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1. Supplement

This is a supplement to the slides of the talk entitled “The energy technique for the
six-step BDF method”, I gave in the Irish Numerical Analysis Forum (INAF) seminar
series on January 13, 2022. Its scope is to provide details and references to the literature
of the answers I gave to interesting questions of two of the organizers of INAF, namely,
Natalia Kopteva and Martin Stynes.

Let T > 0 and u0 ∈ H, and consider the initial value problem, for a linear abstract
parabolic equation,

(1.1)
{
u′(t) + Au(t) = f(t), 0 < t < T,

u(0) = u0,

in a usual triple of separable complex Hilbert spaces V ⊂ H = H ′ ⊂ V ′, with V densely and
continuously embedded in H. We assume that (1.1) possesses a unique, smooth solution.

Let (α, β) be an implicit q-step method, generated by two polynomials α and β, of
degree q,

α(ζ) =

q∑
i=0

αiζ
i, β(ζ) =

q∑
i=0

βiζ
i,

with real coefficients αi and βi.
Let N ∈ N, τ := T/N be the constant time step, and tn := nτ, n = 0, . . . , N, be

a uniform partition of the interval [0, T ]. Since we consider q-step schemes, we assume
that starting approximations u0, . . . , uq−1 ∈ V are given. We then recursively define a
sequence of approximations um ∈ V to the nodal values u(tm) of the solution u of the
initial value problem (1.1) by discretizing the differential equation in (1.1) by the implicit
scheme (α, β),

(1.2)
q∑
i=0

(
αiI + τβiA

)
Un+i = τ

q∑
i=0

βif(t
n+i),

n = 0, . . . , N − q, with I the identity operator on H.
We assume that the implicit method (α, β) is A(0)-stable and denote by ϑ, 0 < ϑ ⩽ 90◦,

the largest angle for which the method (α, β) is A(ϑ)-stable.
The BDF methods were introduced in 1952 by two chemical engineers, Curtiss and

Hirschfelder (see [5]) as methods of forward interpolation. The analysis of multistep meth-
ods for parabolic equations originated in [10, 11].

Date: January 24, 2022.
1



2 GEORGIOS AKRIVIS

1.1. Assumptions on the linear operator A. We denote by (·, ·) both the inner prod-
uct on H and the antiduality pairing between V ′ and V, and by | · | and ∥ · ∥ the norms on
H and V, respectively. The space V ′ may be considered the completion of H with respect
to the dual norm ∥ · ∥⋆,

∥υ∥⋆ := sup
υ̃∈V
υ̃ ̸=0

|(υ, υ̃)|
∥υ̃∥

= sup
υ̃∈V
∥υ̃∥=1

|(υ, υ̃)|.

We assume that the operator A : V → V ′ is coercive and bounded, i.e.,
(1.3) Re(Aυ, υ) ⩾ κ∥υ∥2 ∀υ ∈ V

and
(1.4) ∥Aυ∥⋆ ⩽ ν∥υ∥ ∀υ ∈ V,

respectively, with two positive constants κ and ν. Operators satisfying (1.3) and (1.4) are
sectorial in the sense that their numerical range {(Aυ, υ)/(υ, υ), υ ∈ V, υ ̸= 0} is contained
in a sector Sφ, Sφ := {z ∈ C : z = ρeiψ, ρ ⩾ 0, |ψ| ⩽ φ}, of half-angle φ < 90◦.

In the analysis of non-A-stable methods, i.e., such that ϑ < 90◦, quantifications of
the non-self-adjointness of the operator A are inevitable. There are several equivalent
measures of non-self-adjointness: which measure or estimate of the non-self-adjointness
of an operator is more suitable depends also on the stability technique employed; the
relation between equivalent non-self-adjointness measures may be nonlinear. In the case
of the energy technique, the ratio λ = ν/κ is commonly used as an estimate of the non-
self-adjointness of A; notice, however, that this ratio depends on the norm ∥ · ∥ on V and
may be a crude estimate of the non-self-adjointness of A. The ratio λ may be chosen equal
to 1, if and only if the operator A is self-adjoint. A measure of the non-self-adjointness
of A is, for instance, the smallest half-angle 0 ⩽ φ < 90◦ of a sector Sφ containing the
numerical range of A, i.e., such that (Av, v) ∈ Sφ for every v ∈ V. For alternative equivalent
non-self-adjointness measures, see, for instance, [2].

1.2. Sharp stability conditions. A necessary stability condition for any A(ϑ)-stable
scheme is

(1.5) λ =
ν

κ
⩽ 1

cosϑ.

If (1.5) holds as a strict inequality for a multistep method, then the method (1.2) is
stable. The first stability proof was given by Savaré in [9]; Savaré used a Fourier stability
technique, introduced by Lubich in [6].

In [2], both implicit and implicit-explicit multistep methods for nonlinear parabolic
equations were considered. Stability was established under a sharp stability condition
for implicit methods and a best possible linear stability condition for implicit-explicit
methods by a combination of spectral and Fourier techniques. It is still not known, whether
the linear stability condition for implicit-explicit methods can be relaxed if nonlinear
conditions are also allowed.

1.3. The energy technique for BDF methods. The energy technique for high-order
BDF methods is applicable via Nevanlinna–Odeh multipliers. The concept of multipliers
for multistep methods was introduced by Nevanlinna and Odeh; see [8]. The energy
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technique was first applied to parabolic equations by Lubich, Mansour, and Venkataraman;
see [7].

In [8] multipliers of the form (ηq, 0, . . . , 0) for the q-step BDF methods, with
(1.6) η3 = 0.0836, η4 = 0.2878, η5 = 0.8160,

were determined; notice that ηq cannot be replaced by a smaller number.
The smaller the sum of the absolute values of the multipliers is, the milder is the

requirement on the estimate λ = ν/κ of the non-self-adjointness of A. In [4], the multipliers

(1.7) µ1 =
2

169
, µ2 =

11

169
, µ3 = 0,

(1.8) µ1 = η4, µ2 = µ3 = µ4 = 0,

and
(1.9) µ1 = 0.7321818449, µ4 = 0.07755190105, µ2 = µ3 = µ5 = 0,

for the three-, four- and five-step BDF methods, respectively, were determined; it was also
shown that they are optimal among the multipliers (µ1, . . . , µq), in the sense that they
are the only multipliers for which the sum η̂q := |µ1| + · · · + |µq| of the absolute values
of µ1, . . . , µq attains its minimal value. While η̂4 = η4, the new multipliers for the three-
and five-step BDF methods are more favourable than the corresponding Nevanlinna–Odeh
multipliers, since

η̂3 =
1

13
= 0.076923076 < η3 = 0.0836 and η̂5 = 0.8097337459 < η5 = 0.8160.

The improvement for the five-step BDF method is only minor, while for the three-step
BDF method it is rather considerable.

Table 1.1. The sharp bounds (second column) for any stability technique,
and the bounds required when Nevanlinna–Odeh (third column) or optimal
(fourth column) multipliers are used in the energy technique.

q Sharp bound: 1

cosϑq
NO bound: 1

ηq
optimal–multiplers bound: 1

η̂q

3 14.44374120 11.96172249 13
4 3.49010233 3.47463516 3.47463516
5 1.61849065 1.22549020 1.23497385
6 1.05051314

For the six-step BDF method, the assumption that the operator A is selfadjoint, i.e.,
that λ = 1, is crucial in [3]. This could be at most relaxed to λ ⩽ 1.05051314 by any
stability technique; see the last entry in the second column of Table 1.1. Since the sum
of the absolute values of the multipliers exceeds 1, the assumption that the operator A
is selfadjoint cannot be relaxed by the multiplier technique; it does not depend on the
sum of the absolute values of the multipliers. It seems unlikely to establish stability
of the six-step BDF method under a condition of the form λ < λ⋆ with a given, fixed
1 < λ⋆ ⩽ 1.05051314.



4 GEORGIOS AKRIVIS

References
[1] G. Akrivis, Stability of implicit–explicit backward difference formulas for nonlinear parabolic equations,

SIAM J. Numer. Anal. 53 (2015) 464–484.
[2] G. Akrivis, Stability of implicit and implicit–explicit multistep methods for nonlinear parabolic equa-

tions, IMA J. Numer. Anal. 38 (2018) 1768–1796.
[3] G. Akrivis, M. Chen, F. Yu, and Z. Zhou, The energy technique for the six-step BDF method, SIAM

J. Numer. Anal. 59 (2021) 2449–2472.
[4] G. Akrivis and E. Katsoprinakis, Backward difference formulae: new multipliers and stability prop-

erties for parabolic equations, IMA J. Numer. Anal. 85 (2016) 2195–2216.
[5] C. F. Curtiss and J. O. Hirschfelder, Integration of stiff equations, Proc. Nat. Acad. Sci. U.S.A. 38

(1952) 235–243.
[6] C. Lubich, On the convergence of multistep methods for nonlinear stiff differential equations, Numer.

Math. 58 (1991) 839–853.
[7] C. Lubich, D. Mansour, and C. Venkataraman, Backward difference time discretization of parabolic

differential equations on evolving surfaces, IMA J. Numer. Anal. 33 (2013) 1365–1385.
[8] O. Nevanlinna and F. Odeh, Multiplier techniques for linear multistep methods, Numer. Funct. Anal.

Optim. 3 (1981) 377–423.
[9] G. Savaré, A(Θ)-stable approximations of abstract Cauchy problems, Numer. Math. 65 (1993) 319–

335.
[10] M. Zlámal, Finite element multistep discretizations of parabolic boundary value problems, Math.

Comp. 29 (1975) 350–359.
[11] M. Zlámal, Finite element methods for nonlinear parabolic equations, RAIRO Anal. Numér. 11 (1977)

93–107.


	1. Supplement
	1.1. Assumptions on the linear operator A
	1.2. Sharp stability conditions
	1.3. The energy technique for BDF methods

	References

