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-
Motivation: Solving PDEs

Seek to solve PDE problems of the form

ur = F(x, t,u, Vu, VZu; A)

Traditional PDE computations using Finite Element Methods use a
computational mesh 7 comprising mesh points and a mesh topology:
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Mesh choice

Accuracy of the computation depends crucially on the choice and shape of

the mesh

Mesh needs to be

e Fine Enough to capture (evolving) small scales/singular behaviour
@ Coarse Enough to allow practical computations
@ Able to resolve local geometry eg. re-entrant corners in non-convex

domains
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PINNS

Physics Informed Neural Networks for solving PDEs: " Mesh free methods”

Use a Deep Neural Net to give a functional approximation to u(x, t) with
inputs x and t.

U(x, t) = DNN(x, t)

U(x, t) is constructed via a combination of linear transformations and
nonlinear/semi-linear activation functions.
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Example: Shallow neural net

N—1
U(x,t) = ) ci(t)a(ai(t)x + bi(t))
i=0
Can take
o(z) = ReLu(z) = z4,
Then
N—1
U(x,t) = ) ci(t)(ai(t)x + bi(t))+

1

Which is piece-wise linear interpolation with free knots at

X,'(t) = —b,-(t)/a;(t).
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-
|: Operation of a 'traditional’ PINN

@ Assume that U(X, t) has strong regularity eg. C?
o Differentiate U(x, t) exactly using the chain rule

e Evaluate the PDE residual at collocation points Xj, tj (chosen to be
uniformly spaced, or random)

@ Train the neural net to minimise a loss function L combining the
PDE residual and boundary and initial conditions
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-
Eg. Solution of two-point BVPs by PINNs

Consider the two-point BVP with Dirichlet boundary conditions:

—uy = f(x,u,uy), x €[0,1] w(0) =a, u(l) = b.

Define output of the PINN by U and residual r(x) := U + f(x, U, Uy).
The PINN is trained by minimising the loss function

=N Z| rU( ) —a® +[U(1) - bP),

where {X,-’},N’ are the collocation points placed in (0,1).
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Numerical results for: —u” = 72

sin(mx).
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Figure: Loss and L2 error for linear interpolant of the PINN solution for N, = 100
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Numerical results: u(x) = sin(mx)
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Figure: Left: PINN with 2 hidden layers and 30 hidden nodes
N, = 100 uniformly distributed

activaction function: Tanh | optimizer: Adam with /r = 1e — 3
Right: Convergence rate for 1st order interpolant
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-
Il Operation of a 'variational’ PINN

@ Assume that U(X, t) has weak regularity eg. H!
e Differentiate U(x, t) exactly using the chain rule

e Construct an appropriate weak form of the PDE (typically involving
an integral)

@ Evaluate the weak form by using quadrature at quadrature points
Xi, tj (chosen to be uniformly spaced, or random)

@ Train the neural net to minimise a loss function combining the weak
form and boundary and initial conditions
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Questions for the seminar

Questions for the seminar

@ When do and don’t PINNS work

@ Can the performance of the PINN be improved by a 'good’ choice of
collocation points

© Can we learn where to place the collocation points?

@ How well do PINNS and ’traditional’ numerical analysis fit together?
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-
'Classical’ r-adaptivity for PDEs

Want to construct a suitable mesh 7 to solve a PDE.
Using a FE method i.e find (learn) the

"best possible mesh” to give the " best possible solution”

o r-adaptivity: relocate mesh vertices X;, preserving mesh
connectivity /topology.

@ When done dynamically X;(t), “moving mesh” method.

@ Some advantages/constraints
o Avoid sudden changes in mesh resolution
e Maintain control over global mesh regularity
o Keep the mesh topology unchanged (if needed)
o Avoid load-balancing issue when used in parallel
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r-adaptivity as a map

o Q¢ — “computational” domain eg. plane, sphere
(often with uniform mesh) mapped to:

o OQp= I-:(QC) — “physical” domain
° 5— coordinate in computational domain

o X = F(£) - coordinate in physical domain

—

Qc, &
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|
Equidistribution

Mesh density controlled by monitor function m(x,t) > 0, through
equidistribution:

m(x, t) x cell area = const

Monitor m is derived from current simulation state

@ A-priori error estimates (e.g. of interpolation error):

m o< ||Vul| e, ||V2ul[ e, etc., so that ‘the function u(X) is represented
as well as possible’

@ m based on diagnostic derived from physical principles, e.g. vorticity
@ A-posteriori error estimates
@ 77 learned 77
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-
r-adaptivity

Qc, €
Adapted mesh is defined by a map )?(g, t)
The Jacobian of this map is J, J;j := g—g
Equidistribution requirement:
m(X, t) det J = const =:
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|
Optimal r-adaptivity

Equidistribution requirement becomes:

m(X, t)detJ =46 (1)

In 1D, this defines the mesh (almost) uniquely.
In 2D /3D, additional regularisation constraints are needed.

—

Budd & Williams (2006): subject to (1), pick X(£) minimising the
Wasserstein distance

1%(€) — €2 d€.

Qc

Prevents tangling and reduces skewness.
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-
r-adaptivity in 1D
In 1D we have moving mesh points
X,',l(t) < X,'(t) < X,'+1(1.'), X,'(t) = X(i/N, t),
hi = Xj+1 — Xj, mesh size

Equidistribution gives

mx¢ = f(constant) = (mx¢)e = 0.

Mit1/2(t)(Xip1 — Xi) — Mi_1o(t)(X; — Xi—1) = 0.

Mii12 = (m(Xi) + m(Xi11))/2

MMPDET1: Solve this to find X;(t): Prone to instability
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-
Moving mesh PDES

Can overcome instability via a moving mesh PDE
[Huang and Russell], [B]

T mxe = (Mxg)e. (MMPDES)

Solve this to find X;(t) = x(i/N, t).
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-
Solving the time evolving PDE 1

"Traditional methods to solve the PDE’

Simultaneous:

Solve MMPDE5S with the PDE in a

ru) 5 = d (mW) ) /e

dt
du(§) _ aX(€)

dt dt

Us(§) = F(x(8), t, Ux(§), Un())

This avoids interpolation problems.
But leads to very stiff ODEs with stability problems.
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-
Solving the time evolving PDE 2

Rezoning:

Alternate between
© Solving the PDE in a Euclidean or a semi-Lagrangian frame
@ Solving MMPDES5 for a short time to find a new mesh

@ Interpolating the solution onto the new mesh (Euclidean frame)
@ Much more stable, less stiff system

@ Requires interpolation

@ Can be used in a PINNs framework
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Burgers’ equation

As an example consider Burgers' equation
_ ./ 2
Up = Uly + €Uy, m(x,t) =1/1+ u2

Burgers equation on moving mesh Burgers' equation: Trajectories of grid points
15 1 T
. T
1

»
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solution u(x.t)
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|
Deep Neural Network for r-adaptivity in 1D

A feed-forward Deep Neural Network (DNN) can be 'in principle’ trained
to approximate a function

f(x)=fiofp_10---0f
ﬁ:U(V‘/Iﬁ—1+bI)I:177L fO:f
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Direct Learned Function Approximation

For a function u(x) solve the following

m|n L(z Z|f xi) — u(xi)|?

where we use the shallow ReLU network:

M

f(x) = Z c¢ilajx — bjl+, z=1a,b,c|.
j=1

and x are the quadrature points.

Use an ADAM SGD (over the quadrature points) optimiser
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Approximation of: u(x) = sin(x)

Uniform quadrature points:

Solution for adaptive’ regime (knot adaptation)

loss
2

v 0 500 1000 1500 2000 2500 3000
epoch

Results poor. Depend crucially on the starting values. Even then poor.
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Approximation of: u(x) = x*/3

Uniform quadrature points:

Solution for adapted knots

4x%10°

3x10°

[

2x10°

v 0 500 1000 1500 2000 2500 3000
epoch

Results still poor! Depend crucially on the starting values. Even then poor.
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Learned Function Approximation: Using Optimal
Equidistribution

Instead take a loss function of the DNN which seeks to minimize the L2
error of the piecewise linear interpolant of the function u(x) given by:

N
lu—Nul| < CY (himip1p0)° =L
i

where m(x) = (14 u2,)/® and L is the loss function.
Network architecture and training parameters:
@ Input: Computational variable £ | Output: Physical variable x
@ Network architecture: 100 hidden nodes in 3 layers
e Optimizer: Adam with learning rate 1073
e Epochs: 50000
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Numerical Result: u(x) = x%/3 (singularity at x = 0)

—— uniform
—— adapted
rate: 2

loss function
g
L2 error
5]

10° 10* 102 10% 10* 102 10°
iteration N

Figure: Left: Loss function for N = 300 decreases abruptly after 200 iterations.
Right: L2 error of h(x) interpolated at the equidistributed points. The
convergence rate is optimal even when N is greater than the training sample size.
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Numerical Result: u(x) = x%/3 (singularity at x = 0)
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Figure: Comparison between uniform and adapted mesh for N = 100. Note that
the equidistributed mesh clusters towards x = 0, where the solution exhibits a
singular behaviour.
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|
MMPDE5

The result of the DNN can be compared with other numerical methods.
MMPDEDS5: Find the steady-state solution of the PDE

1
Orx = T—mag(m(x)agx);

The spatial derivative is discretized using central finite difference and the
time derivative with the implicit Backward Euler:

Xl_n+1 _ X/n B 1
At rmIAE

(m?+1/2(Xi1+11 - Xi"+l) - ’”771/2(Xin+:l - X,-'frll )
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De Boor's algorithm

For Q = [a, b], define an initial uniform mesh 70 = {X°}" . We then
approximate m(x) as a piece-wise constant function and apply iteratively
for a maximum number of iterations/prescribed tolerance

n+1 _ yn (él() (X 1)) _I—l
=X m(X,?_l)+m(§<k") 8T

where k — 1 < i < k, P(Xy) = f"

The mesh sequence converges to a limit mesh 7 provided that m is
sufficiently smooth and N is sufficiently large. The larger N, the faster the
iteration converges.
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Convergence measure-1D

Following from the desired equidistribution condition

Oh

himi 12 = N—-1 =1 N,
the convergence measure for an equidistributed mesh satisfies

(N — 1)h,-m,-+1/2

Qeqg = <K
eq oh eq;

where keq > 1 is independent of i and N. Here oy =), himi 1,5

Note that when rKeq = 1 the mesh is perfectly equidistributed.
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DNN vs standard approaches - convergence rate

—— DNN
-
0 —— MMPDES
De Boor'
10
104
5
o
107
0
107
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DNN vs standard approaches - convergence measure
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-
Solving PDEs with Deep Learning

Now apply these ideas in the context of PINNs
Rezoning method

Apply alternatively
@ Train PINN to solving PDE on given collocation points
(X,', tj) — U()(7 t)
e Use DNN and U(X, t) to equidistribute the meshes 7% and find the
new points (X, t;)

Semi-Langrangian framework

Train a single PINN to learn simultaneously both the mesh 7 and solve the
PDE on that mesh [Pardo, David et. al. (in progress)].

Will consider only time independent BVPs for the rest of this
seminar
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-
Rezoning Method for BVPs

r — PINN _— U m(ul(x))

x DNN -— ¢

End DNN epochs
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Good news: Reaction-Diffusion Equation

Solve —2uy +u=1—xon[0,1] wu(0)=u(l)=0

Loss uniform mesh

Loss equidistributed mesh

3 00 se0 70 w600 12300 1000 17300 20000

uniform mesh

Figure: PINN trained for 20000 epochs, N, = 101, Adam optimizer with
Ir=1e — 3.
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Bad news: Convection-dominated equation

PINNs fail to train when the solution of the BVP exhibits singular
behaviour [Krishnapriyan, Aditi et. al., (2021)]:

€ 1 1
Elxx + (1 2) Ut <1 4€> u=e on[0,1] u(0)=u(1)=0

_l-x _1
u(x) = exp @ (x _&P - e>§p E)

1l—exp =

1 A‘ \_ J\ l'/“ Il

oooooooooo

uuuuuuuuuu
‘‘‘‘‘‘‘‘‘‘‘
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-
Homotopy method
The homotopy method can be used to obtain the solution by reducing
logarithmically € at each iteration.

Given an initial uniform mesh of 2N points, after a fixed time of iterations
N are uniformly relocated on [0,1 — 2¢], while the remaining N are
uniformly distrisbuted on [1 — 2¢, 1].

0 10600 20600 30000 w0000 50000 3 10000 20000 30000 40000 50000
iterations terations

Figure: Loss function for uniform and iteratively adapted mesh.
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Numerical results: Convection Equation

Convection equation on uniform mesh: eps 0.03

Convection equation on equidistributed mesh: eps 0.0243

— exact solution
+ PINN solution | L2 error: 0.0027

exact solution

+ PINN solution | L2 error: 0.0014

Figure: PINN trained for 50000 epochs with Adam optimizer (Ir = 1e — 3).
Left: uniform N = 300 | Right: equidistributed N = 150
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Better news: Poisson equation in 2D

For higher dimensional BVPs more robust network architectures can be
employed:

Now consider a variational-PINN for this PDE problem.
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Deep Galerkin Method for the Poisson equation

The Deep Galerkin Method (DGM) mimics the action of a PINN

u=argminZ(v),
veH

where H is the set of admissible functions (trial functions)

I(u)z/(Au()?)+f(>?))2 a5+ 8 [ (u(%) = up)2ds
Q o0

o DNN based approximation of u which is in C?
@ A numerical quadrature rule for the functional using chosen

quadrature points
@ An algorithm for solving the optimization problem
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Deep Ritz method for the Poisson equation

The Deep Ritz Method (DRM) [Weinan E and Bing Yu, (2017)] seeks
the solution u satisfying

u=argminZ(v),
veH

where H is the set of admissible functions (trial functions) and

I(u) = /Q (;|Vu()_<’)|2 - f(z)u(z)> d%+ 8 | (u(R) — up)?dx

o0
The Deep Ritz method is based of the following assumptions:
e DNN based approximation of u which is in H!

@ A numerical quadrature rule for the functional using chosen
quadrature points

@ An algorithm for solving the optimization problem
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Network Structure

fiv1(x) = o(Wiz 0 o(W;1fi(x) + bi1) + bi2) + fi(x). (2)

The final output is U(x) = fiy1(x) = W fi(x) + by, where W, € R™*d
and b; € R".

For this type of architecture [E] suggests the activation function
RELU3® = max(0, x3) € C2. Other possible choices in C? are:

@ sigmoid(x) = m
o SWiSh(X) = m
e tanh(x)

o 0gin(x) = (sinx)?
ADAM optimiser.
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Poisson Problem on an L-shaped domain

Problem to solve:

—Au= fin Q

w=uponlp

Vu-1ng=gonly.
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Singular solution

@ Solution u(X) has a gradient singularity at the interior corner A;

@ If the interior angle is w and the distance from the corner is r then
™
u(r,0) ~ ref(0), a=—
w

where f(6) is a regular function of

o Corner problem
u(r,0) ~ r?3, r—o.
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Solution error

The Ly error is computed by evaluating the approximate solution on a
Delaunay mesh.
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Figure: Left: exact solution. Right: Delaunay mesh with N = 833 on which the
L, error is computed.
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Numerical results: random quadrature points

Solve Au(x) =0on Q;

u(r,0) = r?/3sin(26/3) on T = 09,

-0.50
-0.75 4.

-1.00

-1.00 -075 -0.50 -025 000 025 050 075 100 ~1.00

-1.00

-0.75 -050 -0.25 000 025 050 075 100

Figure: Left: DGM Right: DRM

Can we improve the accuracy by a better choice of quadrature points?
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OT Based r-adaptivity

Can do r-adaptivity in R” using optimal transport, giving a close link to
machine learning.

Idea Think of m as a measure, and minimise Wasserstein distance

mjn/\)z— 2dp
X

Such that

m(X, t)|dX| = 6|d¢].
Find X
° eg. Using the Sinkhorn algorithm

@ Indirectly eg. Solving the Monge-Ampére equation [B], [PICANNS,
Singh et. al. 21]
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-
OT Adaptive method

@ Solve the Monge-Ampére equation locally at each interior corner
(semi-analytically)
@ Locally redistribute the mesh according to the solution

@ Use monitor function m based on a-priori interpolation error estimates
in Lo orin Ly

3T
Corner: w = >

Crack: w=2m
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|
OT mesh for the L-shaped domain

Figure: OT Mesh for solving Poisson's eq. in a L-shaped domain u(r, ) ~ r?/3
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OT and Deep Galerkin/Ritz

Solutions with OT quadrature points

-0.50

-0.75

-1.00

-1.00 +
-1.00 -075 -0.50 -025 000 025 050 075 100 100 -0.75 -0.50 -025 0.00

Figure: L2 error - randomly sampled points: 0.468 | OT: 0.0639

Left: Deep Galerkin, Right: Deep Ritz

Good choice of quadrature points makes a big difference
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Loss function
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error
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Accuracy Il - relative L? error on OT collocation points
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Summary

@ PINNS work best when combined with good numerical analysis
methods

@ The DNN can be trained to learn the equidistribution process, and
outperforms other standard numerical methods

o Makes a big difference for elliptic two-point BVPs

@ Smaller difference for convective problems, which need homotopy
methods to work at all

@ OT based r-adaptivity is very effective for 2D problems using the
Deep Ritz method

@ Next Goal: Implement the Rezoning approach for adapting the mesh
and solving the PDE, maybe with a learned monitor function

@ Proper convergence theory and proper test comparisons
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