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About this lecture

Question:

Is a good numerical scheme for integrating known dynamics also good for learning unknown dynamics?

⇒ New convergence theory on Linear Multistep Method (LMM) for dynamics discovery.

References: Keller-Du, Discovery of dynamics using linear multistep methods,
SIAM J. Numer. Anal., 59, 429–455, 2021 (arXiv 1912.12728).

and a follow-up work: Du-Gu-Yang-Zhou, arXiv:2103.11488, 2021.
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Classical Linear Multistep Method (LMM)

LMM1: numerical integrator for ẋ(t)=f (x(t)), t∈(0,T ), x(0)=x0 with given f , x0, T and M ∈ N.

For N ∈ N, a uniform step size h =T/N, and approximate initial states {xn ∼ x(nh)}M−1
n=0 ,

M∑
m=0

αmxn−m = h
M∑

m=0

βmf (xn−m), M ≤ n ≤ N ⇒ approximate states {xn ∼ x(nh)}Nn=M .

Many successful applications and well-established mathematical theory for LMM since 18832.

Eg. Adams-Bashforth, Adams-Moulton, Backward-Differentiation-Formula (BDF).

Key ingredients: 1st/2nd characteristic polynomials, ρ(r)=
M∑

m=0

αmr
M−m, σ(r)=

M∑
m=0

βmr
M−m.

Consistency: ρ(1) = 0, ρ′(1) = σ(1).

Stability: ρ(r) = 0 ⇔ |r | ≤ 1, simple if |r | = 1.

}
⇒ Convergence (classical theory)3

1LMM: a subject taught in a typical course on the numerical solution of differential equations.
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2
Atkinson-Han-Stewart 11, Butcher 03, Gautschi 97, Hairer-Norsett-Wanner 93, Henrici 62, Iserles 96, Mayers-Euli 03, etc.
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3
Dahlquist 1955, Henrici 1962,...: turning convergence of LMM for integrating dynamics into pure algebraic criteria
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Data-driven learning and modeling via machine learning

Motivations: data-driven modeling via deep learning (an inverse problem). Examples:

• Learning traffic model from data (partnership with COSMOS, funded by AWS, NSF and FHWA);

• Video-based learning (joint project with robotics lab at Columbia).

R. Shi, K. Huang, Z. Mo, X. Di, Q. Du, B. Chen, K. Huang, S. Raghupathi, I. Chandratreya, Q. Du, H. Lipson, 2021

IEEE Trac ITS 2021
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A new chapter on LMM4

Data-driven modeling via deep learning (an inverse problem) ⇒ new applications of LMM5.

Forward Prob.: Integrating dynamics

given ẋ(t)=f (x(t)) (physics),

with x(0)=x0, solve for x(t) (data).

Inverse Prob.: Learning dynamics

given observed {xn} of x(t) (data),

learn dynamics ẋ(t)=f (x(t)) (physics).

Close connection to numerical ODE/PDE, model reduction, closure and multiscale simulations6:

Given dynamics ẋ=f (x) ⇒ solve for snapshots {xn} ⇒ effective dynamics ẋ = f̂ (x)

fine scale models → numerical solution + data → coarse scale models

Forward Problem Inverse Problem

4
Kelller-Du SINUM 2021; Du-Gu-Yang-Zhou, arXiv:2103.11488.

5
For example, discretizing NeuralODE/ResNet: E 2017, Chen-Rubanova-Bettencourt-Duvenaud, NIPS 2018, Lu-Zhong-Li-Dong ICML 2018,...
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6
Nadler-Lafon-Coifman-Kevrekidis 06, Khoo-Lu-Ying 17, Cao-Wang-E 18, Zhu-Zabaras 18, Bhattacharya-Hosseini-Kovachki-Stuart, 18,
Du-Gunzburger 02, Qian-Kramer-Peherstorfer-Willcox 20, Lee-Carlberg 20, Wang-Cheung-Leung-Chung-Efendiev-Wheeler 20,......
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The Era of Informative and Intelligent Scientific Computation (I2SC)

? (I2SC) represents the loop of discovery: data-driven modeling/learning + integrating dynamics.

Scientific Computation (I2SC)

9

.

.

Informative and Intelligent

(A Discovery Loop)

Model

Simulation

Data

Physics Information

Learning

Model DataData

Forward Problem

Inverse Problem

9
I2SC was coined in 2004, published later in Du 2008, AIP Studies in Applied Math
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Data-driven modeling of dynamics via machine learning

Data-driven machine learning of ẋ = f (x): find f =f (x) from given snapshots {xn} of state x(t).

Some relevant works: Schmidt-Lipson, Distilling free-form natural laws from experimental data, Science, 09

Brunton-Noack-Koumoutsakos ARFM 20,
Kang-Liao-Liu JSC 21,
Kevrekidis- Rowley-Williams JCD 16,
Kutz-Brunton-Brunton-Proctor SIAM 16,
Lee-Carlberg, JCP 20,
Long-Lu-Dong JCP 19,
Lu-Zhong-Tang-Maggioni PNAS 19,
Qian-Kramer-Peherstorfer-Willcox PhysD 20,
Qin-Wu-Xiu JCP 19,
Raissi-Perdikaris-Karniadakis 18,
Raissi-Yazdani-Karniadakis Science 20,
Rudy-Kutz-Brunton JCP 19,
Sun-Zhang-Schaeffer PMLR 19,
Teng-Wang-Ding-Zhang-Wang 20,
Tipireddy-Perdikaris-Stinis-Tartakovsky 19,
Wang-Cheung-Leung-Chung-Efendiev-Wheeler 20,
Wu-Xiu JCP 20,
Xie-Zhang-Webster 18,
......
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Rudy-Kutz-Brunton JCP 19,
Sun-Zhang-Schaeffer PMLR 19,
Teng-Wang-Ding-Zhang-Wang 20,
Tipireddy-Perdikaris-Stinis-Tartakovsky 19,
Wang-Cheung-Leung-Chung-Efendiev-Wheeler 20,
Wu-Xiu JCP 20,
Xie-Zhang-Webster 18,
......

An illustrative attempt (LMnet):

DNN for f
+

LMM for dynamics.

R-P-K 18, ......

As expected?

Convergence?

Quantitative
analysis/theorems?
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Dynamics Discovery Using LMM: Numerical Analysis

Dynamics discovery of ẋ(t) = f (x(t)): given x̂h = {x̂n}Nn=0 ⇒ LMM + DNN ⇒ f .

Objective: to conform with (discrete) dynamics, and to achieve fidelity with data.

Expected: higher order LMM + more data + larger NN ⇒ better recovered dynamics.

Surprise! E.g., errors for a 2D harmonic oscillator: with

Adams-Bashforth (AB, left) or Adams-Moulton (AM, right),

NN with 256 nodes, tanh activation, h=.03, .02, .01.

AM3: higher order, more data ⇒ larger error.

Explaining the unexpected: problems with training? landscape?...... the usual cliche.

Deeper reason: new tale of LMM, motivated by deep learning of unknown dynamics
(Kelller-Du arXiv:1912.12728, 2019,(SINUM 2021), Du-Gu-Yang-Zhou, arXiv2103.11488)
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Dynamics Discovery Using LMM

Dynamics discovery of ẋ(t) = f (x(t)): given x̂h = {x̂n}Nn=0 ⇒ LMM + DNN ⇒ f .

Framework: for estimated state/dynamics (xh, f h) and NN represented dynamics f̂ h
NN (discrete).

Loss := errors (dynamics conformity + NN representation + data fidelity) + regularization

= γ1‖LMM residual of (xh, f h)‖2 + γ2‖f̂ h
NN − f h‖2 + γ3‖xh − x̂h‖2 + γ4R(f̂ h

NN , f
h, xh).

Important to note: only connection to the unknown dynamics is provided by the LMM residual

(effectively linking the differentiation of the state with the interpolation of the dynamics).

An idealized setting (Keller-Du 2019): unique/smooth dynamics in [0,T ]; complete and exact

snapshots of the state (x̂h=xh); no regularization; error-free NN representation (f̂ h
NN = f̂ h).

⇒ Loss for dynamics discovery is primarily due to the LMM residual of (x̂h, f̂ h).

⇒ Minimize loss ⇔ Zero LMM residual of (x̂h, f̂ h) (overparametrized regime).

New theory on convergence for learning f h − f̂ h
NN = f h − f̂ h → 0 as h→ 0 via consistency/stability.
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LMM: integrating and learning dynamics

Mathematical theory on LMM for integrating and learning dynamics

Task Integrating dynamics Learning dynamics

Goal Given f , find x(t) Given {x(tn)}, find f

Type Forward problem Inverse problem

Theory Dalhquist etc Keller-Du

Consistency ρ(1) = 0, ρ′(1) = σ(1) ρ(1) = 0, ρ′(1) = σ(1)

Stability Dalhquist root condition on ρ New root conditions on σ or σ̂

Order ρ(ez)− zσ(ez) = O(zk+1) ρ(ez)− zσ(ez) = O(zk+1)

Examples BDF-M (M≤ 6), Adams-Family BDF, AB-M (M≤6), AM-M (M≤2)

Note: the theory on learning dynamics is also valid, e.g. with function approximations (Du-Gu-Yang-Zhou 2021)

such as ReLU FNNs, but the ill-posed nature of inverse problems remains unaccounted for.
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Dynamics Discovery Using LMM

Key: zero LMM residual for idealized LMM based dynamics discovery, that is,

M0∑
m=m0

βm f̂n−m =
1

h

M∑
m=0

αmx̂n−m, M ≤ n ≤ N. ⇔ Matrix form: B f̂ h = h−1Ax̂h

where m0 and M0 are defined by: βm0 6= 0 and βM0 6= 0 but βm = 0, ∀m /∈ [m0,M0], and

matrices A and B, respectively, encode {αm} and {βm} (or {βm}M0
m0

, to be precise).

Truncation error for the exact state and dynamics (xh, f h): τ h = h−1Axh − Bf h, i.e.,

(τ h)n =
1

h

M∑
m=0

αmx(tn−m)−
M∑

m=0

βmf (x(tn−m)), M ≤ n ≤ N. (classical definition)

For smooth state x(t): (τh)n=
∞∑
m=0

(−1)mCmh
m−1xm(tn), where Cm=

M∑
k=1

kmαk

m!
+ m

M∑
k=0

km−1βk
m!

.
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Convergence for dynamics discovery

Learned dynamics f̂ h: B f̂ h = h−1Ax̂h, for x̂h = xh.

Exact dynamics f h: Bf h = h−1Axh − τ h,

Error on dynamics eh
d=f̂ h−f h: Beh

d = h−1A(x̂h − xh) + τ h = τ h.

Intuitively, as h→ 0, τ h → 0︸ ︷︷ ︸ and ”B−1 ” bounded︸ ︷︷ ︸ ⇒ eh
d → 0︸ ︷︷ ︸ (to be made rigorous).

Consistency Stability Convergence

In contrast, for time integration using LMM, let eh
s =x−x̂ , error for integrated state:

Aeh
s = hB(f (x)− f (x̂)) + hτ h ≈ h(B∇f )eh

s + hτ h.

Numerical ODE: as h→ 0, τ h → 0︸ ︷︷ ︸ and ”A−1 ” bounded︸ ︷︷ ︸ ⇒ eh
s → 0︸ ︷︷ ︸ (classical theory).

Consistency Stability Convergence

@columbia QD 12



Convergence for dynamics discovery

Learned dynamics f̂ h: B f̂ h = h−1Ax̂h, for x̂h = xh.

Exact dynamics f h: Bf h = h−1Axh − τ h,

Error on dynamics eh
d=f̂ h−f h: Beh

d = h−1A(x̂h − xh) + τ h = τ h.

Intuitively, as h→ 0, τ h → 0︸ ︷︷ ︸ and ”B−1 ” bounded︸ ︷︷ ︸ ⇒ eh
d → 0︸ ︷︷ ︸ (to be made rigorous).

Consistency Stability Convergence

In contrast, for time integration using LMM, let eh
s =x−x̂ , error for integrated state:

Aeh
s = hB(f (x)− f (x̂)) + hτ h ≈ h(B∇f )eh

s + hτ h.

Numerical ODE: as h→ 0, τ h → 0︸ ︷︷ ︸ and ”A−1 ” bounded︸ ︷︷ ︸ ⇒ eh
s → 0︸ ︷︷ ︸ (classical theory).

Consistency Stability Convergence

@columbia QD 12



Convergence for dynamics discovery

Learned dynamics f̂ h: B f̂ h = h−1Ax̂h, for x̂h = xh.

Exact dynamics f h: Bf h = h−1Axh − τ h,

Error on dynamics eh
d=f̂ h−f h: Beh

d = h−1A(x̂h − xh) + τ h = τ h.

Intuitively, as h→ 0, τ h → 0︸ ︷︷ ︸ and ”B−1 ” bounded︸ ︷︷ ︸ ⇒ eh
d → 0︸ ︷︷ ︸ (to be made rigorous).

Consistency Stability Convergence

In contrast, for time integration using LMM, let eh
s =x−x̂ , error for integrated state:

Aeh
s = hB(f (x)− f (x̂)) + hτ h ≈ h(B∇f )eh

s + hτ h.

Numerical ODE: as h→ 0, τ h → 0︸ ︷︷ ︸ and ”A−1 ” bounded︸ ︷︷ ︸ ⇒ eh
s → 0︸ ︷︷ ︸ (classical theory).

Consistency Stability Convergence

@columbia QD 12



Consistency and stability for dynamics discovery

Definition (Consistency for dynamics discovery). As h→ 0:

consistent if ‖τ h‖∞ = max
M≤n≤N

|τ h
n | → 0; strongly consistent if ‖τ h‖1 =

N∑
n=M

|τ h
n | → 0.

Definition (Stability for Dynamics Discovery). As h→ 0, wrt prescribed IC in IM= {i}M−m0−1
M−M0

:

stable if ‖f̂ ‖∞ . max
i∈IM
|f̂i |+ ‖B f̂ ‖∞; marginally stable if ‖f̂ ‖∞ . max

i∈IM
|f̂i |+ ‖B f̂ ‖1.

Definition (Root Conditions). σ(r)=rM−M0+m0 σ̂(r), {rj}={roots of σ̂}={roots of σ}\{0}:

strong root condition: |rj | < 1, ∀j ; root condition: |rj | ≤ 1, ∀j and if |rj | = 1, then it is simple.

Remark: root condition on ρ(r) for time integration (Aes ≈ hτ h), and on σ(r) for learning (Beh
d = τ h).
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Consistency and stability for dynamics discovery

Definition (Consistency for dynamics discovery). As h→ 0:

consistent if ‖τ h‖∞ = max
M≤n≤N

|τ h
n | → 0; strongly consistent if ‖τ h‖1 =

N∑
n=M

|τ h
n | → 0.

Definition (Stability for Dynamics Discovery). As h→ 0, wrt prescribed IC in IM= {i}M−m0−1
M−M0

:

stable if ‖f̂ ‖∞ . max
i∈IM
|f̂i |+ ‖B f̂ ‖∞; marginally stable if ‖f̂ ‖∞ . max

i∈IM
|f̂i |+ ‖B f̂ ‖1.
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Stability via root condition and convergence

Theorem (Stability for Discovery, Keller-Du 19)

stable ⇔ strong root condition for σ or σ̂; marginally stable ⇔ root condition for σ or σ̂.

Remark. There have been many studies in the literature on roots of ρ, but little on roots of σ (the latter plays

no role in integrating known dynamics, nor in learning if f̂ h is directly provided rather than solved for),

Definition (Convergence for Discovery) ‖f h − f̂ h‖∞ → 0 as h→ 0 and max
i∈IM
|fi − f̂i | → 0.

Theorem (Convergence for Dynamics Discovery, Keller-Du 19)

consistency + stability ⇒ convergence; strong consistency + marginal stability ⇒ convergence.

Remark. A partial analog to the classical Dahlquist equivalence: convergence⇒consistency + marginal stability.

Remark. regularizations may offer alternatives to the theory without auxiliary conditions maxi∈IM |fi − f̂i | → 0.
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Other related discussions

Other alternative and refined notions for convergence (unpublished):

• Rationalized marginal stability: |rj | ≤ 1 and ∀|rj | = 1 ⇒ simple and ∃Kj ∈ N⇒ r
Kj

j = 1, rj 6= 1.

• Enhanced consistency: maxM≤n≤N |τ h
n | → 0 and N maxM<n≤N |τ h

n − τ h
n−1| → 0.

• Enhanced consistency + Rationalized marginal stability ⇒ Convergence.

Order of convergence for discovery (subject to suitable approximations to initial data):

• Stable LMM: order of convergence = order of truncation error.

• Marginally stable LMM: order of convergence ≥ order of truncation error -1.

but AM-1 has its order of convergence = 2, due to (rationalized) marginal stability.

• Optimal order (analog of Dahlquist 1st barrier): M + 2? ρ and σ both have only unit roots.
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LMM: integrating and learning dynamics

Mathematical theory on LMM for integrating and learning dynamics

Task Integrating dynamics Learning dynamics

Goal Given f , find x(t) Given {x(tn)}, find f

Type Forward problem Inverse problem

Theory Dalhquist etc Keller-Du

Consistency ρ(1) = 0, ρ′(1) = σ(1), ρ(1) = 0, ρ′(1) = σ(1),

Stability Dalhquist root condition on ρ New root condition on σ or σ̂

Order ρ(ez)− zσ(ez) = O(zk+1) ρ(ez)− zσ(ez) = O(zk+1)

Examples Euler, BDF-M (M≤ 6), Adams-Family ? (check stability!)
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Popular LMMs: BDF, Adams-Moulton (AM), Adams-Bashforth (AB)

BDF σ̂(r) = 1 (no root, stable) ⇒ Theorem. BDFs are convergent.

AB-1 σ̂(r) = 1 (no root, stable)

AB-2 σ̂(r) = 3
2
r − 1

2
(r = 1

3
, stable)

AB-3 σ̂(r) = 23
12
r2 − 16

12
r + 5

12
(|r |2 = 5

23
, stable)

AB-4 σ̂(r) = 55
24
r3 − 59

24
r2 + 37

24
r − 9

24
(stable)

AB-5 σ(r) = 1901
720

r4 − 2774
720

r3 + 2616
720

r2 − 1274
720

r + 251
720

(stable)

⇒

AB-M: convergent, M ≤ 5;

Convergent for all M?

AM-0 σ(r) = 1 (no root, stable)

AM-1 σ(r) = 1
2
r + 1

2
(r = −1, marginally stable)

AM-2 σ(r) = 5
12
r2 + 8

12
r − 1

12
(r = −4±

√
21

5
, unstable)

AM-3 σ(r) = 9
24
r3 + 19

24
r2 − 5

24
r + 1

24
(unstable)

AM-4 σ(r) = 251
720

r4 + 646
720

r3 − 264
720

r2 + 106
720

r − 19
720

(unstable)

⇒

AM-0 : convergent;

AM-1 (strongly consistent): convergent;

AM-M: unstable divergent for M = 2, 3, 4.

(this explains earlier experiments!)

For other M?
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Loss of stability of AM-M for M ≥ 2

A-M derived from Lagrange interpolation:

βm =
(−1)m

m!(M −m)!

∫ 1

0

M∏
i=0
i 6=m

(x + i − 1) dx .

Properties (M ≥ 2):

• β0 > |βM | > 0.

• (−1)mβm < 0 for m ≥ 1.

Example: AM-4 σ(r) = 251
720

r 4 + 646
720

r 3 − 264
720

r 2 + 106
720

r − 19
720

Key: β1 > β0 ⇒ (−1)Mσ(−∞) > 0 and (−1)Mσ(−β1

β0
) =

∑
m≥2

(−1)−mβm(
β1

β0
)m < 0.

Recall the abnormal behavior for AM-M for M ≥ 2: it might be rooted in this instability!
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Loss of stability of AM-M for M ≥ 2

Lemma
β1 > β0> 0 for AM-M, M ≥ 2 (Note: β1=β0=1/2 for AM-1).

Proof. For M = 2, we have β1 = 8
12
> β0 = 5

12
> 0. In general,

β1 > β0 > 0⇔
M

M + 1

∫ 1

0

M−1∏
i=1

(x + i)dx >

∫ 1

0

M−1∏
i=0

(x + i)dx > 0.

Assume true for some M > 2, then for M + 1, we have

M + 1

M + 2

∫ 1

0

M∏
i=1

(x + i)dx =
M + 1

M + 2

∫ 1

0

(
x

M−1∏
i=1

(x + i) + M

M−1∏
i=1

(x + i)dx

)

>
M + 1

M + 2

(∫ 1

0

M−1∏
i=0

(x + i) +
M(M + 1)

M

M−1∏
i=0

(x + i)dx

)
=

(M + 1)(M + 2)

(M + 2)

∫ 1

0

M−1∏
i=0

(x + i)dx

> (M + 1)

∫ 1

0

x + M

M + 1

M−1∏
i=0

(x + i)dx =

∫ 1

0

M∏
i=0

(x + i)dx ,

@columbia QD 19



Roots of AB-M for M ≥ 1

Properties of AB-M for M ≥ 2,

• β0 = 0, β1 > |βM | > 0 and (−1)mβm < 0 for m ≥ 1.

• σ̂ associated with AB-M always has a root inside the unit disc if M ≥ 2.

(⇒ For M ≥ 2, AB-M is unstable for dynamics discovery wrt terminal data. Same for AM-M.)

Computationally verified: σ̂ of AB-M has a root r with |r | > 1 for 7 ≤ M ≤ 20.

Conjecture: all roots of σ = σ(r) are inside the unit disk only if M < 7. Note that σ(r) =

∫ 1

0

p(r , x)dx

where p=p(r , x) is the degree M polynomial interpolant in x ∈ R of rM+x at {xj=−j}Mj=0,
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Extensions and open questions

Noisy data via smoothing of observed state with MLS (Keller-Du, unpublished);

Convergence with function approximations (for learning/prediction), Du-Gu-Yang-Zhou, 2021);
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Extensions and open questions

Noisy data via smoothing of observed state with MLS (Keller-Du, unpublished);

Convergence with function approximations (for learning/prediction), Du-Gu-Yang-Zhou, 2021);

For stable LMM with aux conditions (initial, e.g.), the error is bounded by LMM truncation error
and function approximation errors, for example, those with ReLU FNN. For unstable ones, DNN
may still offer ”reasonable” solutions, perhaps due to its ability to implicitly suppress oscillations.

Learning with simulated system with a given IC,

DNNs also offer limited predictive capability:

predicting for different ICs via learned system.
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Extensions and open questions

Noisy data via smoothing of observed state with MLS (Keller-Du, unpublished);

Convergence with function approximations (for learning/prediction), Du-Gu-Yang-Zhou, 2021);

Still many open (theoretical) questions

Stable and optimal order LMMs for dynamics discovery (analog of Dahlquist 1st barrier)?

Other schemes: Milne/Nystrom, predictor/corrector, multistage, structure-preserving integrators?

General class(es) of LMMs that are convergent for both time integration and dynamics discovery?

General linear/nonlinear multistep multistage integrators?

Convergence with regularization such as minimum norm recovery, sparse learning?

Inverse problem nature? non-uniqueness? implicit regularization? generalization error?

(could be suitable projects for students in 1st year numerical differential equation class)
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Message of the day

? Data-driven modeling of dynamic systems via machine learning is an inverse to integrating dynamics.

Scientific Computation (I2SC)

9

.

.

Informative and Intelligent

(A Discovery Loop)

Model

Simulation

Data

Physics Information

Learning

Model DataData

Forward Problem

Inverse Problem
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9
I2SC was coined in 2004, published later in Du 2008, AIP Studies in Applied Math
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.

.

Informative and Intelligent

(A Discovery Loop)

Model

Simulation

Data

Physics Information

Learning

Model DataData

Forward Problem

Inverse Problem

? Avoid blind machine learning: what works for integrating dynamics might not be so for learning.

Thank you.

9
I2SC was coined in 2004, published later in Du 2008, AIP Studies in Applied Math
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