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The Cauchy problem for linear parabolic PDE:

Lu = 0, t < T , x ∈ Rd , (2)
u(T , x) = f (x), x ∈ Rd . (3)
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The Cauchy problem for linear parabolic PDE:

Lu = 0, t < T , x ∈ Rd , (2)
u(T , x) = f (x), x ∈ Rd . (3)

Then
u(t0, x) = Ef (Xt0,x(T )), (4)

where Xt0,x(t), t ≥ t0, is the solution of the Ito SDEs

dX = b(t,X )dt +

q�

r=1

σr (t,X )dwr (t), X (t0) = x . (5)
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u(T , x) = f (x), x ∈ Rd . (3)

Then
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Approximation:

u ≡ Ef (X (T )) � ū ≡ Ef (XN) � û ≡ 1
M

M�

m=1

f (X
(m)
N ) , (6)

where X
(m)
N , m = 1, . . . ,M, are independent realizations of XN .



Numerics - weak convergence

Definition

If an approximation X̄ is such that

|Ef (X̄ (T ))− Ef (X (T ))| ≤ Khp (7)

for f from a class of functions with polynomial growth at infinity, then
we say that the weak order of accuracy of the approximation X̄ (the
method X̄ ) is p. The constant K depends on the SDE coefficients, on
the function f and on T .

The weak Euler scheme (Milstein (1978))

Xk+1 = Xk + bkh +
√
h

q�

r=1

σrkηrk , (8)

where ηrk , r = 1, . . . , q, k = 0, . . . ,N − 1, are independent random
variables taking the values +1 and −1 with probabilities 1/2, also has
first order of accuracy in the sense of weak approximation.
[e.g. Milstein, T.; Springer, 2004 or 2021]



Dirichlet problem

Let G be a bounded domain in Rd and Q = [T0,T )× G ⊂ Rd+1, and
Γ = Q̄\Q. Consider the Dirichlet problem
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+g(t, x) = 0, (t, x) ∈ Q,

u |Γ = ϕ(t, x) . (10)
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+g(t, x) = 0, (t, x) ∈ Q,

u |Γ = ϕ(t, x) . (10)

The probabilistic representation:

u(t, x) = E [ϕ(τ ,Xt,x(τ))Yt,x,1(τ) + Zt,x,1,0(τ)] , (11)

where Xt,x(s), Yt,x,y (s), Zt,x,y ,z(s), s ≥ t, is the solution of the SDEs:

dX = (b(s,X )− σ(s,X )µ(s,X )) ds + σ(s,X ) dw(s), X (t) = x , (12)
dY = c(s,X )Y ds + µ�(s,X )Y dw(s), Y (t) = y , (13)
dZ = g(s,X )Y ds + F�(s,X )Y dw(s), Z (t) = z , (14)

(t, x) ∈ Q, τ = τ t,x is the first exit time of (s,Xt,x(s)) to Γ,
w(s) = (w1(s), . . . ,wd(s))� is a standard Wiener process, the d × d
matrix σ(s, x) is obtained from σ(s, x)σ�(s, x) = a(s, x), µ(s, x) and
F (s, x) are arbitrary d-dimensional vectors sufficiently smooth in Q̄.



Cauchy vs Dirichlet problem



Dirichlet problem: approximation

Weak approximation of stopped diffusions: Milstein (1995), Costantini,
Pacchiarotti, Satoretto (1998), Gobet (2000), Milstein, T (2002) and
also Springer 2004 or 2021, Gobet, Menozzi (2010)

Apply the weak Euler approximation with the simplest simulation of noise
to the system (12)-(14)

Xt,x(t + h) ≈ X = x + h (b(t, x)− σ(t, x)µ(t, x)) + h1/2σ(t, x) ξ,
(15)

Yt,x,y (t + h) ≈ Y = y + hc(t, x) y + h1/2µ�(t, x) y ξ , (16)

Zt,x,y ,z(t + h) ≈ Z = z + hg(t, x) y + h1/2F�(t, x) y ξ , (17)

where ξ = (ξ1, . . . , ξd)�, ξi , i = 1, . . . , d , are mutually independent
random variables taking the values ±1 with probability 1/2.



Dirichlet problem: the simplest random walk

Introduce the set of points close to the boundary (a boundary zone)
St,h ⊂ Ḡ on the layer t : we say that x ∈ St,h if at least one of the 2d

values of the vector X is outside Ḡ . It is not difficult to see that due to
compactness of Q̄ there is a constant λ > 0 such that if the distance
from x ∈ G to the boundary ∂G is equal to or greater than λ

√
h then x

is outside the boundary zone and, therefore, for such x all the realizations
of the random variable X belong to Ḡ .
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Introduce the set of points close to the boundary (a boundary zone)
St,h ⊂ Ḡ on the layer t : we say that x ∈ St,h if at least one of the 2d

values of the vector X is outside Ḡ . It is not difficult to see that due to
compactness of Q̄ there is a constant λ > 0 such that if the distance
from x ∈ G to the boundary ∂G is equal to or greater than λ

√
h then x

is outside the boundary zone and, therefore, for such x all the realizations
of the random variable X belong to Ḡ .

Since restrictions connected with nonexit from the domain Ḡ should be
imposed on an approximation of the system (12), the formulas (15)-(17)
can be used only for the points x ∈ Ḡ\St,h on the layer t, and a special
construction is required for points from the boundary zone.



Dirichlet problem: the simplest random walk

Let x ∈ St,h. Denote by xπ ∈ ∂G the projection of the point x on the
boundary of the domain G (the projection is unique because h is
sufficiently small and ∂G is smooth) and by n(xπ) the unit vector of
internal normal to ∂G at xπ. Introduce the random vector X π

x,h taking
two values xπ and x + h1/2λn(xπ) with probabilities p = px,h and
q = qx,h = 1 − px,h, respectively, where

px,h =
h1/2λ

|x + h1/2λn(xπ)− xπ| .

If v(x) is a twice continuously differentiable function with the domain of
definition Ḡ , then an approximation of v(x) by the expectation Ev(X π

x,h)
corresponds to linear interpolation and

v(x) = Ev(Xπ
x,h) +O(h) = pv(xπ) + qv(x + h1/2λn(xπ)) +O(h) . (18)

We emphasize that the second value x + h1/2λn(xπ) does not belong to
the boundary zone. We also note that p is always greater than 1/2 (since
the distance from x to ∂G is less than h1/2λ) and that if x ∈ ∂G then
p = 1 (since in this case xπ = x).



Dirichlet problem: the simplest random walk algorithm

STEP 0. X �
0 = x0, Y0 = 1, Z0 = 0, k = 0.

STEP 1. If X �
k /∈ Stk ,h then Xk = X �

k and go to STEP 3.
If X �

k ∈ Stk ,h then either Xk = X �π
k with probability

pX �
k ,h

or Xk = X �
k + h1/2λn(X �π

k ) with probability qX �
k ,h

.

STEP 2. If Xk = X �π
k then STOP and κ = k ,

Xκ = X �π
k , Yκ = Yk , Zκ = Zk .

STEP 3. Simulate ξk and find X �
k+1, Yk+1, Zk+1 according to

(15)-(17) for t = tk , x = Xk , y = Yk , z = Zk ,
ξ = ξk .

STEP 4. If k + 1 = N, STOP and κ = N, Xκ = X �
N , Yκ = YN ,

Zκ = ZN , otherwise k := k + 1 and return to STEP 1.



Dirichlet problem: the simplest random walk

Theorem

Algorithm has weak order of accuracy O(h), i.e., the inequality

|E (ϕ(tκ ,Xκ)Yκ + Zκ)− u(t0, x0)| ≤ Ch (19)

holds with C > 0 independent of t0, x0, h.

The scheme of the proof:
• Lemma on order O(h2) for the one-step approximation for the
Euler approximation.
The number of steps when X �

k /∈ Stk ,h is obviously O(1/h).

• Lemma on local order O(h) when X
�
k goes outside Ḡ .

• Lemma on the average number of steps when X �
k ∈ Stk ,h is finite.

Milstein, T (2002) and also Springer 2004 or 2021



Dirichlet problem for elliptic PDE

Consider the Dirichlet problem for elliptic equation
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bi (x)
∂u

∂x i
+ c(x) u + g(x) = 0, x ∈ G ,

(20)

u |∂G= ϕ(x). (21)

The probabilistic representation:

u(x) = E [ϕ(Xx(τ))Yx,1(τ) + Zx,1,0(τ)] , (22)

where Xx(s), Yx,y (s), Zx,y ,z(s), s ≥ 0, is the solution of the Cauchy
problem for the system of SDEs:

dX = (b(X )− σ(X )µ(X )) ds + σ(X ) dw(s) , X (0) = x , (23)
dY = c(X )Y ds + µ�(X )Y dw(s) , Y (0) = y , (24)
dZ = g(X )Y ds + F�(X )Y dw(s) , Z (0) = z , (25)

x ∈ G , and τ = τ x is the first exit time of the trajectory Xx(s) to the
boundary ∂G .



Dirichlet problem for elliptic PDE

To approximate the solution of the system (23), we construct a Markov
chain Xk which stops when it reaches the boundary ∂G at a random step
κ.

• The simplest random walk is similar to the parabolic case, except
κ can be large
• First-order convergence proved.

Milstein, T (2002) and also Springer 2004 or 2021



Robin problem

Let G ∈ Rd be a bounded domain with boundary ∂G and
Q := [T0,T )× G be a cylinder in Rd+1.

Consider the Robin problem:

∂u
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+

1
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d�

i,j=1

aij(t, x)
∂u

∂x i∂x j
+

d�

i=1

bi (t, x)
∂u

∂x i
+c(t, x)u+g(t, x) = 0, (t, x) ∈ Q,

(26)
u(T , x) = ϕ(x), x ∈ Ḡ , (27)

∂u

∂ν
+ γ(t, z)u = ψ(t, z), (t, z) ∈ S , (28)

where ν = ν(z) is the direction of the inner normal to the surface ∂G at
z ∈ ∂G .



Robin problem

The probabilistic representation [Gikhman, Skorohod 1968, Ikeda,
Watanabe 1981, Freidlin 1985]:

u(t0, x) = E
�
ϕ(Xt0,x(T ))Yt0,x,1(T ) + Zt0,x,1,0(T )

�
, (29)

where Xt0,x(s), Yt0,x,y (s), Zt0,x,y ,z(s), s ≥ t0, is the solution of the
system of RSDEs

dX (s) = b(s,X (s))ds + σ(s,X (s))dW (s) + ν(X (s))I∂G (X (s))dL(s),
(30)

dY (s) = c(s,X (s))Y (s)ds + γ(s,X (s))I∂G (X (s))Y (s)dL(s), (31)
dZ (s) = g(s,X (s))Y (s)ds − ψ(s,X (s))I∂G (X (s))Y (s)dL(s), (32)

with X (t0) = x , Y (t0) = y , Z (t0) = z , T0 ≤ t0 ≤ s ≤ T , x ∈ Ḡ .



Robin problem

L(s) is the local time of the process X (s) on the boundary ∂G adapted
to the filtration (Fs)s≥0. A local time is a scalar increasing process
continuous in s which increases only when X (s) ∈ ∂G :

L(t) =

� t

t0

I∂G
�
X (s)

�
dL(s),

[Ikeda, Watanabe 1981; P.L. Lions, A.S. Sznitman 1984; Freidlin 1985]



Robin problem: approximation of RSDE

Weak approximation of RSDEs:
Y. Liu (1993); G.N. Milstein (1997); C. Costantini, B. Pacchiarotti, F.
Sartoretto (1998); E. Gobet (2001); M. Bossy, E. Gobet, and D. Talay
(2004), Leimkuhler, Sharma,T (2022?)

Let (t0, x) ∈ Q. We introduce the uniform discretization of the time
interval [t0,T ] so that t0 < · · · < tN = T , h := (T − t0)/N and
tk+1 = tk + h.

We consider a Markov chain (Xk)k≥0 with X0 = x approximating the
solution Xt0,x(t) of the RSDEs

dX (s) = b(s,X (s))ds + σ(s,X (s))dW (s) + ν(X (s))I∂G (X (s))dL(s),

X (t0) = x .

Since X (t) cannot take values outside Ḡ , the Markov chain should
remain in Ḡ as well. To this end, the chain has an auxiliary
(intermediate) step every time it moves from the time layer tk to tk+1.



Easy-to-implement algorithm

We denote this auxiliary step by X
�
k+1. In moving from Xk to X

�
k+1, we

apply the weak Euler scheme

X
�
k+1 = Xk + hbk + h1/2σkξk+1, (33)

where bk = b(tk ,Xk), σk = σ(tk ,Xk) and ξk+1 = (ξ1
k+1, . . . , ξ

d
k+1)

�,
ξik+1, i = 1, . . . , d , k = 0, . . . ,N − 1, are mutually independent random
variables taking values ±1 with probability 1/2.
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We denote this auxiliary step by X
�
k+1. In moving from Xk to X

�
k+1, we

apply the weak Euler scheme

X
�
k+1 = Xk + hbk + h1/2σkξk+1, (33)

where bk = b(tk ,Xk), σk = σ(tk ,Xk) and ξk+1 = (ξ1
k+1, . . . , ξ

d
k+1)

�,
ξik+1, i = 1, . . . , d , k = 0, . . . ,N − 1, are mutually independent random
variables taking values ±1 with probability 1/2.

Taking this auxiliary step X
�
k+1 while moving from Xk to Xk+1 portrays

cautious behaviour and gives us an opportunity to check whether the
realized value of X

�
k+1 is inside the domain G or not. If X

�
k+1 ∈ Ḡ then

on the same time layer we assign values to Xk+1 as

Xk+1 = X
�
k+1



Easy-to-implement algorithm

Four possible realizations (i)X
�
k+1 of X

�
k+1 given Xk in two dimensions.
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Easy-to-implement algorithm

One step transition in two dimensions from X
�
k+1 to Xk+1 using

projection X π
k+1 of X

�
k+1 on ∂G .

We find the projection of X
�
k+1 onto ∂G which we denote as X π

k+1 and
we calculate rk+1 = dist(X

�
k+1,X

π
k+1) which is the shortest distance

between X
�
k+1 and Xπ

k+1. Note that dist(Xk ,X
�
k+1) = O(h1/2).

Xk+1 = X
�
k+1 + 2rk+1ν(X

π
k+1). (34)



Easy-to-implement algorithm

Algorithm 1 Algorithm to approximate normal reflected diffusion

Step 1: Set X0 = x , X
�
0 = x , k = 0.

Step 2: Simulate ξk+1 and find X
�
k+1 using (33).

Step 3: If X
�
k+1 ∈ Ḡ then Xk+1 = X

�
k+1, else

(i) find the projection X π
k+1 of X

�
k+1 on ∂G ,

(ii) calculate rk+1 = dist(X
�
k+1,X

π
k+1) and find Xk+1 according to

(34).
Step 4: If k + 1 = N then stop, else put k := k + 1 and return to Step 2.



Easy-to-implement algorithm

We approximate RSDEs (30) according to Algorithm 1 and complement
it by an approximation of (31) and (32). If the intermediate step X

�
k+1

introduced in Algorithm 1, belongs to Ḡ then we use the Euler scheme:

Yk+1 = Yk + hc(tk ,Xk)Yk (35)
Zk+1 = Zk + hg(tk ,Xk)Yk . (36)

If X
�
k+1 /∈ Ḡ then

Yk+1 = Yk + hc(tk ,Xk)Yk + 2rk+1γ(tk+1,X
π
k+1)Yk + 2r2

k+1γ
2(tk+1,X

π
k+1)Yk ,
(37)

Zk+1 = Zk + hg(tk ,Xk)Yk − 2rk+1ψ(tk+1,X
π
k+1)Yk (38)

− 2r2
k+1ψ(tk+1,X

π
k+1)γ(tk+1,X

π
k+1)Yk ,

where Xπ
k+1 is the projection of X

�
k+1 on ∂G and rk+1 = dist(X

�
k+1,X

π
k+1).



Easy-to-implement algorithm

Algorithm 2 Algorithm to approximate the Robin problem

Step 1: Set X0 = x , Y0 = 1, Z0 = 0, X
�
0 = x , k = 0.

Step 2: Simulate ξk+1 and find X
�
k+1 using (33).

Step 3: If X
�
k+1 ∈ Ḡ then Xk+1 = X

�
k+1 and calculate Yk+1 and Zk+1 accord-

ing to (35) and (36), respectively, else find Xk+1, Yk+1 and Zk+1
according to (34), (37) and (38), respectively.

Step 4: If k + 1 = N then stop, else put k := k + 1 and return to Step 2.



Finite-time convergence

Theorem

The weak order of accuracy of the Algorithm is O(h) under some
assumptions, i.e., for sufficiently small h > 0

|E(ϕ(XN)YN + ZN)− u(t0,X0)| ≤ Ch, (39)

where u(t, x) is solution of (26)-(28) and C is a positive constant
independent of h.

The scheme of the proof is roughly as follows.
• Lemma on order O(h2) for the one-step approximation for the
intermediate step X

�
k+1 (i.e., of the Euler approximation).

The number of steps when X
�
k+1 ∈ Ḡ is obviously O(1/h).

• Lemma on local order O(h3/2) for Xk+1 when X
�
k+1 goes outside

Ḡ .
• Lemma on the average number of steps when X

�
k+1 /∈ Ḡ is

O(1/
√
h).

Leimkuhler, Sharma,T (2022?)



Elliptic PDEs with Robin boundary condition

Let c(x) be negative for all x ∈ Ḡ and γ(z) be non-positive for all
z ∈ ∂G . Consider the elliptic equation

1
2

d�

i,j=1

aij(x)
∂2u

∂x i∂x j
+

d�

i=1

bi (x)
∂u

∂x i
+ c(x)u + g(x) = 0, x ∈ G , (40)

with Robin boundary condition

∂u

∂ν
+ γ(z)u = ψ(z), z ∈ ∂G , (41)

The probabilistic representation [Freidlin 1985]:

u(x) = lim
T→∞

E
�
Zx(T )

�
,

where Zx(s), x ∈ Ḡ , is governed by the RSDEs

dX (s) = b(X (s))ds+σ(X (s))dW (s)+ν(X (s))I∂G (X (s))dL(s), X (0) = x ,

dY (s) = c(X (s))Y (s)ds + γ(X (s))I∂G (X (s))Y (s)dL(s), Y (0) = 1,
dZ (s) = g(X (s))Y (s)ds − ψ(X (s))I∂G (X (s))Y (s)dL(s), Z (0) = 0.

σ(x)σ(x)� = a(x).



Elliptic PDEs with Robin boundary condition

Theorem

Under some assumptions, the following inequality holds for sufficiently
small h > 0:

|E(ZN)− u(x)| ≤ C
�
h + e−λT

�
, (42)

where ZN is calculated according to Algorithm 2 approximating the
solution u(x) of (40)-(41), and C and λ are positive constants
independent of T and h.

Leimkuhler, Sharma,T (2022?)



Elliptic PDEs with Robin boundary condition

The case c(x) = 0 and γ(z) = 0. The probabilistic representation
[Freindlin 1985; Bencherif-Madani, Pardoux 2009]:

u(x) = lim
T→∞

EZx(T ) + ū, (43)

where ū =
�
G
u(x)ρ(x)dx , ρ(x) is the solution of the adjoint problem

(note that ρ(x) is the invariant density of X (s)), and Zx(s) = Z (s) is
governed by

dZ (s) = −φ1(X (s))ds − φ2(X (s))I∂G (X (s))dL(s), Z (0) = 0,

where X (s) is as before.

A suitable algorithm based on double partitioning of the time interval
[0,T ] and its convergence proof are in Leimkuhler, Sharma,T (2022?).



Dirichlet problem for parabolic integro-differential equation

Let G be a bounded domain in Rd , Q = [t0,T )× G be a cylinder in
Rd+1, Γ = Q̄ \ Q, G c = Rd \ Q be the complement of G and
Qc := (t0,T ]× G c ∪ {T} × Ḡ . Consider the Dirichlet problem for the
PIDE:

∂u

∂t
+ Lu + c(t, x)u + g(t, x) = 0, (t, x) ∈ Q,

u(t, x) = ϕ(t, x), (t, x) ∈ Qc ,
(44)

Lu(t, x) :=
1
2

d�

i,j=1

aij(t, x)
∂2u

∂x i∂x j
(t, x) +

d�

i=1

bi (t, x)
∂u

∂x i
(t, x) (45)

+

�

Rm

�
u
�
t, x + F (t, x)z

�
− u(t, x)− �F (t, x)z ,∇u(t, x)�I|z|≤1

�
ν(dz);

F (t, x) =
�
F ij(t, x)

�
is a d ×m-matrix; and ν(z), z ∈ Rm, is a Lévy

measure such that
�
Rm(|z |2 ∧ 1)ν(dz) < ∞. We allow ν to be of infinite

intensity, i.e. ν
�
B(0, r)

�
= ∞ for some r > 0, where B(x , s) is the open

ball of radius s > 0 centred at x ∈ Rd .



Dirichlet problem for PIDE

Probabilistic representation [Applebaum 2009]

u(t, x) = E [ϕ (τ t,x ,Xt,x(τ t,x))Yt,x,1(τ t,x) + Zt,x,1,0(τ t,x)] , (t, x) ∈ Q,
(46)

dX = b(s,X (s−))ds + σ(s,X (s−))dw(s) (47)

+

�

Rd

F (s,X (s−))zN̂(dz , ds), Xt,x(t) = x ,

dY = c(s,X (s−))Yds, Yt,x,y (t) = y , (48)
dZ = g(s,X (s−))Yds, Zt,x,y ,z(t) = z , (49)

and τ t,x = inf{s ≥ t : (s,Xt,x(s)) /∈ Q} is the fist exit-time of (s,Xt,x(s))
from Q, σ(s, x)σ�(s, x) = a(s, x); w(t) = (w1(t), . . . ,wd(t))� is a
standard d-dimensional Wiener process; and N̂ is a Poisson random
measure on [0,∞)× Rm with intensity measure ν(dz)× ds,�
Rm(|z |2 ∧ 1)ν(dz) < ∞, and compensated small jumps, i.e.,

N̂ ([0, t]× B) =

�

[0,t]×B

N(dz , ds)− tν(B ∩ {|z | ≤ 1}),

for all t ≥ 0 and B ∈ B
�
Rm

�
.



Dirichlet problem for PIDE

Consider the approximation of (47), where small jumps are replaced by
an appropriate diffusion. [Asmussen, Rosinski (2001); Kohatsu-Higa,
Tankov (2010); Kohatsu-Higa, Ortiz-Latorre, Tankov (2013);
Deligiannidis, Maurer, T (2021)].



Dirichlet problem for PIDE

Consider the approximation of (47), where small jumps are replaced by
an appropriate diffusion. [Asmussen, Rosinski (2001); Kohatsu-Higa,
Tankov (2010); Kohatsu-Higa, Ortiz-Latorre, Tankov (2013);
Deligiannidis, Maurer, T (2021)].
Let γ� be an m-dimensional vector with the components

γ i
� =

�

�≤|z|≤1
z iν(dz); (50)

and B� is an m ×m matrix with the components

B ij
� =

�

|z|<�

z iz jν(dz), (51)

while β� be obtained from the formula β�β
�
� = B�.



Dirichlet problem for PIDE

Example (Tempered α-stable Process)

For a tempered stable distribution which has Lévy measure given by

ν(dz) =
�C+e−λ+z

z1+α
I(z > 0) +

C−e−λ−|z|

|z |1+α
I(z < 0)

�
dz ,

for α ∈ (0, 2) and C+, C−, λ+, λ− > 0 : we find that the error from
approximating the small jumps by diffusion as in Theorem is of the order
O(�3−α)

λ� :=

�

|z|>�

ν(dz) = O(�−α), γ� = O(�1−α) for α �= 1 and B� = O(�2−α).



Dirichlet problem for PIDE

Consider the modified jump-diffusion X̃t0,x(t) = X̃ �
t0,x(t) defined as

X̃t0,x(t) = x +

� t

t0

�
b(s, X̃ (s−))− F (s, X̃ (s−))γ�

�
ds +

� t

t0

σ(s, X̃ (s−))dw(s)

(52)

+

� t

t0

F (s, X̃ (s−))β�dW (s) +

� t

t0

�

|z|≥�

F (s, X̃ (s−))zN(dz , ds),

where W (t) is a standard m-dimensional Wiener process, independent of
N and w .



Dirichlet problem for PIDE

Consider the modified jump-diffusion X̃t0,x(t) = X̃ �
t0,x(t) defined as

X̃t0,x(t) = x +

� t

t0

�
b(s, X̃ (s−))− F (s, X̃ (s−))γ�

�
ds +

� t

t0

σ(s, X̃ (s−))dw(s)

(52)

+

� t

t0

F (s, X̃ (s−))β�dW (s) +

� t

t0

�

|z|≥�

F (s, X̃ (s−))zN(dz , ds),

where W (t) is a standard m-dimensional Wiener process, independent of
N and w .

We observe that, in comparison with (47), in (52) jumps less than � in
magnitude are replaced by the additional diffusion part. In this way, the
new Lévy measure has finite activity allowing us to simulate its events
exactly, i.e. in a practical way.



Dirichlet problem for PIDE

Consequently,

u(t, x) ≈ u�(t, x) := E
�
ϕ
�
τ̃ t,x , X̃t,x(τ̃ t,x)

�
Ỹt,x,1(τ̃ t,x) + Z̃t,x,1,0(τ̃ t,x)

�
,

(53)

(t, x) ∈ Q,

where τ̃ t,x = inf{s ≥ t : (s, X̃t,x(s)) /∈ Q} is the fist exit time of the
space-time Lévy process (s, X̃t,x(s)) from the space-time cylinder Q and�
X̃t,x(s), Ỹt,x,y (s), Z̃t,x,y ,z(s)

�
s≥0

solves the system of SDEs consisting

of (52) along with

dỸ = c(s, X̃ (s−))Ỹ ds, Ỹt,x,y (t) = y , (54)

dZ̃ = g(s, X̃ (s−))Ỹ ds, Z̃t,x,y ,z(t) = z . (55)



Dirichlet problem for PIDE

Theorem

Under some assumptions, for 0 ≤ � < 1

|u�(t, x)− u(t, x)| ≤ K

�

|z|≤�

|z |3ν(dz), (t, x) ∈ Q, (56)

where K > 0 does not depend on t, x , �.

[Deligiannidis, Maurer, T, 2021]



Dirichlet problem for PIDE

Example (Tempered α-stable Process)

For α ∈ (0, 2) and m = 1 consider an α-stable process with Lévy measure
given by ν(dz) = z−1−αdz . Then

�

|z|≤�

|z |3ν(dy) = �3−α

3 − α
.

Similarly, for a tempered stable distribution which has Lévy measure
given by

ν(dz) =
�C+e−λ+z

z1+α
I(z > 0) +

C−e−λ−|z|

|z |1+α
I(z < 0)

�
dz ,

for α ∈ (0, 2) and C+, C−, λ+, λ− > 0 we find that the error from
approximating the small jumps by diffusion as in Theorem is of the order
O(�3−α).



Dirichlet problem for PIDE: Algorithm

Assume that we can exactly sample increments δ between jump times
with the intensity

λ� :=

�

|z|>�

ν(dz) (57)

and jump sizes J� are distributed according to the density

ρ�(z) :=
ν(z)I|z|>�

λ�
. (58)



Dirichlet problem for PIDE: Algorithm

Fix a time-discretization step h > 0 and suppose the current position of
the chain is (t, x , y , z). If the jump time increment δ < h, we set θ = δ,
otherwise θ = h, i.e. θ = δ ∧ h.
In the case θ = h, we apply the weak explicit Euler approximation with
no jumps:

X̃t,x(t + θ) ≈ X = x + θ · (b(t, x)− F (t, x)γ�) (59)

+
√
θ · (σ(t, x) ξ + F (t, x)β� η) ,

Ỹt,x,y (t + θ) ≈ Y = y + θ · c(t, x) y , (60)

Z̃t,x,y ,z(t + θ) ≈ Z = z + θ · g(t, x) y , (61)

where ξ = (ξ1, . . . , ξd)�, η = (η1, . . . , ηm)�, with ξ1, . . . , ξd and
η1, . . . , ηm mutually independent random variables, taking the values ±1
with equal probability.
In the case of θ < h, we replace (59) by the following explicit Euler
approximation

X̃t,x(t + θ) ≈ X = x + θ · (b(t, x)− F (t, x)γ�) (62)

+
√
θ · (σ(t, x) ξ + F (t, x)β� η) + F (t, x)J�.



Dirichlet problem for PIDE: Algorithm

Let (t0, x0) ∈ Q. We aim to find the value u�(t0, x0). Introduce a
discretization of the interval [t0,T ], for example the equidistant one:
h := (T − t0)/L.
To approximate the solution of the system (52), we construct a Markov
chain (ϑk ,Xk ,Yk ,Zk) which stops at a random step κ when (ϑk ,Xk)
exits the domain Q.



Dirichlet problem for PIDE: Algorithm

1: Initialize: ϑ0 = t0, X0 = x0, Y0 = 1, Z0 = 0, k = 0.
2: while ϑk < T or Xk ∈ G do
3: Simulate: ξk and ηk with i.i.d. components taking values ±1

with probability 1/2 and independently Ik ∼ Bernoulli
�
1 − e−λ�h

�
.

4: if Ik = 0, then
5: Set: θk = h
6: Evaluate: Xk+1, Yk+1, Zk+1 according to (15)− (17).
7: else

8: Sample: θk according to the density
λ�e

−λ�x

1 − e−λ�h
.

9: Sample: jump size J�,k according to the density (58).
10: Evaluate: Xk+1, Yk+1 , Zk+1 according to (18), (16), (17).
11: end if
12: Set: ϑk+1 = ϑk + θk and k = k + 1.
13: end while
14: Set: Xκ = Xk , Yκ = Yk , Zκ = Zk , κ = k , ϑκ = ϑk .
15: if ϑκ < T then Set: ϑ̄κ = ϑκ
16: else Set: ϑ̄κ = T
17: end if



Dirichlet problem for PIDE: Algorithm

Theorem
Under some assumption, the global error of the Algorithm satisfies the
following bound

��E[ϕ(ϑ̄κ ,Xκ)Yκ + Zκ]− u�(t0, x0)
�� (63)

≤ K (1 + γ2
�)

�
1
λ�

− h
e−λ�h

1 − e−λ�h

�
+ K

1 − e−λ�h

λ�
,

where K > 0 is a constant independent of h and �.

[Deligiannidis, Maurer, T, 2021]

λ� =

�

|z|>�

ν(dz)



Dirichlet problem for PIDE: Algorithm

If λ�h < 1, we obtain:
��E[ϕ(ϑ̄κ ,Xκ)Yκ + Zκ]− u�(t0, x0)

�� ≤ K (1 + |γ�|2)h,

which is expected for weak convergence in the jump-diffusion case.
If λ� is large (meaning that almost always θ < h), the error is tending to

��E[ϕ(ϑ̄κ ,Xκ)Yκ + Zκ]− u�(t0, x0)
�� ≤ K (1 + |γ�|2)

1
λ�

.

We also remark that for any fixed λ�, we have first order convergence
when h → 0.



Dirichlet problem for PIDE: Algorithm

��E[ϕ(ϑ̄κ ,Xκ)Yκ + Zκ]− u(t0, x0)
�� (64)

≤ K (1 + |γ�|2)
�

1
λ�

− h
e−λ�h

1 − e−λ�h

�
+ K

1 − e−λ�h

λ�
+ K

�

|z|≤�

|z |3ν(dz).

• For α ∈ (0, 1) convergence is linear in cost and there is no benefit
of restricting jump adapted steps by h.
• For α ∈ (1, 2), it is beneficial to use restricted jump-adapted steps
to get the order of (3 − α)/(1 + α) in cost.
• Restricted jump-adapted steps should typically be used for
jump-diffusions (the finite activity case when there is no singularity
of λ� and γ�) because jump time increments δ typically take too
large values and to control the error at every step we should truncate
those times at a sufficiently small h > 0 for a satisfactory accuracy.



Conclusions

• Using probabilistic representations, we can approximate various
problems for parabolic and elliptic 2nd order PDEs and PIDEs.
• We considered simplest (and hence easy to implement) algorithms
for:
• Dirichlet problems for linear parabolic and eliptic PDEs
• Robin problems for linear parabolic and eliptic PDEs
• Dirichlet problem for linear parabolic PIDE
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