Simplest random walks for boundary value problems

M.V. Tretyakov
School of Mathematical Sciences, University of Nottingham, UK

Plan of the talk

- Introduction
- Dirichlet problem for parabolic and elliptic linear PDEs
[Milstein, T 2002]
- Robin problem for parabolic and elliptic linear PDEs
[Leimkuhler, Sharma,T 2022?]
- Dirichlet problem for linear PIDEs [Deligiannidis, Maurer, T, 2021]
- Conclusions

Introduction

$$
\begin{equation*}
L:=\frac{\partial}{\partial t}+\frac{1}{2} \sum_{r=1}^{q} \sum_{i, j=1}^{d} \sigma_{r}^{i} \sigma_{r}^{j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+\sum_{i=1}^{d} b^{i} \frac{\partial}{\partial x^{i}} \tag{1}
\end{equation*}
$$

The Cauchy problem for linear parabolic PDE:

$$
\begin{align*}
L u & =0, \quad t<T, x \in R^{d} \tag{2}\\
u(T, x) & =f(x), x \in R^{d} \tag{3}
\end{align*}
$$

Introduction

$$
\begin{equation*}
L:=\frac{\partial}{\partial t}+\frac{1}{2} \sum_{r=1}^{q} \sum_{i, j=1}^{d} \sigma_{r}^{i} \sigma_{r}^{j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+\sum_{i=1}^{d} b^{i} \frac{\partial}{\partial x^{i}} \tag{1}
\end{equation*}
$$

The Cauchy problem for linear parabolic PDE:

$$
\begin{align*}
L u & =0, \quad t<T, x \in R^{d} \tag{2}\\
u(T, x) & =f(x), x \in R^{d} \tag{3}
\end{align*}
$$

Then

$$
\begin{equation*}
u\left(t_{0}, x\right)=E f\left(X_{t_{0}, x}(T)\right), \tag{4}
\end{equation*}
$$

where $X_{t_{0}, x}(t), t \geq t_{0}$, is the solution of the Ito SDEs

$$
\begin{equation*}
d X=b(t, X) d t+\sum_{r=1}^{q} \sigma_{r}(t, X) d w_{r}(t), \quad X\left(t_{0}\right)=x \tag{5}
\end{equation*}
$$

Introduction

$$
\begin{equation*}
L:=\frac{\partial}{\partial t}+\frac{1}{2} \sum_{r=1}^{q} \sum_{i, j=1}^{d} \sigma_{r}^{i} \sigma_{r}^{j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+\sum_{i=1}^{d} b^{i} \frac{\partial}{\partial x^{i}} \tag{1}
\end{equation*}
$$

The Cauchy problem for linear parabolic PDE:

$$
\begin{align*}
L u & =0, \quad t<T, x \in R^{d} \tag{2}\\
u(T, x) & =f(x), x \in R^{d} \tag{3}
\end{align*}
$$

Then

$$
\begin{equation*}
u\left(t_{0}, x\right)=E f\left(X_{t_{0}, x}(T)\right), \tag{4}
\end{equation*}
$$

where $X_{t_{0}, x}(t), t \geq t_{0}$, is the solution of the Ito SDEs

$$
\begin{equation*}
d X=b(t, X) d t+\sum_{r=1}^{q} \sigma_{r}(t, X) d w_{r}(t), \quad X\left(t_{0}\right)=x \tag{5}
\end{equation*}
$$

Approximation:

$$
\begin{equation*}
u \equiv E f(X(T)) \simeq \bar{u} \equiv E f\left(X_{N}\right) \simeq \hat{u} \equiv \frac{1}{M} \sum_{m=1}^{M} f\left(X_{N}^{(m)}\right), \tag{6}
\end{equation*}
$$

where $X_{N}^{(m)}, m=1, \ldots, M$, are independent realizations of X_{N}.

Numerics - weak convergence

Definition

If an approximation \bar{X} is such that

$$
\begin{equation*}
|E f(\bar{X}(T))-E f(X(T))| \leq K h^{p} \tag{7}
\end{equation*}
$$

for f from a class of functions with polynomial growth at infinity, then we say that the weak order of accuracy of the approximation \bar{X} (the method \bar{X}) is p. The constant K depends on the SDE coefficients, on the function f and on T.

The weak Euler scheme (Milstein (1978))

$$
\begin{equation*}
X_{k+1}=X_{k}+b_{k} h+\sqrt{h} \sum_{r=1}^{q} \sigma_{r k} \eta_{r k} \tag{8}
\end{equation*}
$$

where $\eta_{r k}, r=1, \ldots, q, k=0, \ldots, N-1$, are independent random variables taking the values +1 and -1 with probabilities $1 / 2$, also has first order of accuracy in the sense of weak approximation.
[e.g. Milstein, T.; Springer, 2004 or 2021]

Dirichlet problem

Let G be a bounded domain in \mathbf{R}^{d} and $Q=\left[T_{0}, T\right) \times G \subset \mathbf{R}^{d+1}$, and $\Gamma=\bar{Q} \backslash Q$. Consider the Dirichlet problem

$$
\begin{gather*}
\frac{\partial u}{\partial t}+\frac{1}{2} \sum_{i, j=1}^{d} a^{i j}(t, x) \frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}+\sum_{i=1}^{d} b^{i}(t, x) \frac{\partial u}{\partial x^{i}}+c(t, x) u \tag{9}\\
+g(t, x)=0,(t, x) \in Q \\
\left.u\right|_{\Gamma}=\varphi(t, x) . \tag{10}
\end{gather*}
$$

Dirichlet problem

Let G be a bounded domain in \mathbf{R}^{d} and $Q=\left[T_{0}, T\right) \times G \subset \mathbf{R}^{d+1}$, and $\Gamma=\bar{Q} \backslash Q$. Consider the Dirichlet problem

$$
\begin{gather*}
\frac{\partial u}{\partial t}+\frac{1}{2} \sum_{i, j=1}^{d} a^{i j}(t, x) \frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}+\sum_{i=1}^{d} b^{i}(t, x) \frac{\partial u}{\partial x^{i}}+c(t, x) u \tag{9}\\
+g(t, x)=0,(t, x) \in Q \\
\left.u\right|_{\Gamma}=\varphi(t, x) . \tag{10}
\end{gather*}
$$

The probabilistic representation:

$$
\begin{equation*}
u(t, x)=E\left[\varphi\left(\tau, X_{t, x}(\tau)\right) Y_{t, x, 1}(\tau)+Z_{t, x, 1,0}(\tau)\right], \tag{11}
\end{equation*}
$$

where $X_{t, x}(s), Y_{t, x, y}(s), Z_{t, x, y, z}(s), s \geq t$, is the solution of the SDEs:

$$
\begin{align*}
& d X=(b(s, X)-\sigma(s, X) \mu(s, X)) d s+\sigma(s, X) d w(s), \quad X(t)=x, \tag{12}\\
& d Y=c(s, X) Y d s+\mu^{\top}(s, X) Y d w(s), \quad Y(t)=y \tag{13}\\
& d Z=g(s, X) Y d s+F^{\top}(s, X) Y d w(s), \quad Z(t)=z, \tag{14}
\end{align*}
$$

$(t, x) \in Q, \tau=\tau_{t, x}$ is the first exit time of $\left(s, X_{t, x}(s)\right)$ to Γ, $w(s)=\left(w^{1}(s), \ldots, w^{d}(s)\right)^{\top}$ is a standard Wiener process, the $d \times d$ matrix $\sigma(s, x)$ is obtained from $\sigma(s, x) \sigma^{\top}(s, x)=a(s, x), \mu(s, x)$ and $F(s, x)$ are arbitrary d-dimensional vectors sufficiently smooth in \bar{Q}.

Cauchy vs Dirichlet problem

Cauchy

Dirichlet

Dirichlet problem: approximation

Weak approximation of stopped diffusions: Milstein (1995), Costantini, Pacchiarotti, Satoretto (1998), Gobet (2000), Milstein, T (2002) and also Springer 2004 or 2021, Gobet, Menozzi (2010)

Apply the weak Euler approximation with the simplest simulation of noise to the system (12)-(14)

$$
\begin{align*}
X_{t, x}(t+h) & \approx X=x+h(b(t, x)-\sigma(t, x) \mu(t, x))+h^{1 / 2} \sigma(t, x) \xi \tag{15}\\
Y_{t, x, y}(t+h) & \approx Y=y+h c(t, x) y+h^{1 / 2} \mu^{\top}(t, x) y \xi \tag{16}\\
Z_{t, x, y, z}(t+h) & \approx Z=z+h g(t, x) y+h^{1 / 2} F^{\top}(t, x) y \xi \tag{17}
\end{align*}
$$

where $\xi=\left(\xi^{1}, \ldots, \xi^{d}\right)^{\top}, \xi^{i}, i=1, \ldots, d$, are mutually independent random variables taking the values ± 1 with probability $1 / 2$.

Dirichlet problem: the simplest random walk

Introduce the set of points close to the boundary (a boundary zone) $S_{t, h} \subset \bar{G}$ on the layer t : we say that $x \in S_{t, h}$ if at least one of the 2^{d} values of the vector X is outside \bar{G}. It is not difficult to see that due to compactness of \bar{Q} there is a constant $\lambda>0$ such that if the distance from $x \in G$ to the boundary ∂G is equal to or greater than $\lambda \sqrt{h}$ then x is outside the boundary zone and, therefore, for such x all the realizations of the random variable X belong to \bar{G}.

Dirichlet problem: the simplest random walk

Introduce the set of points close to the boundary (a boundary zone) $S_{t, h} \subset \bar{G}$ on the layer t : we say that $x \in S_{t, h}$ if at least one of the 2^{d} values of the vector X is outside \bar{G}. It is not difficult to see that due to compactness of \bar{Q} there is a constant $\lambda>0$ such that if the distance from $x \in G$ to the boundary ∂G is equal to or greater than $\lambda \sqrt{h}$ then x is outside the boundary zone and, therefore, for such x all the realizations of the random variable X belong to \bar{G}.

Since restrictions connected with nonexit from the domain \bar{G} should be imposed on an approximation of the system (12), the formulas (15)-(17) can be used only for the points $x \in \bar{G} \backslash S_{t, h}$ on the layer t, and a special construction is required for points from the boundary zone.

Dirichlet problem: the simplest random walk

Let $x \in S_{t, h}$. Denote by $x^{\pi} \in \partial G$ the projection of the point x on the boundary of the domain G (the projection is unique because h is sufficiently small and ∂G is smooth) and by $n\left(x^{\pi}\right)$ the unit vector of internal normal to ∂G at x^{π}. Introduce the random vector $X_{x, h}^{\pi}$ taking two values x^{π} and $x+h^{1 / 2} \lambda n\left(x^{\pi}\right)$ with probabilities $p=p_{x, h}$ and $q=q_{x, h}=1-p_{x, h}$, respectively, where

$$
p_{x, h}=\frac{h^{1 / 2} \lambda}{\left|x+h^{1 / 2} \lambda n\left(x^{\pi}\right)-x^{\pi}\right|}
$$

If $v(x)$ is a twice continuously differentiable function with the domain of definition \bar{G}, then an approximation of $v(x)$ by the expectation $\operatorname{Ev}\left(X_{x, h}^{\pi}\right)$ corresponds to linear interpolation and

$$
\begin{equation*}
v(x)=E v\left(X_{x, h}^{\pi}\right)+\mathcal{O}(h)=p v\left(x^{\pi}\right)+q v\left(x+h^{1 / 2} \lambda n\left(x^{\pi}\right)\right)+\mathcal{O}(h) . \tag{18}
\end{equation*}
$$

We emphasize that the second value $x+h^{1 / 2} \lambda n\left(x^{\pi}\right)$ does not belong to the boundary zone. We also note that p is always greater than $1 / 2$ (since the distance from x to ∂G is less than $h^{1 / 2} \lambda$) and that if $x \in \partial G$ then $p=1$ (since in this case $\left.x^{\pi}=x\right)$.

STEP 0. $\quad X_{0}^{\prime}=x_{0}, Y_{0}=1, Z_{0}=0, k=0$.
STEP 1. If $X_{k}^{\prime} \notin S_{t_{k}, h}$ then $X_{k}=X_{k}^{\prime}$ and go to STEP 3.
If $X_{k}^{\prime} \in S_{t_{k}, h}$ then either $X_{k}=X_{k}^{\prime \pi}$ with probability
$p_{X_{k}^{\prime}, h}$ or $X_{k}=X_{k}^{\prime}+h^{1 / 2} \lambda n\left(X_{k}^{\prime \pi}\right)$ with probability $q_{X_{k}^{\prime}, h}$.
STEP 2. If $X_{k}=X_{k}^{\prime \pi}$ then STOP and $\varkappa=k$,
$X_{\varkappa}=X_{k}^{\prime \pi}, Y_{\varkappa}=Y_{k}, Z_{\varkappa}=Z_{k}$.
STEP 3. Simulate ξ_{k} and find $X_{k+1}^{\prime}, Y_{k+1}, Z_{k+1}$ according to (15)-(17) for $t=t_{k}, x=X_{k}, y=Y_{k}, z=Z_{k}$, $\xi=\xi_{k}$.
STEP 4. If $k+1=N$, STOP and $\varkappa=N, X_{\varkappa}=X_{N}^{\prime}, Y_{\varkappa}=Y_{N}$, $Z_{\varkappa}=Z_{N}$, otherwise $k:=k+1$ and return to STEP 1 .

Theorem

Algorithm has weak order of accuracy $O(h)$, i.e., the inequality

$$
\begin{equation*}
\left|E\left(\varphi\left(t_{\varkappa}, X_{\varkappa}\right) Y_{\varkappa}+Z_{\varkappa}\right)-u\left(t_{0}, x_{0}\right)\right| \leq C h \tag{19}
\end{equation*}
$$

holds with $C>0$ independent of t_{0}, x_{0}, h.
The scheme of the proof:

- Lemma on order $\mathcal{O}\left(h^{2}\right)$ for the one-step approximation for the Euler approximation.
The number of steps when $X_{k}^{\prime} \notin S_{t_{k}, h}$ is obviously $\mathcal{O}(1 / h)$.
- Lemma on local order $\mathcal{O}(h)$ when X_{k}^{\prime} goes outside \bar{G}.
- Lemma on the average number of steps when $X_{k}^{\prime} \in S_{t_{k}, h}$ is finite.

Milstein, T (2002) and also Springer 2004 or 2021

Dirichlet problem for elliptic PDE

Consider the Dirichlet problem for elliptic equation

$$
\begin{gather*}
\frac{1}{2} \sum_{i, j=1}^{d} a^{i j}(x) \frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}+\sum_{i=1}^{d} b^{i}(x) \frac{\partial u}{\partial x^{i}}+c(x) u+g(x)=0, x \in G \tag{20}\\
\left.u\right|_{\partial G}=\varphi(x) . \tag{21}
\end{gather*}
$$

The probabilistic representation:

$$
\begin{equation*}
u(x)=E\left[\varphi\left(X_{x}(\tau)\right) Y_{x, 1}(\tau)+Z_{x, 1,0}(\tau)\right], \tag{22}
\end{equation*}
$$

where $X_{x}(s), Y_{x, y}(s), Z_{x, y, z}(s), s \geq 0$, is the solution of the Cauchy problem for the system of SDEs:

$$
\begin{align*}
d X & =(b(X)-\sigma(X) \mu(X)) d s+\sigma(X) d w(s), \quad X(0)=x, \tag{23}\\
d Y & =c(X) Y d s+\mu^{\top}(X) Y d w(s), \quad Y(0)=y, \tag{24}\\
d Z & =g(X) Y d s+F^{\top}(X) Y d w(s), \quad Z(0)=z \tag{25}
\end{align*}
$$

$x \in G$, and $\tau=\tau_{x}$ is the first exit time of the trajectory $X_{x}(s)$ to the boundary ∂G.

Dirichlet problem for elliptic PDE

To approximate the solution of the system (23), we construct a Markov chain X_{k} which stops when it reaches the boundary ∂G at a random step \varkappa.

- The simplest random walk is similar to the parabolic case, except \varkappa can be large
- First-order convergence proved.

Milstein, T (2002) and also Springer 2004 or 2021

Robin problem

Let $G \in \mathbb{R}^{d}$ be a bounded domain with boundary ∂G and $Q:=\left[T_{0}, T\right) \times G$ be a cylinder in \mathbb{R}^{d+1}.

Consider the Robin problem:

$$
\begin{align*}
\frac{\partial u}{\partial t}+\frac{1}{2} \sum_{i, j=1}^{d} a^{i j}(t, x) \frac{\partial u}{\partial x^{i} \partial x^{j}}+\sum_{i=1}^{d} b^{i}(t, x) \frac{\partial u}{\partial x^{i}}+c(t, x) u+g(t, x)=0,(t, x) & \in Q \tag{27}\\
u(T, x) & =\varphi(x), \quad x \in \bar{G} \tag{26}\\
\frac{\partial u}{\partial \nu}+\gamma(t, z) u & =\psi(t, z), \quad(t, z) \in S \tag{28}
\end{align*}
$$

where $\nu=\nu(z)$ is the direction of the inner normal to the surface ∂G at $z \in \partial G$.

Robin problem

The probabilistic representation [Gikhman, Skorohod 1968, Ikeda, Watanabe 1981, Freidlin 1985]:

$$
\begin{equation*}
u\left(t_{0}, x\right)=\mathbb{E}\left(\varphi\left(X_{t_{0}, x}(T)\right) Y_{t_{0}, x, 1}(T)+Z_{t_{0}, x, 1,0}(T)\right), \tag{29}
\end{equation*}
$$

where $X_{t_{0}, x}(s), Y_{t_{0}, x, y}(s), Z_{t_{0}, x, y, z}(s), s \geq t_{0}$, is the solution of the system of RSDEs

$$
\begin{equation*}
d X(s)=b(s, X(s)) d s+\sigma(s, X(s)) d W(s)+\nu(X(s)) I_{\partial G}(X(s)) d L(s) \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
d Y(s)=c(s, X(s)) Y(s) d s+\gamma(s, X(s)) I_{\partial G}(X(s)) Y(s) d L(s), \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
d Z(s)=g(s, X(s)) Y(s) d s-\psi(s, X(s)) I_{\partial G}(X(s)) Y(s) d L(s) \tag{32}
\end{equation*}
$$

with $X\left(t_{0}\right)=x, Y\left(t_{0}\right)=y, Z\left(t_{0}\right)=z, T_{0} \leq t_{0} \leq s \leq T, x \in \bar{G}$.

Robin problem

$L(s)$ is the local time of the process $X(s)$ on the boundary ∂G adapted to the filtration $\left(\mathcal{F}_{s}\right)_{s \geq 0}$. A local time is a scalar increasing process continuous in s which increases only when $X(s) \in \partial G$:

$$
L(t)=\int_{t_{0}}^{t} l_{\partial G}(X(s)) d L(s),
$$

[lkeda, Watanabe 1981; P.L. Lions, A.S. Sznitman 1984; Freidlin 1985]

$$
L(t)=\int_{0}^{t} \delta(w(s)) d s
$$

Robin problem: approximation of RSDE

Weak approximation of RSDEs:
Y. Liu (1993); G.N. Milstein (1997); C. Costantini, B. Pacchiarotti, F. Sartoretto (1998); E. Gobet (2001); M. Bossy, E. Gobet, and D. Talay (2004), Leimkuhler, Sharma,T (2022?)

Let $\left(t_{0}, x\right) \in Q$. We introduce the uniform discretization of the time interval $\left[t_{0}, T\right]$ so that $t_{0}<\cdots<t_{N}=T, h:=\left(T-t_{0}\right) / N$ and $t_{k+1}=t_{k}+h$.

We consider a Markov chain $\left(X_{k}\right)_{k \geq 0}$ with $X_{0}=x$ approximating the solution $X_{t_{0}, x}(t)$ of the RSDEs

$$
\begin{aligned}
d X(s) & =b(s, X(s)) d s+\sigma(s, X(s)) d W(s)+\nu(X(s)) I_{\partial G}(X(s)) d L(s), \\
X\left(t_{0}\right) & =x .
\end{aligned}
$$

Since $X(t)$ cannot take values outside \bar{G}, the Markov chain should remain in \bar{G} as well. To this end, the chain has an auxiliary (intermediate) step every time it moves from the time layer t_{k} to t_{k+1}.

Easy-to-implement algorithm

We denote this auxiliary step by X_{k+1}^{\prime}. In moving from X_{k} to X_{k+1}^{\prime}, we apply the weak Euler scheme

$$
\begin{equation*}
X_{k+1}^{\prime}=X_{k}+h b_{k}+h^{1 / 2} \sigma_{k} \xi_{k+1} \tag{33}
\end{equation*}
$$

where $b_{k}=b\left(t_{k}, X_{k}\right), \sigma_{k}=\sigma\left(t_{k}, X_{k}\right)$ and $\xi_{k+1}=\left(\xi_{k+1}^{1}, \ldots, \xi_{k+1}^{d}\right)^{\top}$, $\xi_{k+1}^{i}, i=1, \ldots, d, k=0, \ldots, N-1$, are mutually independent random variables taking values ± 1 with probability $1 / 2$.

Easy-to-implement algorithm

We denote this auxiliary step by X_{k+1}^{\prime}. In moving from X_{k} to X_{k+1}^{\prime}, we apply the weak Euler scheme

$$
\begin{equation*}
X_{k+1}^{\prime}=X_{k}+h b_{k}+h^{1 / 2} \sigma_{k} \xi_{k+1} \tag{33}
\end{equation*}
$$

where $b_{k}=b\left(t_{k}, X_{k}\right), \sigma_{k}=\sigma\left(t_{k}, X_{k}\right)$ and $\xi_{k+1}=\left(\xi_{k+1}^{1}, \ldots, \xi_{k+1}^{d}\right)^{\top}$, $\xi_{k+1}^{i}, i=1, \ldots, d, k=0, \ldots, N-1$, are mutually independent random variables taking values ± 1 with probability $1 / 2$.

Taking this auxiliary step X_{k+1}^{\prime} while moving from X_{k} to X_{k+1} portrays cautious behaviour and gives us an opportunity to check whether the realized value of X_{k+1}^{\prime} is inside the domain G or not. If $X_{k+1}^{\prime} \in \bar{G}$ then on the same time layer we assign values to X_{k+1} as

$$
X_{k+1}=X_{k+1}^{\prime}
$$

Easy-to-implement algorithm

Four possible realizations (i) X_{k+1}^{\prime} of X_{k+1}^{\prime} given X_{k} in two dimensions.

Easy-to-implement algorithm

Four possible realizations ${ }_{(i)} X_{k+1}^{\prime}$ of X_{k+1}^{\prime} given X_{k} in two dimensions.

One step transition in two dimensions from X_{k+1}^{\prime} to X_{k+1} using projection X_{k+1}^{π} of X_{k+1}^{\prime} on ∂G.

Easy-to-implement algorithm

One step transition in two dimensions from X_{k+1}^{\prime} to X_{k+1} using projection X_{k+1}^{π} of X_{k+1}^{\prime} on ∂G.

We find the projection of X_{k+1}^{\prime} onto ∂G which we denote as X_{k+1}^{π} and we calculate $r_{k+1}=\operatorname{dist}\left(X_{k+1}^{\prime}, X_{k+1}^{\pi}\right)$ which is the shortest distance between X_{k+1}^{\prime} and X_{k+1}^{π}. Note that $\operatorname{dist}\left(X_{k}, X_{k+1}^{\prime}\right)=\mathcal{O}\left(h^{1 / 2}\right)$.

$$
\begin{equation*}
X_{k+1}=X_{k+1}^{\prime}+2 r_{k+1} \nu\left(X_{k+1}^{\pi}\right) \tag{34}
\end{equation*}
$$

Easy-to-implement algorithm

Algorithm 1 Algorithm to approximate normal reflected diffusion
Step 1: Set $X_{0}=x, X_{0}^{\prime}=x, k=0$.
Step 2: Simulate ξ_{k+1} and find X_{k+1}^{\prime} using (33).
Step 3: If $X_{k+1}^{\prime} \in \bar{G}$ then $X_{k+1}=X_{k+1}^{\prime}$, else
(i) find the projection X_{k+1}^{π} of X_{k+1}^{\prime} on ∂G,
(ii) calculate $r_{k+1}=\operatorname{dist}\left(X_{k+1}^{\prime}, X_{k+1}^{\pi}\right)$ and find X_{k+1} according to (34).

Step 4: If $k+1=N$ then stop, else put $k:=k+1$ and return to Step 2.

Easy-to-implement algorithm

We approximate RSDEs (30) according to Algorithm 1 and complement it by an approximation of (31) and (32). If the intermediate step X_{k+1}^{\prime} introduced in Algorithm 1, belongs to \bar{G} then we use the Euler scheme:

$$
\begin{align*}
& Y_{k+1}=Y_{k}+h c\left(t_{k}, X_{k}\right) Y_{k} \tag{35}\\
& Z_{k+1}=Z_{k}+h g\left(t_{k}, X_{k}\right) Y_{k} . \tag{36}
\end{align*}
$$

If $X_{k+1}^{\prime} \notin \bar{G}$ then

$$
\begin{equation*}
Y_{k+1}=Y_{k}+h c\left(t_{k}, X_{k}\right) Y_{k}+2 r_{k+1} \gamma\left(t_{k+1}, X_{k+1}^{\pi}\right) Y_{k}+2 r_{k+1}^{2} \gamma^{2}\left(t_{k+1}, X_{k+1}^{\pi}\right) Y_{k}, \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
Z_{k+1}=Z_{k}+h g\left(t_{k}, X_{k}\right) Y_{k}-2 r_{k+1} \psi\left(t_{k+1}, X_{k+1}^{\pi}\right) Y_{k} \tag{38}
\end{equation*}
$$

$$
-2 r_{k+1}^{2} \psi\left(t_{k+1}, X_{k+1}^{\pi}\right) \gamma\left(t_{k+1}, X_{k+1}^{\pi}\right) Y_{k}
$$

where X_{k+1}^{π} is the projection of X_{k+1}^{\prime} on ∂G and $r_{k+1}=\operatorname{dist}\left(X_{k+1}^{\prime}, X_{k+1}^{\pi}\right)$.

Easy-to-implement algorithm

Algorithm 2 Algorithm to approximate the Robin problem
Step 1: Set $X_{0}=x, Y_{0}=1, Z_{0}=0, X_{0}^{\prime}=x, k=0$.
Step 2: Simulate ξ_{k+1} and find X_{k+1}^{\prime} using (33).
Step 3: If $X_{k+1}^{\prime} \in \bar{G}$ then $X_{k+1}=X_{k+1}^{\prime}$ and calculate Y_{k+1} and Z_{k+1} according to (35) and (36), respectively, else find X_{k+1}, Y_{k+1} and Z_{k+1} according to (34), (37) and (38), respectively.
Step 4: If $k+1=N$ then stop, else put $k:=k+1$ and return to Step 2.

Finite-time convergence

Theorem

The weak order of accuracy of the Algorithm is $\mathcal{O}(h)$ under some assumptions, i.e., for sufficiently small $h>0$

$$
\begin{equation*}
\left|\mathbb{E}\left(\varphi\left(X_{N}\right) Y_{N}+Z_{N}\right)-u\left(t_{0}, X_{0}\right)\right| \leq C h, \tag{39}
\end{equation*}
$$

where $u(t, x)$ is solution of (26)-(28) and C is a positive constant independent of h.

The scheme of the proof is roughly as follows.

- Lemma on order $\mathcal{O}\left(h^{2}\right)$ for the one-step approximation for the intermediate step X_{k+1}^{\prime} (i.e., of the Euler approximation).
The number of steps when $X_{k+1}^{\prime} \in \bar{G}$ is obviously $\mathcal{O}(1 / h)$.
- Lemma on local order $\mathcal{O}\left(h^{3 / 2}\right)$ for X_{k+1} when X_{k+1}^{\prime} goes outside \bar{G}.
- Lemma on the average number of steps when $X_{k+1}^{\prime} \notin \bar{G}$ is $\mathcal{O}(1 / \sqrt{h})$.
Leimkuhler, Sharma,T (2022?)

Elliptic PDEs with Robin boundary condition

Let $c(x)$ be negative for all $x \in \bar{G}$ and $\gamma(z)$ be non-positive for all $z \in \partial G$. Consider the elliptic equation

$$
\begin{equation*}
\frac{1}{2} \sum_{i, j=1}^{d} a^{i j}(x) \frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}+\sum_{i=1}^{d} b^{i}(x) \frac{\partial u}{\partial x^{i}}+c(x) u+g(x)=0, \quad x \in G, \tag{40}
\end{equation*}
$$

with Robin boundary condition

$$
\begin{equation*}
\frac{\partial u}{\partial \nu}+\gamma(z) u=\psi(z), \quad z \in \partial G \tag{41}
\end{equation*}
$$

The probabilistic representation [Freidlin 1985]:

$$
u(x)=\lim _{T \rightarrow \infty} \mathbb{E}\left(Z_{x}(T)\right)
$$

where $Z_{x}(s), x \in \bar{G}$, is governed by the RSDEs

$$
\begin{aligned}
& d X(s)=b(X(s)) d s+\sigma(X(s)) d W(s)+\nu(X(s)) I_{\partial G}(X(s)) d L(s), X(0)=x, \\
& \quad d Y(s)=c(X(s)) Y(s) d s+\gamma(X(s)) I_{\partial G}(X(s)) Y(s) d L(s), \quad Y(0)=1, \\
& d Z(s)=g(X(s)) Y(s) d s-\psi(X(s)) l_{\partial G}(X(s)) Y(s) d L(s), \\
& \sigma(0)=0 . \\
& \sigma(x) \sigma)^{\top}=a(x) .
\end{aligned}
$$

Elliptic PDEs with Robin boundary condition

Theorem

Under some assumptions, the following inequality holds for sufficiently small $h>0$:

$$
\begin{equation*}
\left|\mathbb{E}\left(Z_{N}\right)-u(x)\right| \leq C\left(h+e^{-\lambda T}\right), \tag{42}
\end{equation*}
$$

where Z_{N} is calculated according to Algorithm 2 approximating the solution $u(x)$ of (40)-(41), and C and λ are positive constants independent of T and h.

Leimkuhler, Sharma,T (2022?)

Elliptic PDEs with Robin boundary condition

The case $c(x)=0$ and $\gamma(z)=0$. The probabilistic representation [Freindlin 1985; Bencherif-Madani, Pardoux 2009]:

$$
\begin{equation*}
u(x)=\lim _{T \rightarrow \infty} \mathbb{E} Z_{x}(T)+\bar{u} \tag{43}
\end{equation*}
$$

where $\bar{u}=\int_{G} u(x) \rho(x) d x, \rho(x)$ is the solution of the adjoint problem (note that $\rho(x)$ is the invariant density of $X(s)$), and $Z_{x}(s)=Z(s)$ is governed by

$$
d Z(s)=-\phi_{1}(X(s)) d s-\phi_{2}(X(s)) I_{\partial G}(X(s)) d L(s), Z(0)=0,
$$

where $X(s)$ is as before.
A suitable algorithm based on double partitioning of the time interval $[0, T]$ and its convergence proof are in Leimkuhler, Sharma,T (2022?).

Dirichlet problem for parabolic integro-differential equation

Let G be a bounded domain in $\mathbb{R}^{d}, Q=\left[t_{0}, T\right) \times G$ be a cylinder in $\mathbb{R}^{d+1}, \Gamma=\bar{Q} \backslash Q, G^{c}=\mathbb{R}^{d} \backslash Q$ be the complement of G and $Q^{c}:=\left(t_{0}, T\right] \times G^{c} \cup\{T\} \times \bar{G}$. Consider the Dirichlet problem for the PIDE:

$$
\begin{align*}
& \frac{\partial u}{\partial t}+L u+c(t, x) u+g(t, x)=0, \quad(t, x) \in Q, \tag{44}\\
& u(t, x)=\varphi(t, x), \quad(t, x) \in Q^{c}, \\
& L u(t, x):=\frac{1}{2} \sum_{i, j=1}^{d} a^{i j}(t, x) \frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}(t, x)+\sum_{i=1}^{d} b^{i}(t, x) \frac{\partial u}{\partial x^{i}}(t, x) \tag{45}\\
& +\int_{\mathbb{R}^{m}}\left\{u(t, x+F(t, x) z)-u(t, x)-\left.\langle F(t, x) z, \nabla u(t, x)\rangle\right|_{|z| \leq 1}\right\} \nu(\mathrm{d} z) ; \\
& F(t, x)=\left(F^{i j}(t, x)\right) \text { is a } d \times m \text {-matrix; and } \nu(z), z \in \mathbb{R}^{m}, \text { is a Lévy } \\
& \text { measure such that } \int_{\mathbb{R}^{m}}\left(|z|^{2} \wedge 1\right) \nu(\mathrm{d} z)<\infty . \text { We allow } \nu \text { to be of infinite } \\
& \text { intensity, i.e. } \nu(B(0, r))=\infty \text { for some } r>0, \text { where } B(x, s) \text { is the open } \\
& \text { ball of radius } s>0 \text { centred at } x \in \mathbb{R}^{d} .
\end{align*}
$$

Dirichlet problem for PIDE

Probabilistic representation [Applebaum 2009]

$$
\begin{gather*}
u(t, x)=\mathbb{E}\left[\varphi\left(\tau_{t, x}, X_{t, x}\left(\tau_{t, x}\right)\right) Y_{t, x, 1}\left(\tau_{t, x}\right)+Z_{t, x, 1,0}\left(\tau_{t, x}\right)\right], \quad(t, x) \in Q \tag{46}\\
\quad d X=b(s, X(s-)) \mathrm{d} s+\sigma(s, X(s-)) \mathrm{d} w(s) \tag{47}\\
\quad+\int_{\mathbb{R}^{d}} F(s, X(s-)) z \hat{N}(\mathrm{~d} z, \mathrm{~d} s), \quad X_{t, x}(t)=x, \\
d Y=c(s, X(s-)) Y d s, \quad Y_{t, x, y}(t)=y, \tag{48}\\
d Z=g(s, X(s-)) Y d s, \quad Z_{t, x, y, z}(t)=z, \tag{49}
\end{gather*}
$$

and $\tau_{t, x}=\inf \left\{s \geq t:\left(s, X_{t, x}(s)\right) \notin Q\right\}$ is the fist exit-time of $\left(s, X_{t, x}(s)\right)$ from $Q, \sigma(s, x) \sigma^{\top}(s, x)=a(s, x) ; w(t)=\left(w^{1}(t), \ldots, w^{d}(t)\right)^{\top}$ is a standard d-dimensional Wiener process; and \hat{N} is a Poisson random measure on $[0, \infty) \times \mathbb{R}^{m}$ with intensity measure $\nu(\mathrm{d} z) \times \mathrm{ds}$, $\int_{\mathbb{R}^{m}}\left(|z|^{2} \wedge 1\right) \nu(\mathrm{d} z)<\infty$, and compensated small jumps, i.e.,

$$
\begin{aligned}
\hat{N}([0, t] \times B)= & \int_{[0, t] \times B} N(\mathrm{~d} z, \mathrm{~d} s)-t \nu(B \cap\{|z| \leq 1\}), \\
& \text { for all } t \geq 0 \text { and } B \in \mathcal{B}\left(\mathbb{R}^{m}\right) .
\end{aligned}
$$

Dirichlet problem for PIDE

Consider the approximation of (47), where small jumps are replaced by an appropriate diffusion. [Asmussen, Rosinski (2001); Kohatsu-Higa, Tankov (2010); Kohatsu-Higa, Ortiz-Latorre, Tankov (2013); Deligiannidis, Maurer, T (2021)].

Dirichlet problem for PIDE

Consider the approximation of (47), where small jumps are replaced by an appropriate diffusion. [Asmussen, Rosinski (2001); Kohatsu-Higa, Tankov (2010); Kohatsu-Higa, Ortiz-Latorre, Tankov (2013); Deligiannidis, Maurer, T (2021)].
Let γ_{ϵ} be an m-dimensional vector with the components

$$
\begin{equation*}
\gamma_{\epsilon}^{i}=\int_{\epsilon \leq|z| \leq 1} z^{i} \nu(\mathrm{~d} z) ; \tag{50}
\end{equation*}
$$

and B_{ϵ} is an $m \times m$ matrix with the components

$$
\begin{equation*}
B_{\epsilon}^{i j}=\int_{|z|<\epsilon} z^{i} z^{j} \nu(\mathrm{~d} z), \tag{51}
\end{equation*}
$$

while β_{ϵ} be obtained from the formula $\beta_{\epsilon} \beta_{\epsilon}^{\top}=B_{\epsilon}$.

Dirichlet problem for PIDE

Example (Tempered α-stable Process)

For a tempered stable distribution which has Lévy measure given by

$$
\nu(\mathrm{d} z)=\left(\frac{C_{+} \mathrm{e}^{-\lambda_{+} z}}{z^{1+\alpha}} \mathbf{l}(z>0)+\frac{C_{-} \mathrm{e}^{-\lambda_{-}|z|}}{|z|^{1+\alpha}} \mathbf{l}(z<0)\right) \mathrm{d} z,
$$

for $\alpha \in(0,2)$ and $C_{+}, C_{-}, \lambda_{+}, \lambda_{-}>0$: we find that the error from approximating the small jumps by diffusion as in Theorem is of the order $O\left(\epsilon^{3-\alpha}\right)$
$\lambda_{\epsilon}:=\int_{|z|>\epsilon} \nu(\mathrm{d} z)=\mathcal{O}\left(\epsilon^{-\alpha}\right), \quad \gamma_{\epsilon}=\mathcal{O}\left(\epsilon^{1-\alpha}\right)$ for $\alpha \neq 1$ and $B_{\epsilon}=\mathcal{O}\left(\epsilon^{2-\alpha}\right)$.

Dirichlet problem for PIDE

Consider the modified jump-diffusion $\tilde{X}_{t_{0}, x}(t)=\tilde{X}_{t_{0}, x}^{\epsilon}(t)$ defined as

$$
\begin{align*}
\tilde{X}_{t_{0}, x}(t)= & x+\int_{t_{0}}^{t}\left[b(s, \tilde{X}(s-))-F(s, \tilde{X}(s-)) \gamma_{\epsilon}\right] \mathrm{d} s+\int_{t_{0}}^{t} \sigma(s, \tilde{X}(s-)) \mathrm{d} w(s) \tag{52}\\
& +\int_{t_{0}}^{t} F(s, \tilde{X}(s-)) \beta_{\epsilon} \mathrm{d} W(s)+\int_{t_{0}}^{t} \int_{|z| \geq \epsilon} F(s, \tilde{X}(s-)) z N(\mathrm{~d} z, \mathrm{~d} s),
\end{align*}
$$

where $W(t)$ is a standard m-dimensional Wiener process, independent of N and w.

Dirichlet problem for PIDE

Consider the modified jump-diffusion $\tilde{X}_{t_{0}, x}(t)=\tilde{X}_{t_{0}, x}^{\epsilon}(t)$ defined as

$$
\begin{align*}
\tilde{X}_{t_{0}, x}(t)= & x+\int_{t_{0}}^{t}\left[b(s, \tilde{X}(s-))-F(s, \tilde{X}(s-)) \gamma_{\epsilon}\right] \mathrm{d} s+\int_{t_{0}}^{t} \sigma(s, \tilde{X}(s-)) \mathrm{d} w(s) \tag{52}\\
& +\int_{t_{0}}^{t} F(s, \tilde{X}(s-)) \beta_{\epsilon} \mathrm{d} W(s)+\int_{t_{0}}^{t} \int_{|z| \geq \epsilon} F(s, \tilde{X}(s-)) z N(\mathrm{~d} z, \mathrm{~d} s),
\end{align*}
$$

where $W(t)$ is a standard m-dimensional Wiener process, independent of N and w.

We observe that, in comparison with (47), in (52) jumps less than ϵ in magnitude are replaced by the additional diffusion part. In this way, the new Lévy measure has finite activity allowing us to simulate its events exactly, i.e. in a practical way.

Dirichlet problem for PIDE

Consequently,

$$
\begin{equation*}
u(t, x) \approx u_{\epsilon}(t, x):=\mathbb{E}\left[\varphi\left(\tilde{\tau}_{t, x}, \tilde{X}_{t, x}\left(\tilde{\tau}_{t, x}\right)\right) \tilde{\gamma}_{t, x, 1}\left(\tilde{\tau}_{t, x}\right)+\tilde{Z}_{t, x, 1,0}\left(\tilde{\tau}_{t, x}\right)\right] \tag{53}
\end{equation*}
$$

$$
(t, x) \in Q,
$$

where $\tilde{\tau}_{t, x}=\inf \left\{s \geq t:\left(s, \tilde{X}_{t, x}(s)\right) \notin Q\right\}$ is the fist exit time of the space-time Lévy process ($s, \tilde{X}_{t, x}(s)$) from the space-time cylinder Q and $\left(\tilde{X}_{t, x}(s), \tilde{Y}_{t, x, y}(s), \tilde{Z}_{t, x, y, z}(s)\right)_{s \geq 0}$ solves the system of SDEs consisting of (52) along with

$$
\begin{align*}
& d \tilde{Y}=c(s, \tilde{X}(s-)) \tilde{Y} d s, \quad \tilde{Y}_{t, x, y}(t)=y \tag{54}\\
& d \tilde{Z}=g(s, \tilde{X}(s-)) \tilde{Y} d s, \quad \tilde{Z}_{t, x, y, z}(t)=z \tag{55}
\end{align*}
$$

Dirichlet problem for PIDE

Theorem

Under some assumptions, for $0 \leq \epsilon<1$

$$
\begin{equation*}
\left|u^{\epsilon}(t, x)-u(t, x)\right| \leq K \int_{|z| \leq \epsilon}|z|^{3} \nu(\mathrm{~d} z), \quad(t, x) \in Q, \tag{56}
\end{equation*}
$$

where $K>0$ does not depend on t, x, ϵ.
[Deligiannidis, Maurer, T, 2021]

Dirichlet problem for PIDE

Example (Tempered α-stable Process)

For $\alpha \in(0,2)$ and $m=1$ consider an α-stable process with Lévy measure given by $\nu(\mathrm{d} z)=z^{-1-\alpha} \mathrm{d} z$. Then

$$
\int_{|z| \leq \epsilon}|z|^{3} \nu(\mathrm{~d} y)=\frac{\epsilon^{3-\alpha}}{3-\alpha} .
$$

Similarly, for a tempered stable distribution which has Lévy measure given by

$$
\nu(\mathrm{d} z)=\left(\frac{C_{+} \mathrm{e}^{-\lambda_{+} z}}{z^{1+\alpha}} \mathbf{l}(z>0)+\frac{C_{-} \mathrm{e}^{-\lambda_{-}|z|}}{|z|^{1+\alpha}} \mathbf{l}(z<0)\right) \mathrm{d} z,
$$

for $\alpha \in(0,2)$ and $C_{+}, C_{-}, \lambda_{+}, \lambda_{-}>0$ we find that the error from approximating the small jumps by diffusion as in Theorem is of the order $\mathcal{O}\left(\epsilon^{3-\alpha}\right)$.

Dirichlet problem for PIDE: Algorithm

Assume that we can exactly sample increments δ between jump times with the intensity

$$
\begin{equation*}
\lambda_{\epsilon}:=\int_{|z|>\epsilon} \nu(\mathrm{d} z) \tag{57}
\end{equation*}
$$

and jump sizes J_{ϵ} are distributed according to the density

$$
\begin{equation*}
\rho_{\epsilon}(z):=\frac{\nu(z) \mathbf{I}_{|z|>\epsilon}}{\lambda_{\epsilon}} \text {. } \tag{58}
\end{equation*}
$$

Fix a time-discretization step $h>0$ and suppose the current position of the chain is (t, x, y, z). If the jump time increment $\delta<h$, we set $\theta=\delta$, otherwise $\theta=h$, i.e. $\theta=\delta \wedge h$.
In the case $\theta=h$, we apply the weak explicit Euler approximation with no jumps:

$$
\begin{align*}
\tilde{X}_{t, x}(t+\theta) \approx & X=x+\theta \cdot\left(b(t, x)-F(t, x) \gamma_{\epsilon}\right) \tag{59}\\
& +\sqrt{\theta} \cdot\left(\sigma(t, x) \xi+F(t, x) \beta_{\epsilon} \eta\right) \\
\tilde{Y}_{t, x, y}(t+\theta) \approx & Y=y+\theta \cdot c(t, x) y \tag{60}\\
\tilde{Z}_{t, x, y, z}(t+\theta) \approx & Z=z+\theta \cdot g(t, x) y, \tag{61}
\end{align*}
$$

where $\xi=\left(\xi^{1}, \ldots, \xi^{d}\right)^{\top}, \eta=\left(\eta^{1}, \ldots, \eta^{m}\right)^{\top}$, with ξ^{1}, \ldots, ξ^{d} and $\eta^{1}, \ldots, \eta^{m}$ mutually independent random variables, taking the values ± 1 with equal probability.
In the case of $\theta<h$, we replace (59) by the following explicit Euler approximation

$$
\begin{align*}
\tilde{X}_{t, x}(t+\theta) \approx & X=x+\theta \cdot\left(b(t, x)-F(t, x) \gamma_{\epsilon}\right) \tag{62}\\
& +\sqrt{\theta} \cdot\left(\sigma(t, x) \xi+F(t, x) \beta_{\epsilon} \eta\right)+F(t, x) J_{\epsilon} .
\end{align*}
$$

Dirichlet problem for PIDE: Algorithm

Let $\left(t_{0}, x_{0}\right) \in Q$. We aim to find the value $u^{\epsilon}\left(t_{0}, x_{0}\right)$. Introduce a discretization of the interval $\left[t_{0}, T\right]$, for example the equidistant one: $h:=\left(T-t_{0}\right) / L$.
To approximate the solution of the system (52), we construct a Markov chain $\left(\vartheta_{k}, X_{k}, Y_{k}, Z_{k}\right)$ which stops at a random step \varkappa when $\left(\vartheta_{k}, X_{k}\right)$ exits the domain Q.

Initialize: $\vartheta_{0}=t_{0}, X_{0}=x_{0}, Y_{0}=1, Z_{0}=0, k=0$.
2: while $\vartheta_{k}<T$ or $X_{k} \in G$ do
3: \quad Simulate: ξ_{k} and η_{k} with i.i.d. components taking values ± 1 with probability $1 / 2$ and independently $I_{k} \sim \operatorname{Bernoulli}\left(1-e^{-\lambda_{\epsilon} h}\right)$.
if $I_{k}=0$, then
Set: $\theta_{k}=h$
Evaluate: $X_{k+1}, Y_{k+1}, Z_{k+1}$ according to (15) - (17).
else
Sample: θ_{k} according to the density $\frac{\lambda_{\epsilon} e^{-\lambda_{\epsilon} x}}{1-e^{-\lambda_{\epsilon} h}}$.
Sample: jump size $J_{\epsilon, k}$ according to the density (58).
Evaluate: $X_{k+1}, Y_{k+1}, Z_{k+1}$ according to (18), (16), (17). end if
Set: $\vartheta_{k+1}=\vartheta_{k}+\theta_{k}$ and $k=k+1$.
13: end while
14: Set: $X_{\varkappa}=X_{k}, Y_{\varkappa}=Y_{k}, Z_{\varkappa}=Z_{k}, \varkappa=k, \vartheta_{\varkappa}=\vartheta_{k}$.
15: if $\vartheta_{\varkappa}<T$ then Set: $\bar{\vartheta}_{\varkappa}=\vartheta_{\varkappa}$
16: else Set: $\bar{\vartheta}_{\varkappa}=T$
17: end if

Dirichlet problem for PIDE: Algorithm

Theorem

Under some assumption, the global error of the Algorithm satisfies the following bound

$$
\begin{align*}
& \left|\mathbb{E}\left[\varphi\left(\bar{\vartheta}_{\varkappa}, X_{\varkappa}\right) Y_{\varkappa}+Z_{\varkappa}\right]-u^{\epsilon}\left(t_{0}, x_{0}\right)\right| \tag{63}\\
\leq & K\left(1+\gamma_{\epsilon}^{2}\right)\left(\frac{1}{\lambda_{\epsilon}}-h \frac{e^{-\lambda_{\epsilon} h}}{1-e^{-\lambda_{\epsilon} h}}\right)+K \frac{1-e^{-\lambda_{\epsilon} h}}{\lambda_{\epsilon}},
\end{align*}
$$

where $K>0$ is a constant independent of h and ϵ.
[Deligiannidis, Maurer, T, 2021]

$$
\lambda_{\epsilon}=\int_{|z|>\epsilon} \nu(\mathrm{d} z)
$$

Dirichlet problem for PIDE: Algorithm

If $\lambda_{\epsilon} h<1$, we obtain:

$$
\left|\mathbb{E}\left[\varphi\left(\bar{\vartheta}_{\varkappa}, X_{\varkappa}\right) Y_{\varkappa}+Z_{\varkappa}\right]-u^{\epsilon}\left(t_{0}, x_{0}\right)\right| \leq K\left(1+\left|\gamma_{\epsilon}\right|^{2}\right) h,
$$

which is expected for weak convergence in the jump-diffusion case. If λ_{ϵ} is large (meaning that almost always $\theta<h$), the error is tending to

$$
\left|\mathbb{E}\left[\varphi\left(\bar{\vartheta}_{\varkappa}, X_{\varkappa}\right) Y_{\varkappa}+Z_{\varkappa}\right]-u^{\epsilon}\left(t_{0}, x_{0}\right)\right| \leq K\left(1+\left|\gamma_{\epsilon}\right|^{2}\right) \frac{1}{\lambda_{\epsilon}} .
$$

We also remark that for any fixed λ_{ϵ}, we have first order convergence when $h \rightarrow 0$.

$$
\begin{align*}
& \left|\mathbb{E}\left[\varphi\left(\bar{\vartheta}_{\varkappa}, X_{\varkappa}\right) Y_{\varkappa}+Z_{\varkappa}\right]-u\left(t_{0}, x_{0}\right)\right| \tag{64}\\
& \leq K\left(1+\left|\gamma_{\epsilon}\right|^{2}\right)\left(\frac{1}{\lambda_{\epsilon}}-h \frac{e^{-\lambda_{\epsilon} h}}{1-e^{-\lambda_{\epsilon} h}}\right)+K \frac{1-e^{-\lambda_{\epsilon} h}}{\lambda_{\epsilon}}+K \int_{|z| \leq \epsilon}|z|^{3} \nu(\mathrm{~d} z)
\end{align*}
$$

- For $\alpha \in(0,1)$ convergence is linear in cost and there is no benefit of restricting jump adapted steps by h.
- For $\alpha \in(1,2)$, it is beneficial to use restricted jump-adapted steps to get the order of $(3-\alpha) /(1+\alpha)$ in cost.
- Restricted jump-adapted steps should typically be used for jump-diffusions (the finite activity case when there is no singularity of λ_{ϵ} and γ_{ϵ}) because jump time increments δ typically take too large values and to control the error at every step we should truncate those times at a sufficiently small $h>0$ for a satisfactory accuracy.

Conclusions

- Using probabilistic representations, we can approximate various problems for parabolic and elliptic 2nd order PDEs and PIDEs.
- We considered simplest (and hence easy to implement) algorithms for:
- Dirichlet problems for linear parabolic and eliptic PDEs
- Robin problems for linear parabolic and eliptic PDEs
- Dirichlet problem for linear parabolic PIDE

