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Energy technique

1 Main characteristic
We take the inner product with a suitable test quantity
(function or element).

2 Possible difficulty
Suitable choice of test quantity that enables us to treat
all terms that enter.

3 In the discrete case (Numerical Analysis)
• For numerical methods that are stable for all parabolic equations,

the choice of the test quantity is dictated by the stability properties
of the method and is easy.
(Algebraically stable Runge–Kutta methods, A-stable multistep
methods)

• For numerical methods that are stable for some parabolic equations
the choice of the test quantity is in general difficult (and interesting!).
(A(ϑ)-stable methods)
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Main advantages of the energy technique

1 Simplicity
2 Powerfulness: it leads to several stability estimates
3 Flexibility: it can be easily combined with other stability techniques
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Outline

1 An abstract parabolic equation
2 The energy technique for the q-step BDF method
3 q = 1 and q = 2: Trivial due to the A-stability of the methods

(stable for all parabolic equations)
4 q = 3, 4, 5: Applicable via Nevanlinna–Odeh multipliers

(stable for some parabolic equations)
5 q = 6: No Nevanlinna–Odeh multipliers exist

• Can the Nevanlinna–Odeh requirements be relaxed?

Based on:
A., Minghua Chen, Fan Yu and Zhi Zhou: The energy technique for the
six-step BDF method, SIAM J. Numer. Anal. 59 (2021) 2449–2472
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1. An abstract parabolic equation

Let T > 0 and u0 ∈ H. Consider the initial value problem{
u′(t) +Au(t) = f(t), 0 < t < T,

u(0) = u0,

with A a positive definite, selfadjoint, linear operator on a Hilbert space
(H, (·, ·)) with domain D(A) := {v ∈ H : Av ∈ H} dense on H.

| · | norm on H

V := D(A1/2), ∥ · ∥ norm on V, ∥v∥ := |A1/2v|.
Identify H with its dual and denote by V ′ the dual of V .
∥ · ∥⋆ norm on V ′, ∥v∥⋆ = |A−1/2v|.
(·, ·) inner product on H and antiduality pairing between V ′ and V .
Then, ∥v∥ = (Av, v)1/2, ∥v∥⋆ = (v,A−1v)1/2, and |(v, w)| ⩽ ∥v∥⋆ ∥w∥.
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Example

Let Ω ⊂ Rd be a bounded domain with smooth boundary ∂Ω.
Then, the negative Dirichlet Laplacian

A := −∆ : H2(Ω) ∩H1
0 (Ω) → L2(Ω), ∆v =

d∑
i=1

vxixi ,

is a positive definite selfadjoint linear operator.
In this case we have

H = L2(Ω), V = H1
0 (Ω), V ′ = H−1(Ω).
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The energy technique for the differential equation

Testing the differential equation u′(s) +Au(s) = f(s) by u, we have(
u′(s), u(s)

)
+ ∥u(s)∥2 =

(
f(s), u(s)

)
.

Now,(
u′(s), u(s)

)
=

1

2

d
ds |u(s)|

2 and
(
f(s), u(s)

)
⩽ 1

2

(
∥u(s)∥2 + ∥f(s)∥2⋆

)
,

whence
d
ds |u(s)|

2 + ∥u(s)∥2 ⩽ ∥f(s)∥2⋆.

Integrating this estimate from 0 to t, we obtain the stability property

|u(t)|2 +
∫ t

0
∥u(s)∥2 ds ⩽ |u0|2 +

∫ t

0
∥f(s)∥2⋆ ds, 0 < t ⩽ T.
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Similarly, testing the differential equation u′(s) +Au(s) = f(s) by u′,
we obtain a second stability estimate

∥u(t)∥2 +
∫ t

0
|u′(s)|2 ds ⩽ ∥u0∥2 +

∫ t

0
|f(s)|2 ds, 0 < t ⩽ T.
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Recall the stability estimates:

|u(t)|2 +
∫ t

0
∥u(s)∥2 ds ⩽ |u0|2 +

∫ t

0
∥f(s)∥2⋆ ds

∥u(t)∥2 +
∫ t

0
|u′(s)|2 ds ⩽ ∥u0∥2 +

∫ t

0
|f(s)|2 ds

For u0 = 0 and f = 0, we have u = 0. ⇝ Uniqueness of the solution.
Continuous dependence from both the initial data and the forcing term.
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Recall the stability estimates:

|u(t)|2 +
∫ t

0
∥u(s)∥2 ds ⩽ |u0|2 +

∫ t

0
∥f(s)∥2⋆ ds

∥u(t)∥2 +
∫ t

0
|u′(s)|2 ds ⩽ ∥u0∥2 +

∫ t

0
|f(s)|2 ds

Goal: Derivation of discrete analogues for BDF methods.

In the discrete case, in the corresponding stability estimates:
• u(t) is replaced by the approximation at a node of a partition.
• The integral is replaced by a sum.
• When we have additional starting approximations, they also

enter into the stability estimates.

In the following, to simplify the notation, we consider the homogeneous
equation, i.e., with f = 0. The extension to inhomogeneous equations
is very easy.
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2. BDF methods
Consider the q-step BDF method, generated by the polynomials α and β,

α(ζ) =

q∑
j=1

1

j
ζq−j(ζ − 1)j =

q∑
j=0

αjζ
j , β(ζ) = ζq.

The BDF methods are A(ϑq)-stable with ϑ1 = ϑ2 = 90◦, ϑ3 ≈ 86.03◦,
ϑ4 ≈ 73.35◦, ϑ5 ≈ 51.84◦ and ϑ6 ≈ 17.84◦. (Exact values of the angles
are also available.) The order of the q-step method is q.

Let N ∈ N, τ := T/N be the time step, and tn := nτ, n = 0, . . . , N, be a
uniform partition of the interval [0, T ]. We recursively define a sequence of
approximations um to the nodal values u(tm) by the q-step BDF method,

q∑
i=0

αiu
n+i + τAun+q = 0 (unknown: un+q), n = 0, . . . , N − q,

assuming that starting approximations u0, . . . , uq−1 are given.
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3. Energy technique
Let (µ1, . . . , µq) ∈ Rq. We test the q-step BDF method by
un+q − µ1u

n+q−1 − · · · − µqu
n and obtain( q∑

i=0

αiu
n+i, un+q −

q∑
j=1

µju
n+q−j

)
+ τ

(
Aun+q, un+q −

q∑
j=1

µju
n+q−j

)
=0,

n = 0, . . . , N − q.
First requirement: Assume that the polynomials α(ζ) = αqζ

q + · · ·+ α0

and µ(ζ) := ζq − µ1ζ
q−1 − · · · − µq have no common divisor. Let (·, ·)

be a real inner product with associated norm | · |. If

Re α(ζ)
µ(ζ)

> 0 for |ζ| > 1, (A)

then there exists a positive definite symmetric matrix G = (gij) ∈ Rq,q

such that for v0, . . . , vq in the inner product space,( q∑
i=0

αiv
i, vq −

q∑
j=1

µjv
q−j

)
⩾

q∑
i,j=1

gij(v
i, vj)−

q∑
i,j=1

gij(v
i−1, vj−1). (G)
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Requirements (A) and (G) are equivalent (G. Dahlquist, 1978). They
mean that the q-step scheme described by the parameters αq, . . . , α0,
1,−µ1, . . . ,−µq and the corresponding one-leg method are A- and
G-stable, respectively.

Then, the first term on the left-hand side can be estimated from below
using (G). With the notation Un := (un−q+1, un−q+2, . . . , un)⊤ and the
norm |Un|G given by

|Un|2G =

q∑
i,j=1

gij
(
un−q+i, un−q+j

)
,

using (G), we have

( q∑
i=0

αiu
n+i, un+q −

q∑
j=1

µju
n+q−j

)
⩾ |Un+q|2G − |Un+q−1|2G.
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Therefore, we have

|Un+q|2G − |Un+q−1|2G + τIn+6 ⩽ 0

with
In+6 :=

〈
un+q, un+q −

q∑
j=1

µju
n+q−j

〉
.

We use the notation ⟨·, ·⟩ for the inner product on V,
⟨v, w⟩ := (A1/2v,A1/2w).

G. A. (akrivis@cse.uoi.gr) The energy technique for BDF methods January 13, 2022 14 / 28



Standard approach: Estimate In+q from below,

In+q ⩾
(
1− 1

2

q∑
i=1

|µi|
)
∥un+q∥2 − 1

2

q∑
i=1

|µi|∥un+q−i∥2.

Then, we have

|Un+q|2G−|Un+q−1|2G+τ
(
1− 1

2

q∑
i=1

|µi|
)
∥un+q∥2 ⩽ τ

1

2

q∑
i=1

|µi|∥un+q−i∥2.

Second requirement: To obtain stability with this approach we need

1− |µ1| − · · · − |µq| > 0. (P1)

A q-tuple (µ1, . . . , µq) satisfying (A) and (P1) is called Nevanlinna–Odeh
multiplier for the q-step BDF method.
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Nevanlinna and Odeh1 introduced this technique and determined
multipliers of the form (µ1, 0 . . . , 0) for the three-, four- and five-step
BDF methods, with

• µ1 = 0.0836 for the three-step BDF method,
• µ1 = 0.2878 for the four-step BDF method,
• µ1 = 0.8160 for the five-step BDF method.

Optimal Nevanlinna–Odeh multipliers, i.e., such that |µ1|+ · · ·+ |µq|
is as small as possible are given in2.

1Nevanllina, Odeh: Numer. Funct. Anal. Optim. (1981)
2A., Katsoprinakis: Math. Comp. (2016)
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4. q = 6: Nonexistence of Nevanlinna–Odeh multipliers

(A) ⇒ |µ1|+ · · ·+ |µ6| ⩾ cosϑ6 = 0.9516169

For the six-step BDF method, the A-stability condition (A) reads

P (x) = (−80x5 + 208x4 − 122x3 − 82x2 + 98x− 22)

+ (40x4 − 104x3 + 71x2 + 15x+ 8)µ1

+ (20x3 − 52x2 + 114x− 22)µ2 − (8 + 59x− 157x2)µ3

+ (294x3 − 66x2 − 130x+ 22)µ4

+ (588x4 − 132x3 − 417x2 + 103x+ 8)µ5

+ (1176x5 − 264x4 − 1128x3 + 272x2 + 146x− 22)µ6 ⩾ 0,

for x ∈ [−1, 1].
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Now,

P
( 3

40

)
< −15.156 + 13.735

6∑
i=1

|µi|.

Assuming |µ1|+ · · ·+ |µ6| ⩽ 1, we observe that

P
( 3

40

)
< −1.421 < 0.

Therefore, no Nevanlinna–Odeh multiplier exists.
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5. Alternative approach
Idea: Instead of estimating In+q from below at every time level,
sum over n and subsequently estimate the sum from below.
What will we achieve? We will relax the positivity condition

1− |µ1| − · · · − |µq| > 0 (P1)

of Nevanlinna–Odeh for the q-step BDF method to the milder positivity
condition

1− µ1 cosx− · · · − µq cos(qx) > 0 ∀x ∈ R. (P2)

Gain? Such multipliers do exist also for the six-step BDF method.
What is the role of (P2)? It ensures that banded symmetric Toeplitz
matrices of bandwidth 2q + 1, of any dimension m ⩾ 2q + 1, with
generating function (1− ε)− µ1 cosx− · · · − µq cos(qx) are, for
sufficiently small ε, positive definite.
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Technical details

Summing from n = 0 to n = m− q − 1, we obtain

|Um|2G + τ

m∑
n=q

In ⩽ |Uq−1|2G. (1)

It remains to estimate the sum
∑m

n=q In from below; we have

m∑
n=q

In =

m∑
n=q

〈
un, un −

q∑
j=1

µju
n−j

〉
. (2)

With µ0 = ε− 1, we rewrite (2) as

m∑
n=q

In = ε

m∑
n=q

∥un∥2 + Jm, Jm := −
q∑

j=0

µj

m−q+1∑
i=1

⟨uq−1+i, uq−1+i−j⟩. (3)
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Rewrite Jm in a suitable form to estimate it from bellow. To this end, we
introduce the lower triangular Toeplitz matrix L = (ℓij) ∈ Rm−q+1,m−q+1

with entries

ℓi,i−j = −µj , j = 0, . . . , q, i = j + 1, . . . ,m− q + 1,

and all other entries equal zero. With this notation, we have

m−q+1∑
i,j=1

ℓij⟨uq−1+i, uq−1+j⟩ = −
q∑

j=0

µj

m−q+1∑
i=j+1

⟨uq−1+i, uq−1+i−j⟩,

i.e.,
m−q+1∑
i,j=1

ℓij⟨uq−1+i, uq−1+j⟩ = Jm +

q∑
j=1

µj

j∑
i=1

⟨uq−1+i, uq−1+i−j⟩. (4)

The last term can be easily estimated by the Cauchy–Schwarz and
arithmetic–geometric inequalities since q − 1 + i− j ⩽ q − 1.
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We obtain

|Um|2G +
ε

2
τ

m∑
n=q

∥un∥2

+ τ

m−q+1∑
i,j=1

ℓij⟨uq−1+i, uq−1+j⟩ ⩽ |Uq−1|2G + Cετ

q−1∑
j=0

∥uj∥2.

Question: What can we do with the boxed term?

Consider the symmetric part Ls = (L+ L⊤)/2 of L. The generating
function of the banded Toeplitz matrix Ls is

φ(x) := (1− ε)− µ1 cosx− · · · − µq cos(qx).

The eigenvalues of Ls are bounded from below by the minimum of φ
(Grenander–Szegő theorem).
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Now, for z = (z0, . . . , zm−q)
⊤ ∈ Cm−q+1, we have

(Lsz, z) =
1

2π

∫ π

−π
φ(x)

∣∣∣m−q∑
k=0

zk ei kx
∣∣∣2dx

and

(z, z) =
1

2π

∫ π

−π

∣∣∣m−q∑
k=0

zk ei kx
∣∣∣2dx.

Therefore,
(Lsz, z) ⩾ min

x
φ(x)(z, z).

Thus Ls is positive definite and, consequently, L is also positive definite
((Lx, x) = (Lsx, x) for x ∈ Rm−q+1).
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Conclusion: The boxed term is nonnegative and thus the Nevanlinna–
Odeh requirement

1− |µ1| − · · · − |µq| > 0

can be relaxed to

1− µ1 cosx− · · · − µq cos(qx) > 0 ∀x ∈ R . (P2)

Final stability estimate:

c1|um|2 + ε

2
τ

m∑
n=q

∥un∥2 ⩽ c2Cε

q−1∑
j=0

(
|uj |2 + τ∥uj∥2

)
.

The constants are independent of A, T,m and τ (but the norm ∥ · ∥
depends on A).
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Second stability estimate

Similarly, we obtain a discrete analogue of the second stability property of
the parabolic equation:

∥un∥2 + τ

n∑
ℓ=q

|u̇ℓ|2 ⩽ C

q−1∑
j=0

∥uj∥2, n = q, . . . , N,

with
v̇n+q :=

1

τ

q∑
i=0

αiv
n+i, n = 0, . . . , N − q.

The constant is independent of A, T,m and τ .
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Table: Multipliers for the six-step BDF method.

µ1 µ2 µ3 µ4 µ5 µ6

13
9 −25

36
1
9 0 0 0

1.6 −0.92 0.3 0 0 0

0.8235 −0.855 0.38 0 0 0

1.67 −1 0.4 −0.1 0 0

0.8 −0.7 0.2 0.1 0 0

1.118 −1 0.6 −0.2 0.2 0

0.6708 −0.2 −0.2 0.6 −0.2 0

0.735 −0.2 −0.4 0.8 −0.4 0.2
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µ1

µ2

1

−1

1−1 µ1

µ2

1

−1

1−1

S

Figure: Illustration of the conditions (P1) and (P2), left and right, respectively,
for µ3 = · · · = µ6 = 0.

S =
{
(µ1, µ2) : −

1

3
⩽ µ2 < 1−|µ1|

}
∪
{
(µ1, µ2) : 4

(
µ2+

1

2

)2
+
1

2
µ2
1 < 1

}
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Thank you very much!
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