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Motivation: Solving PDEs

Seek to solve PDE problems of the form

ut = F (x , t, u,∇u,∇2u;λ)

Traditional PDE computations using Finite Element Methods use a
computational mesh τ comprising mesh points and a mesh topology:
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Mesh choice

Accuracy of the computation depends crucially on the choice and shape of
the mesh

Mesh needs to be

Fine Enough to capture (evolving) small scales/singular behaviour

Coarse Enough to allow practical computations

Able to resolve local geometry eg. re-entrant corners in non-convex
domains
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PINNS

Physics Informed Neural Networks for solving PDEs: ”Mesh free methods”.
Use a Deep Neural Net to give a functional approximation to u(x , t) with
inputs x and t.

U(x , t) = DNN(x , t)

U(x , t) is constructed via a combination of linear transformations and
nonlinear/semi-linear activation functions.
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Example: Shallow neural net

U(x , t) =
N−1∑
i=0

ci (t)σ(ai (t)x + bi (t))

Can take

σ(z) = ReLu(z) ≡ z+,

Then

U(x , t) =
N−1∑
i=0

ci (t)(ai (t)x + bi (t))+

Which is piece-wise linear interpolation with free knots at
xi (t) = −bi (t)/ai (t).
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I: Operation of a ’traditional’ PINN

Assume that U(X , t) has strong regularity eg. C 2

Differentiate U(x , t) exactly using the chain rule

Evaluate the PDE residual at collocation points Xi , tj (chosen to be
uniformly spaced, or random)

Train the neural net to minimise a loss function L combining the
PDE residual and boundary and initial conditions
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Eg. Solution of two-point BVPs by PINNs

Consider the two-point BVP with Dirichlet boundary conditions:

−uxx = f (x , u, ux), x ∈ [0, 1] u(0) = a, u(1) = b.

Define output of the PINN by U and residual r(x) := Uxx + f (x ,U,Ux).
The PINN is trained by minimising the loss function

L =
1

Nr

Nr∑
i

|r(X r
i )|2 +

1

2

(
|U(0)− a|2 + |U(1)− b|2

)
,

where {X r
i }

Nr
i are the collocation points placed in (0, 1).
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Numerical results for: −u′′ = π2sin(πx).

Figure: Loss and L2 error for linear interpolant of the PINN solution for Nr = 100
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Numerical results: u(x) = sin(πx)

Figure: Left: PINN with 2 hidden layers and 30 hidden nodes
Nr = 100 uniformly distributed
activaction function: Tanh | optimizer: Adam with lr = 1e − 3
Right: Convergence rate for 1st order interpolant
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II Operation of a ’variational’ PINN

Assume that U(X , t) has weak regularity eg. H1

Differentiate U(x , t) exactly using the chain rule

Construct an appropriate weak form of the PDE (typically involving
an integral)

Evaluate the weak form by using quadrature at quadrature points
Xi , tj (chosen to be uniformly spaced, or random)

Train the neural net to minimise a loss function combining the weak
form and boundary and initial conditions
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Questions for the seminar

Questions for the seminar

1 When do and don’t PINNS work

2 Can the performance of the PINN be improved by a ’good’ choice of
collocation points

3 Can we learn where to place the collocation points?

4 How well do PINNS and ’traditional’ numerical analysis fit together?
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’Classical’ r -adaptivity for PDEs

Want to construct a suitable mesh τ to solve a PDE.
Using a FE method i.e find (learn) the

”best possible mesh” to give the ”best possible solution”

r -adaptivity: relocate mesh vertices Xi , preserving mesh
connectivity/topology.

When done dynamically Xi (t), “moving mesh” method.

Some advantages/constraints

Avoid sudden changes in mesh resolution
Maintain control over global mesh regularity
Keep the mesh topology unchanged (if needed)
Avoid load-balancing issue when used in parallel
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r -adaptivity as a map

ΩC – “computational” domain eg. plane, sphere
(often with uniform mesh) mapped to:

ΩP = F⃗ (ΩC ) – “physical” domain

ξ⃗ – coordinate in computational domain

x⃗ = F⃗ (ξ⃗) – coordinate in physical domain

ΩC , ξ⃗ ΩP , x⃗
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Equidistribution

Mesh density controlled by monitor function m(x⃗ , t) > 0, through
equidistribution:

m(x⃗ , t)× cell area = const

Monitor m is derived from current simulation state

A-priori error estimates (e.g. of interpolation error):
m ∝ ∥∇u∥Lp , ∥∇2u∥Lp , etc., so that ‘the function u(x⃗) is represented
as well as possible’

m based on diagnostic derived from physical principles, e.g. vorticity

A-posteriori error estimates

?? learned ??
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r -adaptivity

ΩC , ξ⃗ ΩP , x⃗

Adapted mesh is defined by a map x⃗(ξ⃗, t)

The Jacobian of this map is J, Jij :=
∂xi
∂ξj

Equidistribution requirement:

m(x⃗ , t) det J = const =: θ
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Optimal r -adaptivity

Equidistribution requirement becomes:

m(x⃗ , t) det J = θ (1)

In 1D, this defines the mesh (almost) uniquely.

In 2D/3D, additional regularisation constraints are needed.

Budd & Williams (2006): subject to (1), pick x⃗(ξ⃗) minimising the
Wasserstein distance ∫

ΩC

|x⃗(ξ⃗)− ξ⃗|2 dξ⃗.

Prevents tangling and reduces skewness.
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r-adaptivity in 1D

In 1D we have moving mesh points

Xi−1(t) < Xi (t) < Xi+1(t), Xi (t) ≡ x(i/N, t),

hi = Xi+1 − Xi , mesh size

Equidistribution gives

mxξ = θ(constant) =⇒ (mxξ)ξ = 0.

Mi+1/2(t)(Xi+1 − Xi )−Mi−1/2(t)(Xi − Xi−1) = 0.

Mi+1/2 = (m(Xi ) +m(Xi+1))/2

MMPDE1: Solve this to find Xi (t): Prone to instability
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Moving mesh PDES

Can overcome instability via a moving mesh PDE
[Huang and Russell], [B]

τ m xt = (mxξ)ξ. (MMPDE5)

Solve this to find Xi (t) = x(i/N, t).
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Solving the time evolving PDE 1

’Traditional methods to solve the PDE’

Simultaneous:

Solve MMPDE5 together with the PDE in a Lagrangian frame:

τ m(U)
dX

dt
= d

(
m(U)

dX

dξ

)
/dξ

dU(ξ)

dt
− dX (ξ)

dt
Ux(ξ) = f (x(ξ), t,Ux(ξ),Uxx(ξ))

This avoids interpolation problems.
But leads to very stiff ODEs with stability problems.
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Solving the time evolving PDE 2

Rezoning:

Alternate between

1 Solving the PDE in a Euclidean or a semi-Lagrangian frame

2 Solving MMPDE5 for a short time to find a new mesh

3 Interpolating the solution onto the new mesh (Euclidean frame)

Much more stable, less stiff system

Requires interpolation

Can be used in a PINNs framework
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Burgers’ equation

As an example consider Burgers’ equation

ut = uux + ϵuxx , m(x , t) =
√

1 + u2x
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Deep Neural Network for r-adaptivity in 1D

A feed-forward Deep Neural Network (DNN) can be ’in principle’ trained
to approximate a function

f (x) = fL ◦ fL−1 ◦ · · · ◦ f0
fi = σ(Wi fi−1 + bi ) i = 1, · · · , L f0 = ξ
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Direct Learned Function Approximation

For a function u(x) solve the following

min
z

L(z) ≡
N∑

k=1

|f (xk)− u(xk)|2

where we use the shallow ReLU network:

f (x) =
M∑
j=1

cj [ajx − bj ]+, z = [a,b, c].

and xk are the quadrature points.

Use an ADAM SGD (over the quadrature points) optimiser
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Approximation of: u(x) = sin(x)

Uniform quadrature points:

Results poor. Depend crucially on the starting values. Even then poor.
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Approximation of: u(x) = x2/3

Uniform quadrature points:

Results still poor! Depend crucially on the starting values. Even then poor.
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Learned Function Approximation: Using Optimal
Equidistribution

Instead take a loss function of the DNN which seeks to minimize the L2

error of the piecewise linear interpolant of the function u(x) given by:

||u − Πu||2L2 ≤ C
N∑
i

(
himi+1/2

)5 ≡ L

where m(x) = (1 + u2xx)
1/5 and L is the loss function.

Network architecture and training parameters:

Input: Computational variable ξ | Output: Physical variable x

Network architecture: 100 hidden nodes in 3 layers

Optimizer: Adam with learning rate 10−3

Epochs: 50000
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Numerical Result: u(x) = x2/3 (singularity at x = 0)

Figure: Left: Loss function for N = 300 decreases abruptly after 200 iterations.
Right: L2 error of h(x) interpolated at the equidistributed points. The
convergence rate is optimal even when N is greater than the training sample size.
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Numerical Result: u(x) = x2/3 (singularity at x = 0)

Figure: Comparison between uniform and adapted mesh for N = 100. Note that
the equidistributed mesh clusters towards x = 0, where the solution exhibits a
singular behaviour.
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MMPDE5

The result of the DNN can be compared with other numerical methods.
MMPDE5: Find the steady-state solution of the PDE

∂tx =
1

τm
∂ξ(m(x)∂ξx);

The spatial derivative is discretized using central finite difference and the
time derivative with the implicit Backward Euler:

X n+1
i − X n

i

∆t
=

1

τmn
i ∆ξ2

(
mn

i+1/2(X
n+1
i+1 − X n+1

i )−mn
i−1/2(X

n+1
i − X n+1

i−1 )
)
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De Boor’s algorithm

For Ω = [a, b], define an initial uniform mesh τ0 = {X 0
i }Ni=1. We then

approximate m(x) as a piece-wise constant function and apply iteratively
for a maximum number of iterations/prescribed tolerance

X n+1
i = X n

k−1 +
2(ξiP(b)− P(X n

k−1))

m(X n
k−1) +m(X n

k )
, ξi =

i − 1

N − 1

where k − 1 < i ≤ k , P(Xk) =
∫ Xk

a m(x)dx .

The mesh sequence converges to a limit mesh τ provided that m is
sufficiently smooth and N is sufficiently large. The larger N, the faster the
iteration converges.
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Convergence measure-1D

Following from the desired equidistribution condition

himi+1/2 =
σh

N − 1
i = 1, · · · ,N ,

the convergence measure for an equidistributed mesh satisfies

Qeq =
(N − 1)himi+1/2

σh
≤ κeq,

where κeq ≥ 1 is independent of i and N. Here σh =
∑

i himi+1/2.

Note that when κeq = 1 the mesh is perfectly equidistributed.
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DNN vs standard approaches - convergence rate
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DNN vs standard approaches - convergence measure
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Solving PDEs with Deep Learning

Now apply these ideas in the context of PINNs

Rezoning method

Apply alternatively

Train PINN to solving PDE on given collocation points
(Xi , tj) → U(X , t)

Use DNN and U(X , t) to equidistribute the meshes τ tj and find the
new points (Xi , tj)

Semi-Langrangian framework

Train a single PINN to learn simultaneously both the mesh τ and solve the
PDE on that mesh [Pardo, David et. al. (in progress)].

Will consider only time independent BVPs for the rest of this
seminar
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Rezoning Method for BVPs

Simone Appella and Chris Budd (Bath) r-adaptivity and DL Limerick, March, 2022 35 / 56



Good news: Reaction-Diffusion Equation

Solve −ε2uxx + u = 1− x on [0, 1] u(0) = u(1) = 0

Figure: PINN trained for 20000 epochs, Nr = 101, Adam optimizer with
lr = 1e − 3.
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Bad news: Convection-dominated equation

PINNs fail to train when the solution of the BVP exhibits singular
behaviour [Krishnapriyan, Aditi et. al., (2021)]:

−εuxx +
(
1− ε

2

)
ux +

1

4

(
1− 1

4
ε

)
u = e−x/4 on [0, 1] u(0) = u(1) = 0

u(x) = exp
−x
4

(
x − exp−

1−x
ε − exp−

1
ε

1− exp−
1
ε

)
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Homotopy method

The homotopy method can be used to obtain the solution by reducing
logarithmically ε at each iteration.

Given an initial uniform mesh of 2N points, after a fixed time of iterations
N are uniformly relocated on [0, 1− 2ε], while the remaining N are
uniformly distrisbuted on [1− 2ε, 1].

Figure: Loss function for uniform and iteratively adapted mesh.
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Numerical results: Convection Equation

Figure: PINN trained for 50000 epochs with Adam optimizer (lr = 1e − 3).
Left: uniform N = 300 | Right: equidistributed N = 150
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Better news: Poisson equation in 2D

For higher dimensional BVPs more robust network architectures can be
employed:

Now consider a variational-PINN for this PDE problem.
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Deep Galerkin Method for the Poisson equation

The Deep Galerkin Method (DGM) mimics the action of a PINN

u = argmin
v∈H

I(v),

where H is the set of admissible functions (trial functions)

I(u) =
∫
Ω
(∆u(x⃗) + f (x⃗))2 dx⃗ + β

∫
∂Ω

(u(x⃗)− uD)
2dx⃗

DNN based approximation of u which is in C 2

A numerical quadrature rule for the functional using chosen
quadrature points

An algorithm for solving the optimization problem
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Deep Ritz method for the Poisson equation

The Deep Ritz Method (DRM) [Weinan E and Bing Yu, (2017)] seeks
the solution u satisfying

u = argmin
v∈H

I(v),

where H is the set of admissible functions (trial functions) and

I(u) =
∫
Ω

(
1

2
|∇u(x⃗)|2 − f (x⃗)u(x⃗)

)
dx⃗ + β

∫
∂Ω

(u(x⃗)− uD)
2dx⃗

The Deep Ritz method is based of the following assumptions:

DNN based approximation of u which is in H1

A numerical quadrature rule for the functional using chosen
quadrature points

An algorithm for solving the optimization problem
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Network Structure

fi+1(x) = σ(Wi ,2 ◦ σ(Wi ,1fi (x) + bi ,1) + bi ,2) + fi (x). (2)

The final output is U(x) = fL+1(x) = WLfL(x) + bL, where WL ∈ Rn×d

and bL ∈ Rn.

For this type of architecture [E] suggests the activation function
RELU3 = max(0, x3) ∈ C 2. Other possible choices in C 2 are:

sigmoid(x) = 1
1+exp(−x)

swish(x) = x
1+exp(−x)

tanh(x)

σsin(x) = (sin x)3

ADAM optimiser.
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Poisson Problem on an L-shaped domain
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Singular solution

Solution u(x⃗) has a gradient singularity at the interior corner Ai

If the interior angle is ω and the distance from the corner is r then

u(r , θ) ∼ rαf (θ), α =
π

ω

where f (θ) is a regular function of θ

Corner problem
u(r , θ) ∼ r2/3, r → 0.
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Solution error

The L2 error is computed by evaluating the approximate solution on a
Delaunay mesh.

Figure: Left: exact solution. Right: Delaunay mesh with N = 833 on which the
L2 error is computed.
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Numerical results: random quadrature points

Solve ∆u(x) = 0 on ΩL u(r , θ) = r2/3sin(2θ/3) on Γ = ∂ΩL

Figure: Left: DGM Right: DRM

Can we improve the accuracy by a better choice of quadrature points?
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OT Based r-adaptivity

Can do r-adaptivity in Rn using optimal transport, giving a close link to
machine learning.

Idea Think of m as a measure, and minimise Wasserstein distance

min
X⃗

∫
|X⃗− ξ⃗|2dµ

Such that

m(X⃗, t)|dX⃗| = θ|d ξ⃗|.

Find X⃗

Directly eg. Using the Sinkhorn algorithm

Indirectly eg. Solving the Monge-Ampére equation [B], [PICANNS,
Singh et. al. 21]
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OT Adaptive method

Solve the Monge-Ampére equation locally at each interior corner
(semi-analytically)
Locally redistribute the mesh according to the solution
Use monitor function m based on a-priori interpolation error estimates
in L∞ or in L2
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OT mesh for the L-shaped domain

Figure: OT Mesh for solving Poisson’s eq. in a L-shaped domain u(r , θ) ∼ r2/3
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OT and Deep Galerkin/Ritz

Solutions with OT quadrature points

Figure: L2 error - randomly sampled points: 0.468 | OT: 0.0639

Left: Deep Galerkin, Right: Deep Ritz

Good choice of quadrature points makes a big difference
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Loss function
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Accuracy I - Relative L2 error (N = 833)
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Accuracy II - relative L2 error on OT collocation points
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Summary

PINNS work best when combined with good numerical analysis
methods

The DNN can be trained to learn the equidistribution process, and
outperforms other standard numerical methods

Makes a big difference for elliptic two-point BVPs

Smaller difference for convective problems, which need homotopy
methods to work at all

OT based r-adaptivity is very effective for 2D problems using the
Deep Ritz method

Next Goal: Implement the Rezoning approach for adapting the mesh
and solving the PDE, maybe with a learned monitor function

Proper convergence theory and proper test comparisons
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