THE ENERGY TECHNIQUE FOR THE SIX-STEP BDF METHOD

GEORGIOS AKRIVIS

1. SUPPLEMENT

This is a supplement to the slides of the talk entitled “The energy technique for the
six-step BDF method”, I gave in the Irish Numerical Analysis Forum (INAF) seminar
series on January 13, 2022. Its scope is to provide details and references to the literature
of the answers I gave to interesting questions of two of the organizers of INAF, namely,
Natalia Kopteva and Martin Stynes.

Let T > 0 and v’ € H, and consider the initial value problem, for a linear abstract
parabolic equation,

. u(0) =,

{u'(t) + Au(t) = f(t), 0<t<T,

in a usual triple of separable complex Hilbert spaces V' C H = H' C V', with V densely and

continuously embedded in H. We assume that (1.1) possesses a unique, smooth solution.
Let (o, 8) be an implicit g-step method, generated by two polynomials o and 3, of

degree g,

a(Q) =) i, B =) B,
=0 =0

with real coefficients a; and f;.

Let N € N,7 := T/N be the constant time step, and ¢" := nr,n = 0,..., N, be
a uniform partition of the interval [0,7]. Since we consider g-step schemes, we assume
that starting approximations u°,...,u?t € V are given. We then recursively define a
sequence of approximations u™ € V to the nodal values u(¢™) of the solution u of the
initial value problem (1.1) by discretizing the differential equation in (1.1) by the implicit
scheme (o, ),

q

(1.2) > (I +7BA) U™ =7 Bif(E™H),

=0 i=0

n=0,...,N —q, with I the identity operator on H.

We assume that the implicit method (o, ) is A(0)-stable and denote by 9,0 < ¢ < 90°,
the largest angle for which the method («, ) is A(¥)-stable.

The BDF methods were introduced in 1952 by two chemical engineers, Curtiss and
Hirschfelder (see [5]) as methods of forward interpolation. The analysis of multistep meth-
ods for parabolic equations originated in [10, 11].
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1.1. Assumptions on the linear operator A. We denote by (-,-) both the inner prod-
uct on H and the antiduality pairing between V' and V, and by |- | and || - || the norms on
H and V, respectively. The space V/ may be considered the completion of H with respect
to the dual norm || - ||,

V.U -
ol o= sup 2 = o (w91
sev |0 Dev
520 Joli=1

We assume that the operator A : V' — V' is coercive and bounded, i.e.,

(1.3) Re(Av,v) > k||v]|* Yo eV
and
(1.4) [Av]l, < vvl] Vv eV,

respectively, with two positive constants x and v. Operators satisfying (1.3) and (1.4) are
sectorial in the sense that their numerical range {(Av,v)/(v,v),v € V,v # 0} is contained
in a sector S,, S, :={z € C:z=pe"¥, p>0,[| < ¢}, of half-angle ¢ < 90°.

In the analysis of non-A-stable methods, i.e., such that ¥ < 90°, quantifications of
the non-self-adjointness of the operator A are inevitable. There are several equivalent
measures of non-self-adjointness: which measure or estimate of the non-self-adjointness
of an operator is more suitable depends also on the stability technique employed; the
relation between equivalent non-self-adjointness measures may be nonlinear. In the case
of the energy technique, the ratio A = v/k is commonly used as an estimate of the non-
self-adjointness of A; notice, however, that this ratio depends on the norm || - || on V" and
may be a crude estimate of the non-self-adjointness of A. The ratio A may be chosen equal
to 1, if and only if the operator A is self-adjoint. A measure of the non-self-adjointness
of A is, for instance, the smallest half-angle 0 < ¢ < 90° of a sector S, containing the
numerical range of A, i.e., such that (Av,v) € S, for every v € V. For alternative equivalent
non-self-adjointness measures, see, for instance, [2].

1.2. Sharp stability conditions. A necessary stability condition for any A(¥)-stable
scheme is
v 1

1.5 A=—< .
(15) K cost

If (1.5) holds as a strict inequality for a multistep method, then the method (1.2) is
stable. The first stability proof was given by Savaré in [9]; Savaré used a Fourier stability
technique, introduced by Lubich in [6].

In [2], both implicit and implicit-explicit multistep methods for nonlinear parabolic
equations were considered. Stability was established under a sharp stability condition
for implicit methods and a best possible linear stability condition for implicit-explicit
methods by a combination of spectral and Fourier techniques. It is still not known, whether
the linear stability condition for implicit-explicit methods can be relaxed if nonlinear
conditions are also allowed.

1.3. The energy technique for BDF methods. The energy technique for high-order
BDF methods is applicable via Nevanlinna—Odeh multipliers. The concept of multipliers
for multistep methods was introduced by Nevanlinna and Odeh; see [8]. The energy
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technique was first applied to parabolic equations by Lubich, Mansour, and Venkataraman;
see [7].
In [8] multipliers of the form (n,,0,...,0) for the g-step BDF methods, with

(1.6) ns = 0.0836, n. = 0.2878, ns = 0.8160,

were determined; notice that 7, cannot be replaced by a smaller number.
The smaller the sum of the absolute values of the multipliers is, the milder is the
requirement on the estimate A = v/k of the non-self-adjointness of A. In [4], the multipliers

2 11
1. _ _ _
( 7) H1 1697 H2 1697 H3 07
(1.8) f1 =11, o= 3= s =0,
and
(1.9) w1 = 0.7321818449, 4 = 0.07755190105, o = p3 = pus = 0,

for the three-, four- and five-step BDF methods, respectively, were determined; it was also
shown that they are optimal among the multipliers (u1, ..., fi;), in the sense that they
are the only multipliers for which the sum 7, := |u1| + - -+ + |pq] of the absolute values
of p1,..., 1y attains its minimal value. While 74 = 74, the new multipliers for the three-
and five-step BDF methods are more favourable than the corresponding Nevanlinna-Odeh
multipliers, since

1
M3 = 'Eh 0.076923076 < n3 = 0.0836 and 75 = 0.8097337459 < 715 = 0.8160.

The improvement for the five-step BDF method is only minor, while for the three-step
BDF method it is rather considerable.

TABLE 1.1. The sharp bounds (second column) for any stability technique,
and the bounds required when Nevanlinna-Odeh (third column) or optimal
(fourth column) multipliers are used in the energy technique.

q || Sharp bound: NO bound: 1 optimal-multiplers bound: Ai
cos U, Mg Mg

3 14.44374120 11.96172249 13

4 3.49010233 3.47463516 3.47463516

5 1.61849065 1.22549020 1.23497385

6 1.05051314

For the six-step BDF method, the assumption that the operator A is selfadjoint, i.e.,
that A = 1, is crucial in [3]. This could be at most relaxed to A < 1.05051314 by any
stability technique; see the last entry in the second column of Table 1.1. Since the sum
of the absolute values of the multipliers exceeds 1, the assumption that the operator A
is selfadjoint cannot be relaxed by the multiplier technique; it does not depend on the
sum of the absolute values of the multipliers. It seems unlikely to establish stability
of the six-step BDF method under a condition of the form A < A\* with a given, fixed
1 < A* < 1.05051314.
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