step methods set ∆t = ∆t = 1
N

∑
∆tn
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dX = ∆X + X − X 3dt + BXdW

x = [0, 2π],

ρ = 100,

T = 5,

∆tn ≤
∆tmax

‖F (X )‖
,

Nx = 512,

B = 1,

M = 100.
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SPDE - Additive noise

dX = [−AX + F (X )]dt + BdW

On a Hilbert space H with norm ‖.‖.
Assumption on F

F satisfies one sided Lipschitz growth condition, X ,Y ∈ H

〈F (X )− F (Y ),X − Y 〉 ≤ LF ‖X − Y ‖2 .

‖F (X )− F (Y )‖ ≤ C (1 + ‖X‖cE + ‖Y ‖cE )‖X − Y ‖.

‖DF (X )‖L(H) ≤ C (1 + ‖X‖cE )‖

‖F (X )‖E ≤ C (1 + ‖X‖cE ), ‖F (X )‖ ≤ C (1 + ‖X‖cE )‖X‖,

where ‖u‖E := supx∈D |u(x)|.
Here can look at, for example, Allen-Cahn equation F (X ) = X − X 3.
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Showing N a.s. finite

dX = [−AX + F (X )]dt + BdW

Discretize in space :
eg spectral Galerkin Y (t) =

∑
j yj(t)φj(x) ≈ X (t)

In time : Y (tn) ≈ Yn from exponential method.
We have T =

∑N
j=0 ∆tn+1. Need N a.s. finite.

0 < ∆tn+1 ≤ ∆tmax
(1 + ‖Y n

h ‖2)

(1 + ‖F (Y n
h )‖2)

.

Our starting point : we know we can do K steps. Prove that must reach T

Other see : [Fang & Giles 2020] for SDEs and [Chen, Dang, Hong] for
SPDEs.
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Showing N a.s. finite
Adaptive exponential method is defined by the recursion

Y n+1 = Sh(∆tn+1)PhY
n +

∫ tn+1

tn

Sh(tn+1 − s)PhF (Y n)ds︸ ︷︷ ︸
Zn

+

∫ tn+1

tn

Sh(tn+1 − tn)PhBPJdW (s)︸ ︷︷ ︸
W n

.

1 Bound E [‖W n‖p] and E [‖F (W n)‖p] for all n
2 Zn : use adaptivity to bound E

[
‖ZK‖p

]
after K deterministic steps.

3 Use dominated convergence to bound
E
[∥∥ZN

∥∥p] = E
[
limK→∞

∥∥ZK (τK )
∥∥p] independently of K ,N,

τK :=
∑N

n=0 ∆tn+11{n≤K}.
4 Timestepping plus moment bounds form a contradiction argument so

I ∃ a.s. finite N
I with E [τN ] = T ,
I and E [N] = O(1/∆tmax).

5 Finite upper bound on T and reverse Markov shows P [τN < T ] = 0.
Gabriel Lord Adaptive time-stepping for S(P)DEs December 2, 2021 25 / 35



Strong Convergence [Stuart Campbell, L.]

Let X (T ) be the mild solution to SPDE.
Let Y h

N be the numerical approximation defined over {tn}n∈N, an
admissible time-stepping strategy.
For X0 ∈ L2(D,D((−A)1/2)), ε > 0
I Additive noise : r ∈ (−1, 0](
E
∥∥∥X (T )− Y h

N

∥∥∥2
)1/2

≤ C (T )(∆x1+r−ε+∆t
min( 1

2
,(1+r)/2)−ε

max +λ
− 1+r

2
+ε

M+1 ).

Notes:

less restrictive conditions on nonlinearity: eg X − X 3 OK.

includes space-time white.

Proof : Use that have finite N a.s. and moment bound.
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Numerical Methods

Compare 4 numerical methods

Adaptive
Y h
n+1 = Sh(∆tn+1)

(
Y h
n + F (Y h

n )∆tn+1 + B∆Wn+1

)
Stopped

Y h
n+1 = Sh(∆t)

(
Y h
n +

{
F (Y h

n )∆t + B∆Wn+1

}
1‖F (Y h

n )‖≤( 1
∆t )

θ

)
Tamed Exponential (no proof)

Y h
n+1 = Sh(∆t)

(
Y h
n + F̃ (Y h

n )∆t + B∆Wn+1

)
Tamed Euler-Maruyama
Y h
n+1 = Y h

n + C̃ (Y h
n )∆t + B∆Wn+1

where C (X ) = −AX + F (X ) and f̃ (X ) = f (X )

1+
√

∆t‖f (X )‖ .

For fixed step methods set ∆t = ∆t = 1
N

∑
∆tn
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Swift-Hoenberg SPDE

SPDE defined by

dX = (βX − (1 + ∆)2X + cX 2 − X 3)dt + BdW ,

we set β = −0.7, c = 1.8 and B = 0.5.

Used in many applications involving pattern formation, including fluid
flow and neural tissue.
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dX = βX − (1 + ∆)2X + cX 2 − X 3dt + BdW (r = −0.5)
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Summary so far

Introduced issue of non-convergence for explicit methods
I SDE
I Stochastic PDEs

Adaptive time stepping :
I Conditional Expectation to recover standard Brownian motion

properties.
I Need 0 < ∆tn+1 and finite N a.s.

Two strategies
I Used Backstop strategy - for multiplicative noise.

Examined strong convergence
I Proof of N a.s. Finite - for additive noise.

Examined strong convergence

In both cases see improved efficiency
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Application in deterministic setting ?
Given

dX = −AX + F (X )dt + B(X )dW

Examined exponential integrator:

Yn+1 := Sh(∆tn+1) (Yn + ∆tn+1F (Yn) + B(Yn)∆Wn+1)

where, ∆tn+1 := tn+1 − tn and Sh(∆tn+1) := e−∆tn+1Ah .
Alternative : semi-implicit

Yn+1 := (I + ∆tA)−1 (Yn + ∆tn+1F (Yn) + B(Yn)∆Wn+1)

Similar results on the adaptivity.
In deterministic setting B ≡ 0:
Get standard exponential integrator

Yn+1 := Sh(∆tn+1) (Yn + ∆tn+1F (Yn))

Or semi-implicit method

Yn+1 := (I + ∆tn+1A)−1 (Yn + ∆tn+1F (Yn))
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Deterministic case

Standard exponential integrator

Yn+1 := Sh(∆tn+1) (Yn + ∆tn+1F (Yn))

Or semi-implicit method

Yn+1 := (I + ∆tn+1A)−1 (Yn + ∆tn+1F (Yn))

There is no instability directly from from the linear term.

But nonlinearity is explicit.

Have a restriction on ∆t from the nonlinearity.
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Deterministic KS : ut = −uxxxx − uxx − uux
∆t = 0.1,∆t = 0.6702 ∆tmax = 1
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Deterministic SH : ut = βu − (1 + ∆)2u + cu2 − u3

∆t = 0.1,∆t = 1.2077 ∆tmax = 5
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Summary ... again

Introduced issue of non-convergence for explicit methods
I SDE
I Stochastic PDEs

Adaptive time stepping :
I Conditional Expectation to recover standard Brownian motion

properties.
I Need 0 < ∆tn+1 and finite N a.s.

Two strategies
I Used Backstop strategy - for multiplicative noise.

Examined strong convergence
I Proof of N a.s. Finite - for additive noise.

Examined strong convergence
I In both cases see improved efficiency

Potential application for deterministic system.

I Thank you.
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