Simplest random walks for boundary value problems

M.V. Tretyakov School of Mathematical Sciences, University of Nottingham, UK

Irish Numerical Analysis Forum, 14th April 2022

Plan of the talk

- Introduction
- \bullet Dirichlet problem for parabolic and elliptic linear PDEs [Milstein, T 2002]
- Robin problem for parabolic and elliptic linear PDEs [Leimkuhler, Sharma,T 2022?]
- Dirichlet problem for linear PIDEs [Deligiannidis, Maurer, T, 2021]
- Conclusions

Introduction

$$L := \frac{\partial}{\partial t} + \frac{1}{2} \sum_{r=1}^{q} \sum_{i,j=1}^{d} \sigma_r^i \sigma_r^j \frac{\partial^2}{\partial x^i \partial x^j} + \sum_{i=1}^{d} b^i \frac{\partial}{\partial x^i}$$
(1)

The Cauchy problem for linear parabolic PDE:

$$Lu = 0, \quad t < T, \ x \in \mathbb{R}^d, \tag{2}$$

$$u(T,x) = f(x), x \in \mathbb{R}^d.$$
(3)

Introduction

$$L := \frac{\partial}{\partial t} + \frac{1}{2} \sum_{r=1}^{q} \sum_{i,j=1}^{d} \sigma_r^i \sigma_r^j \frac{\partial^2}{\partial x^i \partial x^j} + \sum_{i=1}^{d} b^i \frac{\partial}{\partial x^i}$$
(1)

The Cauchy problem for linear parabolic PDE:

$$Lu = 0, \quad t < T, \ x \in \mathbb{R}^d, \tag{2}$$

$$u(T,x) = f(x), x \in \mathbb{R}^d.$$
(3)

Then

$$u(t_0, x) = Ef(X_{t_0, x}(T)),$$
 (4)

where $X_{t_0,x}(t)$, $t \geq t_0$, is the solution of the Ito SDEs

$$dX = b(t, X)dt + \sum_{r=1}^{q} \sigma_r(t, X)dw_r(t), \quad X(t_0) = x.$$
 (5)

Introduction

$$L := \frac{\partial}{\partial t} + \frac{1}{2} \sum_{r=1}^{q} \sum_{i,j=1}^{d} \sigma_r^i \sigma_r^j \frac{\partial^2}{\partial x^i \partial x^j} + \sum_{i=1}^{d} b^i \frac{\partial}{\partial x^i}$$
(1)

The Cauchy problem for linear parabolic PDE:

$$Lu = 0, \quad t < T, \ x \in \mathbb{R}^d, \tag{2}$$

$$u(T,x) = f(x), x \in \mathbb{R}^d.$$
(3)

Then

$$u(t_0, x) = Ef(X_{t_0, x}(T)),$$
 (4)

where $X_{t_{0},x}(t)$, $t \geq t_{0}$, is the solution of the Ito SDEs

$$dX = b(t, X)dt + \sum_{r=1}^{q} \sigma_r(t, X)dw_r(t), \quad X(t_0) = x.$$
 (5)

Approximation:

$$u \equiv Ef(X(T)) \simeq \bar{u} \equiv Ef(X_N) \simeq \hat{u} \equiv \frac{1}{M} \sum_{m=1}^M f(X_N^{(m)}) , \qquad (6)$$

where $X_N^{(m)}$, m = 1, ..., M, are independent realizations of X_N .

Definition

If an approximation \bar{X} is such that

$$|Ef(\bar{X}(T)) - Ef(X(T))| \le Kh^p \tag{7}$$

for f from a class of functions with polynomial growth at infinity, then we say that the **weak order of accuracy** of the approximation \bar{X} (the method \bar{X}) is p. The constant K depends on the SDE coefficients, on the function f and on T.

The weak Euler scheme (Milstein (1978))

$$X_{k+1} = X_k + b_k h + \sqrt{h} \sum_{r=1}^{q} \sigma_{rk} \eta_{rk} , \qquad (8)$$

where η_{rk} , $r = 1, \ldots, q$, $k = 0, \ldots, N - 1$, are independent random variables taking the values +1 and -1 with probabilities 1/2, also has first order of accuracy in the sense of weak approximation. [e.g. Milstein, T.; Springer, 2004 or 2021]

Dirichlet problem

Let G be a bounded domain in \mathbf{R}^d and $Q = [T_0, T) \times G \subset \mathbf{R}^{d+1}$, and $\Gamma = \overline{Q} \setminus Q$. Consider the Dirichlet problem

$$\frac{\partial u}{\partial t} + \frac{1}{2} \sum_{i,j=1}^{d} a^{ij}(t,x) \frac{\partial^2 u}{\partial x^i \partial x^j} + \sum_{i=1}^{d} b^i(t,x) \frac{\partial u}{\partial x^i} + c(t,x)u \qquad (9)$$
$$+g(t,x) = 0, \ (t,x) \in Q,$$
$$u \mid_{\Gamma} = \varphi(t,x). \qquad (10)$$

Dirichlet problem

Let G be a bounded domain in \mathbf{R}^d and $Q = [T_0, T) \times G \subset \mathbf{R}^{d+1}$, and $\Gamma = \overline{Q} \setminus Q$. Consider the Dirichlet problem

$$\frac{\partial u}{\partial t} + \frac{1}{2} \sum_{i,j=1}^{d} a^{ij}(t,x) \frac{\partial^2 u}{\partial x^i \partial x^j} + \sum_{i=1}^{d} b^i(t,x) \frac{\partial u}{\partial x^i} + c(t,x)u \qquad (9)$$

$$+ g(t,x) = 0, \ (t,x) \in Q,$$

$$u \mid_{\Gamma} = \varphi(t,x). \qquad (10)$$

The probabilistic representation:

$$u(t,x) = E\left[\varphi(\tau, X_{t,x}(\tau))Y_{t,x,1}(\tau) + Z_{t,x,1,0}(\tau)\right],$$
(11)

where $X_{t,x}(s)$, $Y_{t,x,y}(s)$, $Z_{t,x,y,z}(s)$, $s \ge t$, is the solution of the SDEs:

$$dX = (b(s,X) - \sigma(s,X)\mu(s,X)) ds + \sigma(s,X) dw(s), \quad X(t) = x, \quad (12)$$

$$dY = c(s, X)Y \, ds + \mu^{\dagger}(s, X)Y \, dw(s), \quad Y(t) = y, \tag{13}$$

$$dZ = g(s, X)Y \, ds + F^{\mathsf{T}}(s, X)Y \, dw(s), \ \ Z(t) = z,$$
(14)

 $(t,x) \in Q, \tau = \tau_{t,x}$ is the first exit time of $(s, X_{t,x}(s))$ to Γ , $w(s) = (w^1(s), \dots, w^d(s))^{\mathsf{T}}$ is a standard Wiener process, the $d \times d$ matrix $\sigma(s, x)$ is obtained from $\sigma(s, x)\sigma^{\mathsf{T}}(s, x) = a(s, x), \mu(s, x)$ and F(s, x) are arbitrary *d*-dimensional vectors sufficiently smooth in \overline{Q} . Cauchy vs Dirichlet problem

Dirichlet problem: approximation

Weak approximation of stopped diffusions: Milstein (1995), Costantini, Pacchiarotti, Satoretto (1998), Gobet (2000), Milstein, T (2002) and also Springer 2004 or 2021, Gobet, Menozzi (2010)

Apply the weak Euler approximation with the simplest simulation of noise to the system (12)-(14)

$$X_{t,x}(t+h) \approx X = x + h(b(t,x) - \sigma(t,x)\mu(t,x)) + h^{1/2}\sigma(t,x)\xi,$$
(15)

$$Y_{t,x,y}(t+h) \approx Y = y + hc(t,x) y + h^{1/2} \mu^{\mathsf{T}}(t,x) y \xi, \qquad (16)$$

$$Z_{t,x,y,z}(t+h) \approx Z = z + hg(t,x) y + h^{1/2} F^{\mathsf{T}}(t,x) y \xi, \qquad (17)$$

where $\xi = (\xi^1, \dots, \xi^d)^{\intercal}, \xi^i, i = 1, \dots, d$, are mutually independent random variables taking the values ± 1 with probability 1/2.

Dirichlet problem: the simplest random walk

Introduce the set of points close to the boundary (a boundary zone) $S_{t,h} \subset \overline{G}$ on the layer t: we say that $x \in S_{t,h}$ if at least one of the 2^d values of the vector X is outside \overline{G} . It is not difficult to see that due to compactness of \overline{Q} there is a constant $\lambda > 0$ such that if the distance from $x \in G$ to the boundary ∂G is equal to or greater than $\lambda \sqrt{h}$ then xis outside the boundary zone and, therefore, for such x all the realizations of the random variable X belong to \overline{G} .

Dirichlet problem: the simplest random walk

Introduce the set of points close to the boundary (a boundary zone) $S_{t,h} \subset \overline{G}$ on the layer t: we say that $x \in S_{t,h}$ if at least one of the 2^d values of the vector X is outside \overline{G} . It is not difficult to see that due to compactness of \overline{Q} there is a constant $\lambda > 0$ such that if the distance from $x \in G$ to the boundary ∂G is equal to or greater than $\lambda \sqrt{h}$ then xis outside the boundary zone and, therefore, for such x all the realizations of the random variable X belong to \overline{G} .

Since restrictions connected with nonexit from the domain \overline{G} should be imposed on an approximation of the system (12), the formulas (15)-(17) can be used only for the points $x \in \overline{G} \setminus S_{t,h}$ on the layer t, and a special construction is required for points from the boundary zone.

Dirichlet problem: the simplest random walk

Let $x \in S_{t,h}$. Denote by $x^{\pi} \in \partial G$ the projection of the point x on the boundary of the domain G (the projection is unique because h is sufficiently small and ∂G is smooth) and by $n(x^{\pi})$ the unit vector of internal normal to ∂G at x^{π} . Introduce the random vector $X_{x,h}^{\pi}$ taking two values x^{π} and $x + h^{1/2}\lambda n(x^{\pi})$ with probabilities $p = p_{x,h}$ and $q = q_{x,h} = 1 - p_{x,h}$, respectively, where

$$p_{x,h} = rac{h^{1/2}\lambda}{|x+h^{1/2}\lambda n(x^{\pi})-x^{\pi}|}$$

If v(x) is a twice continuously differentiable function with the domain of definition \overline{G} , then an approximation of v(x) by the expectation $Ev(X_{x,h}^{\pi})$ corresponds to linear interpolation and

$$v(x) = Ev(X_{x,h}^{\pi}) + \mathcal{O}(h) = pv(x^{\pi}) + qv(x + h^{1/2}\lambda n(x^{\pi})) + \mathcal{O}(h).$$
(18)

We emphasize that the second value $x + h^{1/2}\lambda n(x^{\pi})$ does not belong to the boundary zone. We also note that p is always greater than 1/2 (since the distance from x to ∂G is less than $h^{1/2}\lambda$) and that if $x \in \partial G$ then p = 1 (since in this case $x^{\pi} = x$).

- STEP 0. $X'_0 = x_0, \ Y_0 = 1, \ Z_0 = 0, \ k = 0.$
 - STEP 1. If $X'_k \notin S_{t_k,h}$ then $X_k = X'_k$ and go to STEP 3. If $X'_k \in S_{t_k,h}$ then either $X_k = X'^{\pi}_k$ with probability $p_{X'_k,h}$ or $X_k = X'_k + h^{1/2} \lambda n(X'^{\pi}_k)$ with probability $q_{X'_k,h}$.
 - STEP 2. If $X_k = X_k^{\prime \pi}$ then STOP and $\varkappa = k$, $X_{\varkappa} = X_k^{\prime \pi}, Y_{\varkappa} = Y_k, Z_{\varkappa} = Z_k.$
 - STEP 3. Simulate ξ_k and find X'_{k+1} , Y_{k+1} , Z_{k+1} according to (15)-(17) for $t = t_k$, $x = X_k$, $y = Y_k$, $z = Z_k$, $\xi = \xi_k$.
 - STEP 4. If k + 1 = N, STOP and $\varkappa = N$, $X_{\varkappa} = X'_N$, $Y_{\varkappa} = Y_N$, $Z_{\varkappa} = Z_N$, otherwise k := k + 1 and return to STEP 1.

Theorem

Algorithm has weak order of accuracy O(h), i.e., the inequality

$$|E(\varphi(t_{\varkappa}, X_{\varkappa}) Y_{\varkappa} + Z_{\varkappa}) - u(t_0, x_0)| \le Ch$$
(19)

holds with C > 0 independent of t_0, x_0, h .

The scheme of the proof:

 \bullet Lemma on order $\mathcal{O}(h^2)$ for the one-step approximation for the Euler approximation.

The number of steps when $X'_k \notin S_{t_k,h}$ is obviously $\mathcal{O}(1/h)$.

- Lemma on local order $\mathcal{O}(h)$ when X'_k goes outside \overline{G} .
- Lemma on the average number of steps when $X'_k \in S_{t_k,h}$ is finite.

Milstein, T (2002) and also Springer 2004 or 2021

Dirichlet problem for elliptic PDE

Consider the Dirichlet problem for elliptic equation

$$\frac{1}{2}\sum_{i,j=1}^{d}a^{ij}(x)\frac{\partial^2 u}{\partial x^i \partial x^j} + \sum_{i=1}^{d}b^i(x)\frac{\partial u}{\partial x^i} + c(x)u + g(x) = 0, \ x \in G,$$
(20)

$$u\mid_{\partial G}=\varphi(x). \tag{21}$$

The probabilistic representation:

$$u(x) = E\left[\varphi(X_x(\tau))Y_{x,1}(\tau) + Z_{x,1,0}(\tau)\right], \qquad (22)$$

where $X_x(s)$, $Y_{x,y}(s)$, $Z_{x,y,z}(s)$, $s \ge 0$, is the solution of the Cauchy problem for the system of SDEs:

$$dX = (b(X) - \sigma(X)\mu(X)) \, ds + \sigma(X) \, dw(s), \ X(0) = x, \ (23)$$

$$dY = c(X)Y \, ds + \mu^{\mathsf{T}}(X)Y \, dw(s), \quad Y(0) = y, \tag{24}$$

$$dZ = g(X)Y \, ds + F^{\intercal}(X)Y \, dw(s), \quad Z(0) = z, \tag{25}$$

 $x \in G$, and $\tau = \tau_x$ is the first exit time of the trajectory $X_x(s)$ to the boundary ∂G .

Dirichlet problem for elliptic PDE

To approximate the solution of the system (23), we construct a Markov chain X_k which stops when it reaches the boundary ∂G at a random step \varkappa .

- \bullet The simplest random walk is similar to the parabolic case, except \varkappa can be large
- First-order convergence proved.

Milstein, T (2002) and also Springer 2004 or 2021

Robin problem

Let $G \in \mathbb{R}^d$ be a bounded domain with boundary ∂G and $Q := [T_0, T) \times G$ be a cylinder in \mathbb{R}^{d+1} .

Consider the Robin problem:

$$\frac{\partial u}{\partial t} + \frac{1}{2} \sum_{i,j=1}^{d} a^{ij}(t,x) \frac{\partial u}{\partial x^{i} \partial x^{j}} + \sum_{i=1}^{d} b^{i}(t,x) \frac{\partial u}{\partial x^{i}} + c(t,x)u + g(t,x) = 0, \ (t,x) \in Q,$$

$$u(T,x) = \varphi(x), \ x \in \overline{G},$$

$$\frac{(26)}{(27)}$$

$$\frac{\partial u}{\partial \nu} + \gamma(t,z)u = \psi(t,z), \ (t,z) \in S,$$

$$(28)$$

where $\nu = \nu(z)$ is the direction of the inner normal to the surface ∂G at $z \in \partial G$.

Robin problem

The probabilistic representation [Gikhman, Skorohod 1968, Ikeda, Watanabe 1981, Freidlin 1985]:

$$u(t_0, x) = \mathbb{E}\big(\varphi(X_{t_0, x}(T))Y_{t_0, x, 1}(T) + Z_{t_0, x, 1, 0}(T)\big),$$
(29)

where $X_{t_0,x}(s)$, $Y_{t_0,x,y}(s)$, $Z_{t_0,x,y,z}(s)$, $s \ge t_0$, is the solution of the system of RSDEs

$$dX(s) = b(s, X(s))ds + \sigma(s, X(s))dW(s) + \nu(X(s))I_{\partial G}(X(s))dL(s),$$
(30)

$$dY(s) = c(s, X(s))Y(s)ds + \gamma(s, X(s))I_{\partial G}(X(s))Y(s)dL(s),$$
(31)

$$dZ(s) = g(s, X(s))Y(s)ds - \psi(s, X(s))I_{\partial G}(X(s))Y(s)dL(s),$$
(32)

with $X(t_0) = x$, $Y(t_0) = y$, $Z(t_0) = z$, $T_0 \le t_0 \le s \le T$, $x \in \overline{G}$.

Robin problem

L(s) is the local time of the process X(s) on the boundary ∂G adapted to the filtration $(\mathcal{F}_s)_{s\geq 0}$. A local time is a scalar increasing process continuous in s which increases only when $X(s) \in \partial G$:

$$L(t) = \int_{t_0}^t I_{\partial G}(X(s)) dL(s),$$

[Ikeda, Watanabe 1981; P.L. Lions, A.S. Sznitman 1984; Freidlin 1985]

$$\mathcal{L}(t) = \int_{0}^{t} \mathcal{S}(w(s)) ds$$

Robin problem: approximation of RSDE

Weak approximation of RSDEs:

Y. Liu (1993); G.N. Milstein (1997); C. Costantini, B. Pacchiarotti, F. Sartoretto (1998); E. Gobet (2001); M. Bossy, E. Gobet, and D. Talay (2004), Leimkuhler, Sharma,T (2022?)

Let $(t_0, x) \in Q$. We introduce the uniform discretization of the time interval $[t_0, T]$ so that $t_0 < \cdots < t_N = T$, $h := (T - t_0)/N$ and $t_{k+1} = t_k + h$.

We consider a Markov chain $(X_k)_{k\geq 0}$ with $X_0 = x$ approximating the solution $X_{t_0,x}(t)$ of the RSDEs

$$dX(s) = b(s, X(s))ds + \sigma(s, X(s))dW(s) + \nu(X(s))I_{\partial G}(X(s))dL(s),$$

$$X(t_0) = x.$$

Since X(t) cannot take values outside \overline{G} , the Markov chain should remain in \overline{G} as well. To this end, the chain has an auxiliary (intermediate) step every time it moves from the time layer t_k to t_{k+1} .

We denote this auxiliary step by X'_{k+1} . In moving from X_k to X'_{k+1} , we apply the weak Euler scheme

$$X_{k+1}' = X_k + hb_k + h^{1/2}\sigma_k\xi_{k+1},$$
(33)

where $b_k = b(t_k, X_k)$, $\sigma_k = \sigma(t_k, X_k)$ and $\xi_{k+1} = (\xi_{k+1}^1, \dots, \xi_{k+1}^d)^\top$, ξ_{k+1}^i , $i = 1, \dots, d$, $k = 0, \dots, N-1$, are mutually independent random variables taking values ± 1 with probability 1/2.

We denote this auxiliary step by X'_{k+1} . In moving from X_k to X'_{k+1} , we apply the weak Euler scheme

$$X_{k+1}' = X_k + hb_k + h^{1/2}\sigma_k\xi_{k+1},$$
(33)

where $b_k = b(t_k, X_k)$, $\sigma_k = \sigma(t_k, X_k)$ and $\xi_{k+1} = (\xi_{k+1}^1, \dots, \xi_{k+1}^d)^\top$, ξ_{k+1}^i , $i = 1, \dots, d$, $k = 0, \dots, N-1$, are mutually independent random variables taking values ± 1 with probability 1/2.

Taking this auxiliary step X'_{k+1} while moving from X_k to X_{k+1} portrays cautious behaviour and gives us an opportunity to check whether the realized value of X'_{k+1} is inside the domain G or not. If $X'_{k+1} \in \overline{G}$ then on the same time layer we assign values to X_{k+1} as

 $X_{k+1} = X_{k+1}'$

Four possible realizations $_{(i)}X'_{k+1}$ of X'_{k+1} given X_k in two dimensions.

We find the projection of X'_{k+1} onto ∂G which we denote as X^{π}_{k+1} and we calculate $r_{k+1} = \text{dist}(X'_{k+1}, X^{\pi}_{k+1})$ which is the shortest distance between X'_{k+1} and X^{π}_{k+1} . Note that $\text{dist}(X_k, X'_{k+1}) = \mathcal{O}(h^{1/2})$.

$$X_{k+1} = X'_{k+1} + 2r_{k+1}\nu(X_{k+1}^{\pi}).$$
(34)

Algorithm 1 Algorithm to approximate normal reflected diffusion Step 1: Set $X_0 = x$, $X'_0 = x$, k = 0. Step 2: Simulate ξ_{k+1} and find X'_{k+1} using (33). Step 3: If $X'_{k+1} \in \overline{G}$ then $X_{k+1} = X'_{k+1}$, else (i) find the projection X^{π}_{k+1} of X'_{k+1} on ∂G , (ii) calculate $r_{k+1} = \text{dist}(X'_{k+1}, X^{\pi}_{k+1})$ and find X_{k+1} according to (34).

Step 4: If k + 1 = N then stop, else put k := k + 1 and return to Step 2.

We approximate RSDEs (30) according to Algorithm 1 and complement it by an approximation of (31) and (32). If the intermediate step X'_{k+1} introduced in Algorithm 1, belongs to \overline{G} then we use the Euler scheme:

$$Y_{k+1} = Y_k + hc(t_k, X_k)Y_k$$
 (35)

$$Z_{k+1} = Z_k + hg(t_k, X_k)Y_k.$$
 (36)

If $X_{k+1}^{'} \notin ar{G}$ then

$$Y_{k+1} = Y_k + hc(t_k, X_k)Y_k + 2r_{k+1}\gamma(t_{k+1}, X_{k+1}^{\pi})Y_k + 2r_{k+1}^2\gamma^2(t_{k+1}, X_{k+1}^{\pi})Y_k,$$
(37)
$$Z_{k+1} = Z_k + hg(t_k, X_k)Y_k - 2r_{k+1}\psi(t_{k+1}, X_{k+1}^{\pi})Y_k$$
(38)
$$-2r_{k+1}^2\psi(t_{k+1}, X_{k+1}^{\pi})\gamma(t_{k+1}, X_{k+1}^{\pi})Y_k,$$

where X_{k+1}^{π} is the projection of $X_{k+1}^{'}$ on ∂G and $r_{k+1} = \text{dist}(X_{k+1}^{'}, X_{k+1}^{\pi})$.

Algorithm 2 Algorithm to approximate the Robin problem Step 1: Set $X_0 = x$, $Y_0 = 1$, $Z_0 = 0$, $X'_0 = x$, k = 0. Step 2: Simulate ξ_{k+1} and find X'_{k+1} using (33). Step 3: If $X'_{k+1} \in \overline{G}$ then $X_{k+1} = X'_{k+1}$ and calculate Y_{k+1} and Z_{k+1} according to (35) and (36), respectively, else find X_{k+1} , Y_{k+1} and Z_{k+1} according to (34), (37) and (38), respectively.

Step 4: If k + 1 = N then stop, else put k := k + 1 and return to Step 2.

Theorem

The weak order of accuracy of the Algorithm is O(h) under some assumptions, i.e., for sufficiently small h > 0

$$|\mathbb{E}(\varphi(X_N)Y_N+Z_N)-u(t_0,X_0)| \leq Ch, \qquad (39)$$

where u(t,x) is solution of (26)-(28) and C is a positive constant independent of h.

The scheme of the proof is roughly as follows.

• Lemma on order $\mathcal{O}(h^2)$ for the one-step approximation for the intermediate step X'_{k+1} (i.e., of the Euler approximation). The number of steps when $X'_{k+1} \in \overline{G}$ is obviously $\mathcal{O}(1/h)$.

• Lemma on local order $\mathcal{O}(h^{3/2})$ for X_{k+1} when X'_{k+1} goes outside \overline{G} .

• Lemma on the average number of steps when $X_{k+1}' \notin \overline{G}$ is $\mathcal{O}(1/\sqrt{h})$. Leimkuhler, Sharma,T (2022?)

Elliptic PDEs with Robin boundary condition

Let c(x) be negative for all $x \in \overline{G}$ and $\gamma(z)$ be non-positive for all $z \in \partial G$. Consider the elliptic equation

$$\frac{1}{2}\sum_{i,j=1}^{d}a^{ij}(x)\frac{\partial^2 u}{\partial x^i \partial x^j} + \sum_{i=1}^{d}b^i(x)\frac{\partial u}{\partial x^i} + c(x)u + g(x) = 0, \quad x \in G, \quad (40)$$

with Robin boundary condition

$$\frac{\partial u}{\partial \nu} + \gamma(z)u = \psi(z), \quad z \in \partial G, \tag{41}$$

The probabilistic representation [Freidlin 1985]:

$$u(x) = \lim_{T\to\infty} \mathbb{E}\Big(Z_x(T)\Big),$$

where $Z_x(s)$, $x \in \overline{G}$, is governed by the RSDEs

 $dX(s) = b(X(s))ds + \sigma(X(s))dW(s) + \nu(X(s))I_{\partial G}(X(s))dL(s), X(0) = x,$

$$\begin{aligned} dY(s) &= c(X(s))Y(s)ds + \gamma(X(s))I_{\partial G}(X(s))Y(s)dL(s), \quad Y(0) = 1, \\ dZ(s) &= g(X(s))Y(s)ds - \psi(X(s))I_{\partial G}(X(s))Y(s)dL(s), \quad Z(0) = 0. \\ \sigma(x)\sigma(x)^{\top} &= a(x). \end{aligned}$$

Theorem

Under some assumptions, the following inequality holds for sufficiently small h > 0:

$$\mathbb{E}(Z_N) - u(x)| \le C \left(h + e^{-\lambda T}\right), \tag{42}$$

where Z_N is calculated according to Algorithm 2 approximating the solution u(x) of (40)-(41), and C and λ are positive constants independent of T and h.

Leimkuhler, Sharma, T (2022?)

Elliptic PDEs with Robin boundary condition

The case c(x) = 0 and $\gamma(z) = 0$. The probabilistic representation [Freindlin 1985; Bencherif-Madani, Pardoux 2009]:

$$u(x) = \lim_{T \to \infty} \mathbb{E} Z_x(T) + \bar{u}, \tag{43}$$

where $\bar{u} = \int_{G} u(x)\rho(x)dx$, $\rho(x)$ is the solution of the adjoint problem (note that $\rho(x)$ is the invariant density of X(s)), and $Z_x(s) = Z(s)$ is governed by

$$dZ(s) = -\phi_1(X(s))ds - \phi_2(X(s))I_{\partial G}(X(s))dL(s), \ Z(0) = 0,$$

where X(s) is as before.

A suitable algorithm based on double partitioning of the time interval [0, T] and its convergence proof are in Leimkuhler, Sharma,T (2022?).

Dirichlet problem for parabolic integro-differential equation

Let G be a bounded domain in \mathbb{R}^d , $Q = [t_0, T) \times G$ be a cylinder in \mathbb{R}^{d+1} , $\Gamma = \overline{Q} \setminus Q$, $G^c = \mathbb{R}^d \setminus Q$ be the complement of G and $Q^c := (t_0, T] \times G^c \cup \{T\} \times \overline{G}$. Consider the Dirichlet problem for the PIDE:

$$\frac{\partial u}{\partial t} + Lu + c(t, x)u + g(t, x) = 0, \quad (t, x) \in Q,$$

$$u(t, x) = \varphi(t, x), \quad (t, x) \in Q^{c},$$
(44)

$$Lu(t,x) := \frac{1}{2} \sum_{i,j=1}^{d} a^{ij}(t,x) \frac{\partial^2 u}{\partial x^i \partial x^j}(t,x) + \sum_{i=1}^{d} b^i(t,x) \frac{\partial u}{\partial x^i}(t,x) \quad (45)$$
$$+ \int_{\mathbb{R}^m} \left\{ u(t,x+F(t,x)z) - u(t,x) - \langle F(t,x)z, \nabla u(t,x) \rangle \mathbf{I}_{|z| \le 1} \right\} \nu(\mathrm{d}z);$$

 $F(t,x) = (F^{ij}(t,x))$ is a $d \times m$ -matrix; and $\nu(z), z \in \mathbb{R}^m$, is a Lévy measure such that $\int_{\mathbb{R}^m} (|z|^2 \wedge 1)\nu(\mathrm{d}z) < \infty$. We allow ν to be of infinite intensity, i.e. $\nu(B(0,r)) = \infty$ for some r > 0, where B(x,s) is the open ball of radius s > 0 centred at $x \in \mathbb{R}^d$.

Dirichlet problem for PIDE

(

Probabilistic representation [Applebaum 2009]

$$u(t,x) = \mathbb{E}\left[\varphi\left(\tau_{t,x}, X_{t,x}(\tau_{t,x})\right) Y_{t,x,1}(\tau_{t,x}) + Z_{t,x,1,0}(\tau_{t,x})\right], \quad (t,x) \in Q,$$
(46)

$$dX = b(s, X(s-))ds + \sigma(s, X(s-))dw(s)$$

$$+ \int_{\mathbb{R}^d} F(s, X(s-))z\hat{N}(dz, ds), \quad X_{t,x}(t) = x,$$
(47)

$$dY = c(s, X(s-))Yds, \quad Y_{t,x,y}(t) = y,$$
(48)

$$dZ = g(s, X(s-))Yds, \quad Z_{t,x,y,z}(t) = z,$$
(49)

and $\tau_{t,x} = \inf\{s \ge t : (s, X_{t,x}(s)) \notin Q\}$ is the fist exit-time of $(s, X_{t,x}(s))$ from Q, $\sigma(s, x)\sigma^{\top}(s, x) = a(s, x)$; $w(t) = (w^{1}(t), \dots, w^{d}(t))^{\top}$ is a standard d-dimensional Wiener process; and \hat{N} is a Poisson random measure on $[0, \infty) \times \mathbb{R}^{m}$ with intensity measure $\nu(dz) \times ds$, $\int_{\mathbb{R}^{m}} (|z|^{2} \wedge 1)\nu(dz) < \infty$, and compensated small jumps, i.e.,

$$egin{array}{rl} \hat{N}\left([0,t] imes B
ight) &=& \displaystyle\int_{[0,t] imes B} N(\mathrm{d} z,\mathrm{d} s) - t
u(B\cap\{|z|\leq 1\}), \ & ext{for all }t\geq 0 ext{ and }B\in \mathcal{B}(\mathbb{R}^m). \end{array}$$

Dirichlet problem for PIDE

Consider the approximation of (47), where small jumps are replaced by an appropriate diffusion. [Asmussen, Rosinski (2001); Kohatsu-Higa, Tankov (2010); Kohatsu-Higa, Ortiz-Latorre, Tankov (2013); Deligiannidis, Maurer, T (2021)].

Consider the approximation of (47), where small jumps are replaced by an appropriate diffusion. [Asmussen, Rosinski (2001); Kohatsu-Higa, Tankov (2010); Kohatsu-Higa, Ortiz-Latorre, Tankov (2013); Deligiannidis, Maurer, T (2021)]. Let γ_e be an *m*-dimensional vector with the components

$$\gamma_{\epsilon}^{i} = \int_{\epsilon \le |z| \le 1} z^{i} \nu(\mathrm{d}z); \tag{50}$$

and B_ϵ is an m imes m matrix with the components

$$B_{\epsilon}^{ij} = \int_{|z|<\epsilon} z^{i} z^{j} \nu(\mathrm{d}z), \tag{51}$$

while β_{ϵ} be obtained from the formula $\beta_{\epsilon}\beta_{\epsilon}^{\top} = B_{\epsilon}$.

Example (Tempered α -stable Process)

For a tempered stable distribution which has Lévy measure given by

$$\nu(\mathrm{d} z) = \Big(\frac{C_+\mathrm{e}^{-\lambda_+ z}}{z^{1+\alpha}}\mathbf{I}(z>0) + \frac{C_-\mathrm{e}^{-\lambda_-|z|}}{|z|^{1+\alpha}}\mathbf{I}(z<0)\Big)\mathrm{d} z,$$

for $\alpha \in (0,2)$ and C_+ , C_- , λ_+ , $\lambda_- > 0$: we find that the error from approximating the small jumps by diffusion as in Theorem is of the order $O(\epsilon^{3-\alpha})$

$$\lambda_{\epsilon} := \int_{|z| > \epsilon} \nu(\mathrm{d} z) = \mathcal{O}(\epsilon^{-\alpha}), \quad \gamma_{\epsilon} = \mathcal{O}(\epsilon^{1-\alpha}) \text{ for } \alpha \neq 1 \text{ and } B_{\epsilon} = \mathcal{O}(\epsilon^{2-\alpha})$$

Consider the modified jump-diffusion $ilde{X}_{t_0,x}(t) = ilde{X}^{\epsilon}_{t_0,x}(t)$ defined as

$$\tilde{X}_{t_{0},x}(t) = x + \int_{t_{0}}^{t} \left[b(s, \tilde{X}(s-)) - F(s, \tilde{X}(s-))\gamma_{\epsilon} \right] \mathrm{d}s + \int_{t_{0}}^{t} \sigma(s, \tilde{X}(s-)) \mathrm{d}w(s)$$
(52)

$$+\int_{t_0}^t F(s,\tilde{X}(s-))\beta_{\epsilon} \mathrm{d}W(s) + \int_{t_0}^t \int_{|z|\geq \epsilon} F(s,\tilde{X}(s-))zN(\mathrm{d}z,\mathrm{d}s),$$

where W(t) is a standard *m*-dimensional Wiener process, independent of N and w.

Consider the modified jump-diffusion $ilde{X}_{t_0, imes}(t) = ilde{X}^\epsilon_{t_0, imes}(t)$ defined as

$$\begin{split} \tilde{X}_{t_{0},x}(t) &= x + \int_{t_{0}}^{t} \left[b(s,\tilde{X}(s-)) - F(s,\tilde{X}(s-))\gamma_{\epsilon} \right] \mathrm{d}s + \int_{t_{0}}^{t} \sigma(s,\tilde{X}(s-))\mathrm{d}w(s) \\ & (52) \\ &+ \int_{t_{0}}^{t} F(s,\tilde{X}(s-))\beta_{\epsilon}\mathrm{d}W(s) + \int_{t_{0}}^{t} \int_{|z| \geq \epsilon} F(s,\tilde{X}(s-))zN(\mathrm{d}z,\mathrm{d}s), \end{split}$$

where W(t) is a standard *m*-dimensional Wiener process, independent of N and w.

We observe that, in comparison with (47), in (52) jumps less than ϵ in magnitude are replaced by the additional diffusion part. In this way, the new Lévy measure has finite activity allowing us to simulate its events exactly, i.e. in a practical way.

Consequently,

$$u(t,x) \approx u_{\epsilon}(t,x) := \mathbb{E}\left[\varphi\left(\tilde{\tau}_{t,x}, \tilde{X}_{t,x}(\tilde{\tau}_{t,x})\right) \tilde{Y}_{t,x,1}(\tilde{\tau}_{t,x}) + \tilde{Z}_{t,x,1,0}(\tilde{\tau}_{t,x})\right],$$

$$(53)$$

$$(t,x) \in Q,$$

where $\tilde{\tau}_{t,x} = \inf\{s \ge t : (s, \tilde{X}_{t,x}(s)) \notin Q\}$ is the fist exit time of the space-time Lévy process $(s, \tilde{X}_{t,x}(s))$ from the space-time cylinder Q and $\left(\tilde{X}_{t,x}(s), \tilde{Y}_{t,x,y}(s), \tilde{Z}_{t,x,y,z}(s)\right)_{s \ge 0}$ solves the system of SDEs consisting of (52) along with

$$d\tilde{Y} = c(s,\tilde{X}(s-))\tilde{Y}ds, \quad \tilde{Y}_{t,x,y}(t) = y, \quad (54)$$

$$d\tilde{Z} = g(s, \tilde{X}(s-))\tilde{Y}ds, \quad \tilde{Z}_{t,x,y,z}(t) = z.$$
(55)

Theorem

Under some assumptions, for $0 \le \epsilon < 1$

$$|u^{\epsilon}(t,x) - u(t,x)| \le K \int_{|z| \le \epsilon} |z|^{3} \nu(\mathrm{d} z), \quad (t,x) \in Q,$$
 (56)

where K > 0 does not depend on t, x, ϵ .

[Deligiannidis, Maurer, T, 2021]

Example (Tempered α -stable Process)

For $\alpha \in (0,2)$ and m = 1 consider an α -stable process with Lévy measure given by $\nu(dz) = z^{-1-\alpha}dz$. Then

$$\int_{|z|\leq\epsilon} |z|^3 \nu(\mathrm{d} y) = \frac{\epsilon^{3-\alpha}}{3-\alpha}.$$

Similarly, for a tempered stable distribution which has Lévy measure given by

$$\nu(\mathrm{d} z) = \Big(\frac{C_+\mathrm{e}^{-\lambda_+ z}}{z^{1+\alpha}}\mathbf{I}(z>0) + \frac{C_-\mathrm{e}^{-\lambda_-|z|}}{|z|^{1+\alpha}}\mathbf{I}(z<0)\Big)\mathrm{d} z,$$

for $\alpha \in (0,2)$ and C_+ , C_- , λ_+ , $\lambda_- > 0$ we find that the error from approximating the small jumps by diffusion as in Theorem is of the order $\mathcal{O}(\epsilon^{3-\alpha})$.

Assume that we can exactly sample increments $\boldsymbol{\delta}$ between jump times with the intensity

$$\lambda_{\epsilon} := \int_{|z| > \epsilon} \nu(\mathrm{d}z) \tag{57}$$

and jump sizes J_ϵ are distributed according to the density

$$\rho_{\epsilon}(z) := \frac{\nu(z)\mathbf{I}_{|z|>\epsilon}}{\lambda_{\epsilon}}.$$
(58)

Fix a time-discretization step h > 0 and suppose the current position of the chain is (t, x, y, z). If the jump time increment $\delta < h$, we set $\theta = \delta$, otherwise $\theta = h$, i.e. $\theta = \delta \land h$.

In the case $\theta = h$, we apply the weak explicit Euler approximation with no jumps:

$$\tilde{X}_{t,x}(t+\theta) \approx X = x + \theta \cdot (b(t,x) - F(t,x)\gamma_{\epsilon})$$
(59)

$$+ \sqrt{\theta} \cdot (\sigma(t, x)\xi + F(t, x)\beta_{\epsilon} \eta),$$

$$\tilde{Y}_{t,x,y}(t+\theta) \approx Y = y + \theta \cdot c(t, x)y,$$
(60)

$$\tilde{Z}_{t,x,y,z}(t+\theta) \approx Z = z + \theta \cdot g(t,x) y,$$
 (61)

where $\xi = (\xi^1, \dots, \xi^d)^{\mathsf{T}}$, $\eta = (\eta^1, \dots, \eta^m)^{\mathsf{T}}$, with ξ^1, \dots, ξ^d and η^1, \dots, η^m mutually independent random variables, taking the values ± 1 with equal probability.

In the case of $\theta < h$, we replace (59) by the following explicit Euler approximation

$$\widetilde{X}_{t,x}(t+\theta) \approx X = x + \theta \cdot (b(t,x) - F(t,x)\gamma_{\epsilon})
+ \sqrt{\theta} \cdot (\sigma(t,x)\xi + F(t,x)\beta_{\epsilon} \eta) + F(t,x)J_{\epsilon}.$$
(62)

Let $(t_0, x_0) \in Q$. We aim to find the value $u^{\epsilon}(t_0, x_0)$. Introduce a discretization of the interval $[t_0, T]$, for example the equidistant one: $h := (T - t_0)/L$.

To approximate the solution of the system (52), we construct a Markov chain $(\vartheta_k, X_k, Y_k, Z_k)$ which stops at a random step \varkappa when (ϑ_k, X_k) exits the domain Q.

1: Initialize: $\vartheta_0 = t_0$, $X_0 = x_0$, $Y_0 = 1$, $Z_0 = 0$, k = 0. 2: while $\vartheta_k < T$ or $X_k \in G$ do **Simulate:** ξ_k and η_k with i.i.d. components taking values ± 1 3: with probability 1/2 and independently $I_k \sim \text{Bernoulli}(1 - e^{-\lambda_{\epsilon} h})$. if $I_k = 0$, then 4: **Set:** $\theta_k = h$ 5: **Evaluate:** X_{k+1} , Y_{k+1} , Z_{k+1} according to (15) – (17). 6: else 7: **Sample:** θ_k according to the density $\frac{\lambda_{\epsilon} e^{-\lambda_{\epsilon} x}}{1 - e^{-\lambda_{\epsilon} h}}$. 8: **Sample:** jump size $J_{\epsilon,k}$ according to the density (58). 9: **Evaluate:** X_{k+1} , Y_{k+1} , Z_{k+1} according to (18), (16), (17). 10: end if 11: **Set:** $\vartheta_{k+1} = \vartheta_k + \theta_k$ and k = k + 1. 12: 13: end while 14: Set: $X_{\varkappa} = X_k, Y_{\varkappa} = Y_k, Z_{\varkappa} = Z_k, \varkappa = k, \vartheta_{\varkappa} = \vartheta_k$ 15: if $\vartheta_{\varkappa} < T$ then Set: $\bar{\vartheta}_{\varkappa} = \vartheta_{\varkappa}$ 16: else Set: $\vartheta_{\varkappa} = T$ 17: end if

Theorem

Under some assumption, the global error of the Algorithm satisfies the following bound

$$\left| \mathbb{E}[\varphi(\bar{\vartheta}_{\varkappa}, X_{\varkappa})Y_{\varkappa} + Z_{\varkappa}] - u^{\epsilon}(t_{0}, x_{0}) \right|$$

$$\leq \quad \mathcal{K}(1 + \gamma_{\epsilon}^{2}) \left(\frac{1}{\lambda_{\epsilon}} - h \frac{e^{-\lambda_{\epsilon}h}}{1 - e^{-\lambda_{\epsilon}h}} \right) + \mathcal{K} \frac{1 - e^{-\lambda_{\epsilon}h}}{\lambda_{\epsilon}},$$
(63)

where K > 0 is a constant independent of h and ϵ .

[Deligiannidis, Maurer, T, 2021]

$$\lambda_{\epsilon} = \int_{|z| > \epsilon} \nu(\mathrm{d}z)$$

If $\lambda_{\epsilon}h < 1$, we obtain:

$$\left|\mathbb{E}[\varphi(\bar{\vartheta}_{\varkappa}, X_{\varkappa})Y_{\varkappa} + Z_{\varkappa}] - u^{\epsilon}(t_0, x_0)\right| \leq K(1 + |\gamma_{\epsilon}|^2)h,$$

which is expected for weak convergence in the jump-diffusion case. If λ_{ϵ} is large (meaning that almost always $\theta < h$), the error is tending to

$$\left|\mathbb{E}[\varphi(\bar{\vartheta}_{\varkappa},X_{\varkappa})Y_{\varkappa}+Z_{\varkappa}]-u^{\epsilon}(t_0,x_0)\right|\leq K(1+|\gamma_{\epsilon}|^2)\frac{1}{\lambda_{\epsilon}}.$$

We also remark that for any fixed λ_{ϵ} , we have first order convergence when $h \rightarrow 0$.

$$\begin{aligned} \left| \mathbb{E}[\varphi(\bar{\vartheta}_{\varkappa}, X_{\varkappa})Y_{\varkappa} + Z_{\varkappa}] - u(t_{0}, x_{0}) \right| & (64) \\ &\leq K(1 + |\gamma_{\epsilon}|^{2}) \left(\frac{1}{\lambda_{\epsilon}} - h \frac{e^{-\lambda_{\epsilon}h}}{1 - e^{-\lambda_{\epsilon}h}} \right) + K \frac{1 - e^{-\lambda_{\epsilon}h}}{\lambda_{\epsilon}} + K \int_{|z| \leq \epsilon} |z|^{3} \nu(\mathrm{d}z). \end{aligned}$$

• For $\alpha \in (0, 1)$ convergence is linear in cost and there is no benefit of restricting jump adapted steps by *h*.

• For $\alpha \in (1, 2)$, it is beneficial to use restricted jump-adapted steps to get the order of $(3 - \alpha)/(1 + \alpha)$ in cost.

• Restricted jump-adapted steps should typically be used for jump-diffusions (the finite activity case when there is no singularity of λ_{ϵ} and γ_{ϵ}) because jump time increments δ typically take too large values and to control the error at every step we should truncate those times at a sufficiently small h > 0 for a satisfactory accuracy.

Conclusions

- Using probabilistic representations, we can approximate various problems for parabolic and elliptic 2nd order PDEs and PIDEs.
- \bullet We considered simplest (and hence easy to implement) algorithms for:
- Dirichlet problems for linear parabolic and eliptic PDEs
- Robin problems for linear parabolic and eliptic PDEs
- Dirichlet problem for linear parabolic PIDE

