M.V. Tretyakov
School of Mathematical Sciences, University of Nottingham, UK

Irish Numerical Analysis Forum, 14th April 2022



Plan of the talk

e Introduction

e Dirichlet problem for parabolic and elliptic linear PDEs
[Milstein, T 2002]

e Robin problem for parabolic and elliptic linear PDEs
[Leimkuhler, Sharma,T 20227]

e Dirichlet problem for linear PIDEs [Deligiannidis, Maurer, T, 2021]

e Conclusions



Introduction

2 Z Z 0,0, ’axJ 8x’

r=1i,j=1
The Cauchy problem for linear parabolic PDE:
lu = 0, t<T,xeR?,
u(T,x) = f(x), xeRe.




Introduction

2 Z Z 0,0, ’axJ 8x’

r=1i,j=1
The Cauchy problem for linear parabolic PDE:
lu = 0, t<T, xeR,
u(T,x) = f(x), xeRe.
Then
u(to, x) = Ef (X x(T)),
where Xy, «(t), t > to, is the solution of the Ito SDEs

dX = b(t,X)dt—|—Zq:U,(t,X)dW,(t), X(to) = x

r=1




Introduction

2 Z Z 0,0, ’axJ 6x’

r=11i,j=1
The Cauchy problem for linear parabolic PDE:
lu = 0, t<T, xeR,
u(T,x) = f(x), xeRe.
Then
u(to, x) = Ef (X x(T)),
where Xy, «(t), t > to, is the solution of the Ito SDEs

dX = b(t,X)dt—|—zq:U,(t,X)dW,(t), X(to) = x

Approximation:

v = EF(X(T)) ~ & = EF(Xn) zﬁEMZf

where X,E,m), m=1,..., M, are independent realizations of Xy.



Numerics - weak convergence

Definition

If an approximation X is such that
|EF(X(T)) — EF(X(T))| < Kh? (7)

for f from a class of functions with polynomial growth at infinity, then
we say that the weak order of accuracy of the approximation X (the
method X) is p. The constant K depends on the SDE coefficients, on
the function £ and on T.

The weak Euler scheme (Milstein (1978))

q
Xir1 = Xk +bkh+\thUrk77,k7 (8)
r=1
where ., r=1,...,q, k=0,..., N —1, are independent random

variables taking the values +1 and —1 with probabilities 1/2, also has
first order of accuracy in the sense of weak approximation.
[e.g. Milstein, T.; Springer, 2004 or 2021]
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Dirichlet problem

Let G be a bounded domain in R? and Q = [Ty, T) x G C R, and

M= C_?\Q Consider the Dirichlet problem

+5 Z 'ax/ Zb’ (t,x)2— + c(t,x)u  (9)
ij=1
+g‘( 7X) = 07 (t’X) e Q?
ulr=(t,x). (10)
The probabilistic representation:
u(t, x) = E[p(7, Xex(7)) Yexa () + Zex10(7)] (11)

where X; (), Yex,y(5): Zixy,2(5), s > t, is the solution of the SDEs:

dX = (b(s,X) — (s, X)u(s, X)) ds + o(s, X) dw(s), X(t)=x, (12)
dY = c(s,X)Y ds + u7(s,X)Y dw(s), Y(t)=y, (13)
dZ = g(s,X)Y ds+ FT(s,X)Y dw(s), Z(t)= z, (14)

(t,x) € Q, T = T¢x is the first exit time of (s, X; «(s)) to T,

w(s) = (wl(s),...,w9(s))T is a standard Wiener process, the d x d
matrix o(s, x) is obtained from o(s, x)o7(s, x) = a(s, x), u(s, x) and
F(s,x) are arbitrary d-dimensional vectors sufficiently smooth in Q.



Cauchy vs Dirichlet problem




Dirichlet problem: approximation

Weak approximation of stopped diffusions: Milstein (1995), Costantini,
Pacchiarotti, Satoretto (1998), Gobet (2000), Milstein, T (2002) and
also Springer 2004 or 2021, Gobet, Menozzi (2010)

Apply the weak Euler approximation with the simplest simulation of noise
to the system (12)-(14)

Xex(t+ h) = X = x + h(b(t,x) — o(t, x) u(t,x)) + h/20(t, x) €,

(15)
Yeuy(t+h)~ Y =y + he(t,x)y + ?uT(t,x) y €, (16)
Zixyt+h)~Z=2z+hg(t,x)y+ h1/2FT(1.“,x)y£7 (17)

where ¢ = (¢1,. .. ,Ed)T, ¢ i=1,...,d, are mutually independent
random variables taking the values 1 with probability 1/2.



Dirichlet problem: the simplest random walk

Introduce the set of points close to the boundary (a boundary zone)

Sen C G on the layer t : we say that x € St if at least one of the 2d
values of the vector X is outside G. It is not difficult to see that due to
compactness of Q there is a constant A > 0 such that if the distance
from x € G to the boundary 9G is equal to or greater than Av/h then x
is outside the boundary zone and, therefore, for such x all the realizations
of the random variable X belong to G.



Dirichlet problem: the simplest random walk

Introduce the set of points close to the boundary (a boundary zone)

Sen C G on the layer t : we say that x € St if at least one of the 2d
values of the vector X is outside G. It is not difficult to see that due to
compactness of Q there is a constant A > 0 such that if the distance
from x € G to the boundary 9G is equal to or greater than Av/h then x
is outside the boundary zone and, therefore, for such x all the realizations
of the random variable X belong to G.

Since restrictions connected with nonexit from the domain G should be

imposed on an approximation of the system (12), the formulas (15)-(17)
can be used only for the points x € G\S;; on the layer t, and a special

construction is required for points from the boundary zone.

» w(=)




Dirichlet problem: the simplest random walk

Let x € S; 5. Denote by x™ € OG the projection of the point x on the
boundary of the domain G (the projection is unique because h is
sufficiently small and 9G is smooth) and by n(x™) the unit vector of
internal normal to G at x™. Introduce the random vector X7, taking
two values x™ and x + h'/2An(x™) with probabilities p = p, 5 and

G = Gx.h = 1 — py p, respectively, where

h'/2)
X+ h/2xn(x™) — x™|

Px,h = |

If v(x) is a twice continuously differentiable function with the domain of
definition G, then an approximation of v(x) by the expectation Ev(XY )
corresponds to linear interpolation and

v(x) = Ev(XT,) + O(h) = pv(x™) + qv(x + h*?An(x™)) + O(h) . (18)

We emphasize that the second value x + h*/2An(x™) does not belong to
the boundary zone. We also note that p is always greater than 1/2 (since
the distance from x to OG is less than h'/2)) and that if x € G then

p =1 (since in this case x™ = x).



Dirichlet problem: the simplest random walk algorithm

STEP 0. X =x0, Yo=1, Zo=0, k=0.

STEP 1. If X, ¢ S, » then X = X, and go to STEP 3.
If X, € S, then either X, = X™ with probability
px;.hor Xk = X + h*/2Xn(X/™) with probability ax;.h -

STEP 2. If Xk = X" then STOP and s = k,
X=X, Y=Y, Z. = Z.

STEP 3. Simulate &, and find X,i_H, Yi+1, Zk+1 according to
(15)-(17) for t = ti, x = X, y =Yk, z =2,
§=¢&-

STEP 4. If k+1=N,STOP and =N, X,, = X}, Y.. = Yu,

Z,. = Zyn, otherwise k := k+ 1 and return to STEP 1.



Dirichlet problem: the simplest random walk

Theorem

Algorithm has weak order of accuracy O(h), i.e., the inequality
|E(p(tses Xo0) Yoo + Zo.) — u(to, x0)| < Ch (19)
holds with C > 0 independent of tq, xg, h.

The scheme of the proof:

e Lemma on order O(h?) for the one-step approximation for the
Euler approximation.
The number of steps when X| ¢ S,, , is obviously O(1/h).

e Lemma on local order O(h) when X, goes outside G.

e Lemma on the average number of steps when X] € S;, j is finite.

Milstein, T (2002) and also Springer 2004 or 2021



Dirichlet problem for elliptic PDE

Consider the Dirichlet problem for elliptic equation

d d
1 0%u ; du
Ez:: 8X8xf ;b(x)axi—&-c(x)u—&—g(x)—O,XEG,
(20)
u ‘QG: (,D(X). (21)
The probabilistic representation:
u(x) = E [p(Xx(7)) Y1 () + Ze10(7)] (22)

where X(s), Y, (5), Zcy,2(5), s > 0, is the solution of the Cauchy
problem for the system of SDEs:

dX = (b(X)—=o(X)u(X))ds+o(X)dw(s), X(0)=x, (23)
dY = c(X)Yds+puT(X)Y dw(s), Y(0)=y, (24)
dZ = g(X)Yds+ FT(X)Y dw(s), Z(0) =z, (25)

x € G, and T = 7, is the first exit time of the trajectory X,(s) to the
boundary 0G.



Dirichlet problem for elliptic PDE

To approximate the solution of the system (23), we construct a Markov
chain X, which stops when it reaches the boundary G at a random step
.

e The simplest random walk is similar to the parabolic case, except
» can be large
e First-order convergence proved.

Milstein, T (2002) and also Springer 2004 or 2021



Robin problem

Let G € R? be a bounded domain with boundary G and
= [To, T) x G be a cylinder in R9*1.

Consider the Robin problem:

i 3
. (26)
u(T’ X) = (‘D(X), X € G, (27)
%+y(t7z)u:d)(t,z), (t,z) € S, (28)

where v = v(z) is the direction of the inner normal to the surface G at
z € 06G.



Robin problem

The probabilistic representation [Gikhman, Skorohod 1968, lkeda,
Watanabe 1981, Freidlin 1985]:

u(to, x) = E(p(Xegx(T)) Yeox,1(T) + Zto x,1.0(T)), (29)

where X «(S), Yioxy(S), Zto x,y,2(S), 5 > to, is the solution of the
system of RSDEs

dX(s) = b(s, X(s))ds + o (s, X(s))dW(s) + v(X(s)) oG (X(s))d (52 »
dY(s) = c(s, X(s)) Y (s)ds + (s, X(s)) o (X(s)) Y (s)dL(s), ~ (31)
dZ(s) = g(s, X(s)) Y (s)ds — 0(s, X(s))loc (X() Y (s)dL(s), ~ (32)

with X(t) =x, Y(to) =y, Z(to) =z, To <ty <s< T, x€G.



Robin problem

L(s) is the local time of the process X(s) on the boundary G adapted
to the filtration (Fs)s>0. A local time is a scalar increasing process
continuous in s which increases only when X(s) € 9G:

t
L) = [ loe(X(5))dL(s)
to
[lkeda, Watanabe 1981; P.L. Lions, A.S. Sznitman 1984; Freidlin 1985]

L) = § QL) de



Robin problem: approximation of RSDE

Weak approximation of RSDEs:

Y. Liu (1993); G.N. Milstein (1997); C. Costantini, B. Pacchiarotti, F.
Sartoretto (1998); E. Gobet (2001); M. Bossy, E. Gobet, and D. Talay
(2004), Leimkuhler, Sharma, T (20227)

Let (to, x) € Q. We introduce the uniform discretization of the time
interval [to, T] sothat tg < --- <ty =T, h:=(T —tp)/N and
tk+1 = tk + h

We consider a Markov chain (Xi)«>0 with Xo = x approximating the
solution X, (t) of the RSDEs

dX(s) = b(s,X(s))ds + a(s, X(s))dW(s) + v(X(s))loc(X(s))dL(s),
X(to) = X.

Since X(t) cannot take values outside G, the Markov chain should
remain in G as well. To this end, the chain has an auxiliary
(intermediate) step every time it moves from the time layer t; to tx1.



Easy-to-implement algorithm

We denote this auxiliary step by X,:H. In moving from Xj to X,:H, we
apply the weak Euler scheme

Xl;+1 = Xk + hb + h1/20k§k+17 (33)

where by = b(tx, Xk), ok = o(tk; Xi) and &1 = (Ehins - E) T,
&y 1=1,...,d, k=0,...,N—1, are mutually independent random
variables taking values +1 with probability 1/2.



Easy-to-implement algorithm

We denote this auxiliary step by X,:H. In moving from Xj to X,:H, we
apply the weak Euler scheme

Xl;+1 = Xk + hb + h1/20k§k+17 (33)

where by = b(tx, Xk), ok = o(tk; Xi) and &1 = (Ehins - E) T,
&y 1=1,...,d, k=0,...,N—1, are mutually independent random
variables taking values +1 with probability 1/2.

Taking this auxiliary step X/i+1 while moving from X to Xy, 1 portrays
cautious behaviour and gives us an opportunity to check whether the
realized value of X/:+1 is inside the domain G or not. If X/:+1 € G then
on the same time layer we assign values to Xy1 as

’
Xit1 = Xy



Easy-to-implement algorithm

,4. (Z)Xllc+1

(3)Xllc+1.’ G

. . . ’ / . . . .
Four possible realizations ()X, ; of X, ; given Xi in two dimensions.



Easy-to-implement algorithm

,4. (Z)Xllc+1

! 2
&%kt
Four possible realizations (,-)X,:Jrl of Xl:+1 given Xy in two dimensions.

X1
‘.
Xis1 G

One step transition in two dimensions from XI;+1 to Xyy1 using

projection X[7 ; of X/;+1 on 0G.



Easy-to-implement algorithm

1
Xk+1

Y
“Xi+1
4

G

Xk+1

One step transition in two dimensions from XI;+1 to Xxi1 using

projection X[, ; of X,2+1 on 0G.

We find the projection of X,:H onto G which we denote as X7, ; and
we calculate g1 = dist(X,:+17 XZ,1) which is the shortest distance
between X, ,, and X[ ;. Note that dist(Xx, X, ;) = O(h'/2).

Xk+]_ = XI:+1 -+ 2rk+1V(XZr+1). (34)



Easy-to-implement algorithm

Algorithm 1 Algorithm to approximate normal reflected diffusion
Step 1: Set Xo = x, Xy = x, k = 0.
Step 2: Simulate &, and find Xli+1 using (33).
Step 3: IfX,:Jrl € G then Xi41 = X,ZH, else
(i) find the projection X[, , ofX,;+1 on 0G,
(i) calculate r 1 = dist(X,iH,X[H) and find Xy41 according to

(34).

Step 4: If k +1 = N then stop, else put k := k + 1 and return to Step 2.




Easy-to-implement algorithm

We approximate RSDEs (30) according to Algorithm 1 and complement
it by an approximation of (31) and (32). If the intermediate step X, ;
introduced in Algorithm 1, belongs to G then we use the Euler scheme:

Yit1 = Yk + he(ti, Xi) Y (35)
Zi1 = Zic + hg(ti, Xi) Yk- (36)

If X1 ¢ G then

Yirr = Y + he(ti, Xe) Yie + 2nci1y (bt Xier) Yie + 202007 (b, Xiga) Yo
(37)

Ziy1 = Zi + hg(ti, X)) Y — 2ncr1b(tira, Xgq) Ye (38)
- 2rl%+1¢(tk+la XIZT+1)’Y(tk+1a Xlzr+1)ykv

where X[ ; is the projection of X/:Jrl on 0G and ryy1 = dist(X,:H,X,fH).



Easy-to-implement algorithm

Algorithm 2 Algorithm to approximate the Robin problem

Step 1:
Step 2:
Step 3:

Step 4:

Set Xo=x, Yo=1,2Z=0, X, = x, k=0.
Simulate &, ; and find Xli+1 using (33).

IfX,i+1 € G then X1 = X,;H and calculate Y11 and Zi,1 accord-
ing to (35) and (36), respectively, else find X1, Yit1 and Zxi1
according to (34), (37) and (38), respectively.

If k +1 = N then stop, else put k := k + 1 and return to Step 2.




Finite-time convergence

Theorem

The weak order of accuracy of the Algorithm is O(h) under some
assumptions, i.e., for sufficiently small h > 0

[E(e(Xn) Yn + Zn) — u(to, Xo)| < Ch, (39)

where u(t, x) is solution of (26)-(28) and C is a positive constant
independent of h.

The scheme of the proof is roughly as follows.
e Lemma on order O(h?) for the one-step approximation for the
intermediate step X,_; (i.e., of the Euler approximation).
The number of steps when X/:+1 € G is obviously O(1/h).

e Lemma on local order O(h%/2) for Xi11 when X, ., goes outside

G.

e Lemma on the average number of steps when X,:H ¢Gis
O(1/V'h).
Leimkuhler, Sharma, T (20227)



Elliptic PDEs with Robin boundary condition

Let c(x) be negative for all x € G and 7(z) be non-positive for all
z € 0G. Consider the elliptic equation

d d
1 p 0?u i\ Ou
5 zjlaj(x)ax"axf + le b(x) 57 +c(x)ute(x) =0, x€G, (40)
ij= i=

with Robin boundary condition

du

W +v(2)u=y(z), z€9G, (41)

The probabilistic representation [Freidlin 1985]:
() = fim E(2(T).
where Z,(s), x € G,is governed by the RSDEs
dX(s) = b(X(s))ds+a(X(s))dW(s)+v(X(s))ac(X(s))dL(s), X(0) = x,

dY(s) = c(X(5)) Y (s)ds +1(X(s) s (X(s) Y (s)dL(s),  Y(0) =
dZ(s) = g(X(s)) Y ()ds — B(X(5))loc(X(s)) Y (s)dL(s), Z(0)

Y

1
0.



Elliptic PDEs with Robin boundary condition

Theorem

Under some assumptions, the following inequality holds for sufficiently
small h > 0:

IE(Zy) — u(x)| < C(h+e T, (42)

where Zy is calculated according to Algorithm 2 approximating the
solution u(x) of (40)-(41), and C and X are positive constants
independent of T and h.

Leimkuhler, Sharma,T (20227)



Elliptic PDEs with Robin boundary condition

The case c(x) = 0 and y(z) = 0. The probabilistic representation
[Freindlin 1985; Bencherif-Madani, Pardoux 2009]:

u(x) = lim EZ(T)+ &, (43)

T—o0

where @ = [ u(x)p(x)dx, p(x) is the solution of the adjoint problem
(note that p(x) is the invariant density of X(s)), and Z.(s) = Z(s) is
governed by

dZ(s) = —¢1(X(s))ds — ¢2(X(s))loc(X(s))dL(s), Z(0) =0,

where X(s) is as before.

A suitable algorithm based on double partitioning of the time interval
[0, T] and its convergence proof are in Leimkuhler, Sharma, T (20227).



Dirichlet problem for parabolic integro-differential equation

Let G be a bounded domain in R?, Q = [to, T) X G be a cylinder in
R T=Q\Q, G°=R? \ Q be the complement of G and

Q¢ :=(to, T] x GEU{T} x G. Consider the Dirichlet problem for the
PIDE:

ou
o + Lu+ c(t,x)u+g(t,x) =0, (t,x)€Q, (44)
u(t,x) = p(t,x), (t,x)€ Q°,
1 %u , ou
Lu(t, x) = 5 Z:laf(t,x)axiaxj(t,x) + ; bi(t,x)5 5 (t.x)  (45)

IJ

+/m {u(t,x—i— F(t, X)Z) — u(t,x) — (F(t, x)z,Vu(t,x))l‘zgl}y(dz);

F(t,x) = (F"j(t,x)) is a d x m-matrix; and v(z), z € R™, is a Lévy
measure such that [, (|z]* A 1)v(dz) < co. We allow v to be of infinite
intensity, i.e. v(B(0, r)) = oo for some r > 0, where B(x, s) is the open
ball of radius s > 0 centred at x € R.



Dirichlet problem for PIDE

Probabilistic representation [Applebaum 2009]
u(t,x) =E[p (Tex, Xex(Tex)) Yex1(Tex) + Zexa0(tex)] s (t,x) € Q,

(40)
dX = b(s, X(s—))ds + o(s, X(s—))dw(s) (47)
+ / F(s,X(s—))zN(dz,ds), Xe.(t)= x,
Rd
dY = c(s,X(s—))Yds, Yix,(t)=y, (48)
dZ = g(s,X(s—))Yds, Ziy,.(t)=z, (49)

and 7, =inf{s > t: (s, X¢ x(s)) ¢ Q} is the fist exit-time of (s, X; «(s))
from Q, o(s,x)a " (s,x) = a(s, x); w(t) = (w(t),...,w(t))" is a
standard d-dimensional Wiener process; and N is a Poisson random
measure on [0,00) x R™ with intensity measure v(dz) x ds,

Jan(2I> A1)r(dz) < oo, and compensated small jumps, i.e.,

N([0,t] x B) = /[0 os N(dz,ds) — tv(B N {|z| < 1}),

forall t>0and B B(R’").



Dirichlet problem for PIDE

Consider the approximation of (47), where small jumps are replaced by
an appropriate diffusion. [Asmussen, Rosinski (2001); Kohatsu-Higa,
Tankov (2010); Kohatsu-Higa, Ortiz-Latorre, Tankov (2013);
Deligiannidis, Maurer, T (2021)].



Dirichlet problem for PIDE

Consider the approximation of (47), where small jumps are replaced by
an appropriate diffusion. [Asmussen, Rosinski (2001); Kohatsu-Higa,
Tankov (2010); Kohatsu-Higa, Ortiz-Latorre, Tankov (2013);
Deligiannidis, Maurer, T (2021)].

Let v, be an m-dimensional vector with the components

v :/ z'v(dz); (50)
e<lz<1
and B, is an m X m matrix with the components
BY :/ Z'Zv(dz), (51)
|z|<e

while 3, be obtained from the formula 3.8 = B..



Dirichlet problem for PIDE

Example (Tempered a-stable Process)

For a tempered stable distribution which has Lévy measure given by

Cre 2 C_e—*-l2l
v(dz) = (Wl(z >0)+ MTI(Z < O))dz7
for @ € (0,2) and C;, C_, Ay, A_ > 0: we find that the error from
approximating the small jumps by diffusion as in Theorem is of the order

0(6370‘)

Ae 1= / v(dz) = O(e™®), 7. = O(e:"¥) for a # 1and B, = O(&2).
|z|>e



Dirichlet problem for PIDE

Consider the modified jump-diffusion X, «(t) = X¢ ,(t) defined as

Keg(t) = x + /tt [b(s,quf)) - F(S,)N((Sf))’y(} ds + /tta(s,k(s))dw(s)
(52)

t
+/ F(s,X(s—))B.dW(s / / F(s,X(s—))zN(dz,ds),
to |z| >e

where W(t) is a standard m-dimensional Wiener process, independent of
N and w.



Dirichlet problem for PIDE

Consider the modified jump-diffusion X, .(t) = X;

to,x

(t) defined as

Keg(t) = x + /tt [b(s,quf)) - F(S,)N((Sf))”,'(} ds + /t.ta(s,)?(s))dw(s)
(52)

-i—/totF(s,)N((s B.dW(s //|> (s, X(s—))zN(dz,ds),

where W(t) is a standard m-dimensional Wiener process, independent of
N and w.

We observe that, in comparison with (47), in (52) jumps less than € in

magnitude are replaced by the additional diffusion part. In this way, the
new Lévy measure has finite activity allowing us to simulate its events

exactly, i.e. in a practical way.



Dirichlet problem for PIDE

Consequently,

u(t,x) ~ Ue(ta X) =E [90 (%t,X7)?t,x(%t,x)) Y/t,x,l(%t,x) + Zt,x,l,O(%t,x) s
(53)

(t,x) € Q,

where 7., = inf{s >t : (5, Xix(5)) ¢ Q} is the fist exit time of the
space-time Lévy process (S,Xtvx(s)) from the space-time cylinder @ and

()N(tyx(s), Vt,x,y(s), Zyx,yyz(s)) - solves the system of SDEs consisting
S22
of (52) along with
dY = c(s,X(s=))Yds, \N/t,x,y(t) =y, (54)
dZ = g(s,X(s=))Yds, Ziry,.(t) =z (55)



Dirichlet problem for PIDE

Theorem

Under some assumptions, for 0 < e < 1
(e~ u(e)| <K [ [sPodz), (r0 €@ (56)

|z|<e

where K > 0 does not depend on t, x, ¢.

[Deligiannidis, Maurer, T, 2021]



Dirichlet problem for PIDE

Example (Tempered a-stable Process)

For a € (0,2) and m = 1 consider an «a-stable process with Lévy measure
given by v(dz) = z71~*dz. Then

3—«a

z3z/dy:6 .
/|Z|<E| () =

Similarly, for a tempered stable distribution which has Lévy measure
given by

C+ef)\+z C_ef)\,\z\
w(dz) = (WI(Z >0)+ =Mz < O))dz,

for a € (0,2) and Cy, C_, Ay, A_ > 0 we find that the error from
approximating the small jumps by diffusion as in Theorem is of the order
O(e372).



Dirichlet problem for PIDE: Algorithm

Assume that we can exactly sample increments 0 between jump times
with the intensity

A= /m V(dz) (57)

and jump sizes J. are distributed according to the density

V(Z)I\z\>e'

p(z) == .



Dirichlet problem for PIDE: Algorithm

Fix a time-discretization step h > 0 and suppose the current position of
the chain is (¢, x,y, z). If the jump time increment § < h, we set § = 0,
otherwise § = h, i.e. 6 =0 A h.

In the case # = h, we apply the weak explicit Euler approximation with

no jumps:
Xex(t+0) ~ X=x+0-(b(t,x) - F(t,x)y.) (59)
+\/§' (O’(t,X)f + F(t,X)ﬂe 7])7
Yy (t+0) ~ Y =y+0-c(t,x)y, (60)
Zt,x,y,z(t+ 9) ~ L=z+0- g(t,x)y, (61)

where ¢ = (¢4,..., €T, n=(nt,...,n™)7, with &*,...,¢ and
nt,...,n™ mutually independent random variables, taking the values +1
with equal probability.

In the case of 8 < h, we replace (59) by the following explicit Euler
approximation

Xex(t+6) ~ X=x+60-(b(t,x)— F(t,x)7.) (62)
+V0 - (o(t,x) € + F(t,x)B. n) + F(t,x)Je.



Dirichlet problem for PIDE: Algorithm

Let (to, x0) € Q. We aim to find the value u(to, xo). Introduce a
discretization of the interval [to, T], for example the equidistant one:
h:=(T —ty)/L.

To approximate the solution of the system (52), we construct a Markov
chain (U, Xk, Yk, Zx) which stops at a random step > when (U, X)
exits the domain Q.



Dirichlet problem for PIDE: Algorithm

1: Initialize: Y9 = tg, Xo =x0, Yo=1, Zo =0, k=0.
2: while 4, < T or X, € G do

3: Simulate: ¢, and 7, with i.i.d. components taking values £1
with probability 1/2 and independently /; ~ Bernoulli(l — e_)‘fh).
4 if I, =0, then
5 Set: 6, = h
6 Evaluate: X, .1, Yit1, Zk+1 according to (15) — (17).
7: else
) ] )\6 —AeX
8 Sample: 0, according to the density (=
9: Sample: jump size J, 4 according to the density (58).
10: Evaluate: X1, Yki1 ., Zkt1 according to (18), (16), (17).

11: end if

12: Set: 79k+1 =0+ 0, and k=k+ 1.

13: end while

14: Set: X,, =X, Y. =Yy, Z,. = Zy, =k, U, = V.
15: if ,, < T then Set: 9,, =¥,

16: else Set: J,, = T

17: end if



Dirichlet problem for PIDE: Algorithm

Theorem

Under some assumption, the global error of the Algorithm satisfies the
following bound

|Elp(9se, Xsc) Yae + Zo2] — (o0, %0)| (63)
1 e Ah 1— e Ah
< (. _p = a=¢
< K(1+'y€)()\6 hl_eAEh)JrK S

where K > 0 is a constant independent of h and e.

[Deligiannidis, Maurer, T, 2021]

A= /|> V(dz)



Dirichlet problem for PIDE: Algorithm

If A\ch < 1, we obtain:
|E[o(0se, Xoc) Yae + Zo] — (10, x0)| < K(L+ |7, *)h,

which is expected for weak convergence in the jump-diffusion case.
If A is large (meaning that almost always 6 < h), the error is tending to

- 1
[Elp (050, Xo) Yic + 2] = (0, 50)| < K(1+ [yel*) 3

We also remark that for any fixed A, we have first order convergence
when h — 0.



Dirichlet problem for PIDE: Algorithm

|]E[g0(1_9,{7 X)) Y + Z.] — u(to, xo)| (64)
1 e heh 1—e h

< (= — 3 .

< K1+ |v,] )(/\E hl—e—)‘fh>+K y +K/Z|§62| v(dz)

e For a € (0,1) convergence is linear in cost and there is no benefit
of restricting jump adapted steps by h.

e For a € (1,2), it is beneficial to use restricted jump-adapted steps
to get the order of (3 — a)/(1 + ) in cost.

e Restricted jump-adapted steps should typically be used for
jump-diffusions (the finite activity case when there is no singularity
of A\c and 7,) because jump time increments 0 typically take too
large values and to control the error at every step we should truncate
those times at a sufficiently small h > 0 for a satisfactory accuracy.



Conclusions

e Using probabilistic representations, we can approximate various
problems for parabolic and elliptic 2nd order PDEs and PIDEs.

e We considered simplest (and hence easy to implement) algorithms

for:
° Dirichlet problems for linear parabolic and eliptic PDEs
. Robin problems for linear parabolic and eliptic PDEs

° Dirichlet problem for linear parabolic PIDE

r The University of
A | Nottingham
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