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Implicit constitutive theory & strain-limiting models

During the past decade there has been significant progress in developing
implicit constitutive models for the description of nonlinear responses of
materials. The field was initiated by K.R. Rajagopal (Texas A&M):

K. R. Rajagopal, On implicit constitutive theories.
Appl. Math., 48 (2003), 279–319.

K. R. Rajagopal, Elasticity of elasticity.
Zeitschrift für Angewandte Math. Phys., 58 (2007), 309–417.

Within “Rajagopal elasticity” it is possible to have models in which the
linearized strain is a bounded function, even when the stress is large.

K. R. Rajagopal, Non-linear elastic bodies exhibiting limiting small strain.
Math. Mech. Solids 16 (2011), no. 1, 122–139.
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Soft tissue exhibiting finite extensibility

Stress–strain curve for the tissue of the cardiac aorta.

Source:

https://www.toppr.com/guides/physics/mechanical-properties-of-solids/hookes-law-and-stress-strain-curve/
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These constitutive models are called strain-limiting models.

They may be useful in modelling stress concentration when the
displacement gradient is relatively small (e.g. brittle materials near crack
tips/notches, or concentrated loads inside a body or on its boundary).

(a) Concentrated load (b) Small displacement

N. Gelmetti and E. Süli. Spectral approximation of a strain-limiting nonlinear elastic model. Matematički Vesnik. 71, 1-2

(2019), 63–89.

4 / 22



These constitutive models are called strain-limiting models.

They may be useful in modelling stress concentration when the
displacement gradient is relatively small (e.g. brittle materials near crack
tips/notches, or concentrated loads inside a body or on its boundary).

(a) Concentrated load (b) Small displacement
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For physical aspects and results concerning the existence of solutions, see:

M. Buĺıček, J. Málek, K. R. Rajagopal, E. Süli, On elastic solids with limiting small
strain: modelling and analysis, EMS Surveys in Mathematical Sciences, 1(2)
(2014), 283–332. Henceforth: [BMRS2014]

M. Buĺıček, J. Málek, E. Süli, Analysis and approximation of a strain-limiting
nonlinear model, Math. Mech. Solids, 20 (2015), 92–118.

L. Beck, M. Buĺıček, J. Málek, E. Süli, On the existence of integrable solutions to
nonlinear elliptic systems and variational problems with linear growth, Arch. Ration.
Mech. Anal., 225(2) (2017), 717–769. Henceforth: [BBMS2017]

The literature on the analysis of numerical method for these is very limited:

N. Gelmetti, E. Süli. Spectral approximation of a strain-limiting nonlinear elastic
model. Matematički Vesnik, 71, 1–2 (2019), 63–89.

A. Bonito, V. Girault, E. Süli, Finite element approximation of a strain-limiting
elastic model, IMA J. Numer. Anal., V. 40, Issue 1, (2020), 29–86.

A. Bonito, V. Girault, D. Guignard, K. Rajagopal, and E. Süli. Finite element
approximation of steady flows of colloidal solutions. ESAIM M2AN, Vol. 55, No. 5,
September-October 2021, pp. 1963–2011.
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model. Matematički Vesnik, 71, 1–2 (2019), 63–89.
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Statement of the model

On a bounded domain Ω ⊂ Rd, d ∈ {2, 3}, and for a given external force
f : Ω→ Rd, we consider the nonlinear elastic model

− div(T) = f in Ω, (1)

where the stress tensor T is related to the linearized strain tensor

ε(u) :=
1

2
(∇u + (∇u)T),

for a given displacement vector u, via the nonlinear constitutive relation

ε(u) = λ(tr(T)) tr(T)I + µ(|Td|)Td in Ω. (2)

Here λ ∈ C0(R) and µ ∈ C0([0,+∞)) are given functions and Td is the
deviatoric part of the tensor T, defined by

Td := T− 1

d
tr(T)I.
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Assume that s ∈ R 7→ λ(s)s ∈ C1(R), and that λ and µ satisfy, for some
positive constants C1, C2, κ and α, the following inequalities:

C1s
2

κ+ |s|
≤ λ(s)s2 ≤ C2|s| ∀ s ∈ R; (A1)

C1s
2

κ+ s
≤ µ(s)s2 ≤ C2s ∀ s ∈ R≥0; (A2)

0 ≤ d

ds
(λ(s)s) ∀ s ∈ R; (A3)

C1

(κ+ s)α+1
≤ d

ds
(µ(s)s) ∀ s ∈ R>0. (A4)

These assumptions guarantee that the system will only exhibit finite
linearized strain.
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Under the assumptions (A1)–(A4) stated above, there exists a positive
constant C such that the following inequalities hold for all R1,R2 ∈ Rd×d:

(µ(|R1|)R1 − µ(|R2|)R2) : (R1 −R2) ≥ C |R1 −R2|2

(κ+ |R1|+ |R2|)1+α
;

(µ(|R1|)R1 − µ(|R2|)R2) : (R1 −R2) ≥ C
∣∣∣(κ+ |R1|)

1−α
2 − (κ+ |R2|)

1−α
2

∣∣∣2 ;

(λ(tr(R1))tr(R1)− λ(tr(R2))tr(R2)) (tr(R1)− tr(R2)) ≥ 0.

If, in addition,

0 <
d

ds
(λ(s)s) ∀ s ∈ R, (A3’)

then, for all R1,R2 ∈ Rd×d such that tr(R1) 6= tr(R2), we have

(λ(tr(R1))tr(R1)− λ(tr(R2))tr(R2)) (tr(R1)− tr(R2)) > 0.
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The system (1), (2) is supplemented with the boundary conditions

u = g on ∂DΩ and Tν = ` on ∂NΩ,

with ∂DΩ and ∂NΩ, disjoint and ∂DΩ ∪ ∂NΩ = ∂Ω, and ν is the unit
outward normal to ∂Ω, g : ∂Ω→ Rd is a given displacement on ∂DΩ,
and ` : ∂Ω→ Rd is a given traction force on ∂NΩ.

9 / 22



Theorem (Theorem 4.3 in BMRS2014)

Assume ∂NΩ = ∅ and λ, µ satisfy (A1)–(A4) with 0 ≤ α < 1/d; then:

1 Assume that f = −div(F) for F ∈W β,1(Ω)d×dsym with β ∈ (αd, 1).
Then, there exists a pair (T,u), such that

T ∈ L1(Ω)d×dsym , u ∈W 1,p
0 (Ω)d, p ∈ [1,∞), ε(u) ∈ L∞(Ω)d×dsym

is a weak solution in the sense that it satisfies∫
Ω
T : ε(w) dx =

∫
Ω
F : ε(w) dx ∀w ∈ D(Ω)d, (3)

and the relationship (2) between ε(u) and T holds a.e. in Ω;

2 Also, u is unique and if λ satisfies (A3’), then T is also unique;

3 Furthermore, if F belongs to W 2,2(Ω)d×dsym , then T ∈W 1,q
loc (Ω)d×dsym with

q ∈ [1, 2) when d = 2 and q = 2− 1+α
2−α when d = 3.
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Remark

When ∂ΩN 6= ∅ the structure of the solution is much more complicated.

In [BBMS2017] it was shown that the solution in that case belongs to
the space of Radon measures, but if the problem is equipped with an
asymptotic radial structure, then the solution can be understood as a
standard weak solution, with one proviso: the attainment of the bdry
value is penalized by a measure supported on ∂ΩN .

The proof is based on constructing a sequence of solutions to a regularized
problem, where the stress-strain relationship (2) is replaced by

ε(u) = λ(tr(T))tr(T)I + µ(|Td|)Td +
tr(T)I

n|tr(T)|1−
1
n

+
Td

n|Td|1−
1
n

;

here n ∈ N is a regularization parameter, and we shall let n→∞.
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We shall consider the finite element approximation of this regularized
problem, whose variational form is: find (Tn,un) ∈Mn × Xn satisfying

an(Tn,S) + c(Tn;Tn,S)− b(S,un) = 0 ∀S ∈Mn,

b(Tn,v) =

∫
Ω
F : ε(v) dx ∀v ∈ Xn,

where

an(T,S) :=
1

n

∫
Ω

(
tr(T)I

|tr(T)|1−
1
n

+
Td

|Td|1−
1
n

)
: Sdx,

c(T;R,S) :=

∫
Ω

(
λ(tr(T))tr(R)I + µ(|Td|)Rd

)
: Sdx,

b(S,v) :=

∫
Ω
S : ε(v) dx

and
Mn := L1+ 1

n
(Ω)d×dsym , Xn := W 1,n+1

0 (Ω)d, n ∈ N.
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Existence/uniqueness of solution to the regularized problem

Lemma

For each n ∈ N there exists a unique solution pair (Tn,un) ∈Mn × Xn to
the regularized problem.

Lemma (A-priori estimates)

Suppose that F ∈ L1+ 1
n

(Ω)d×dsym , and that λ and µ satisfy the properties

(A1) and (A2). Then,

‖ε(un)‖Ln+1(Ω) ≤ C(d, |Ω|
1
n )

[
1

n
‖F‖1+ 1

n
L

1+ 1
n

(Ω) + ‖F‖L
1+ 1

n
(Ω) + κ

] 1
n+1

and

1

n
‖Tn‖

1+ 1
n

L
1+ 1

n
(Ω) + ‖Tn‖L1(Ω)

≤ C(d)

[
1

n
‖F‖1+ 1

n
L

1+ 1
n

(Ω) + |Ω|
1
n ‖F‖L

1+ 1
n

(Ω) + κ|Ω|
]
.
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Passage to the limit n→∞
un ⇀ u weakly in W 1,2d

0 (Ω)d,

un → u strongly in C(Ω)d,

(Tn)d

n|(Tn)d|1−
1
n

→ 0 strongly in L1(Ω)d×dsym ,

tr(Tn)

n|tr(Tn)|1−
1
n

→ 0 strongly in L1(Ω),

ε(un) ⇀ ε(u) weakly in L2d(Ω)d×dsym ,

and

ε(un)→ ε(u) strongly in Lp(Ω0)d×d ∀Ω0 ⊂⊂ Ω, ∀ p ∈ [1,∞).

Also, by a fractional Nikolskĭı norm bound and embedding [BMRS2014]:

Tn → T in Lq(Ω0)d×dsym , ∀ q ∈
[
1, 1 + 1

2
β−αd
d−β

)
,

{
β ∈ (αd, 1),
0 ≤ α < 1

d ,
Ω0 ⊂⊂ Ω.
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Finite element approximation

Suppose Ω is a polygon when d = 2 or a Lipschitz polyhedron when d = 3.

Consider a sequence of shape-regular simplicial subdivisions (Th)h∈(0,1] of

Ω; i.e. there exists a positive real number η, independent of the mesh-size
h, such that all closed simplices K contained in Th satisfy

hK
%K
≤ η,

where hK := diam(K) and %K is the diameter of the largest ball ⊂ K.

Let Pr
h be the space of piecewise (subordinate to Th) polynomials of

degree at most r. We consider the conforming finite element spaces

Mn,h :=
(
P0
h

)d×d
sym
⊂Mn, Xn,h :=

(
P1
h

)d ∩ Xn ⊂ Xn,

for the approximation of Tn and un, respectively.
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Discrete scheme

The discrete counterpart of the regularized problem, based on Xn,h and
Mn,h, is defined as follows: find (Tn,h,un,h) ∈Mn,h × Xn,h such that

an(Tn,h,Sh) + c(Tn,h;Tn,h,Sh)− b(Sh,un,h) = 0 ∀Sh ∈Mn,h,

b(Tn,h,vh) =

∫
Ω
F : ε(vh) dx ∀vh ∈ Xn,h.

Lemma (Weak convergence of Tn,h)

Assume that F ∈ L1+ 1
n

(Ω)d×dsym and that the functions λ and µ satisfy the

hypotheses (A1)–(A4). Let (Tn,un) ∈Mn ×Xn be the unique solution of
the regularized problem. Then, as h→ 0+,

Tn,h ⇀ Tn weakly in Mn = L1+ 1
n

(Ω)d×dsym .
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Lemma (Strong convergence)

Let F ∈ L1+ 1
n

(Ω)d×dsym , and assume that λ and µ satisfy the assumptions

(A1)–(A4). Let (Tn,un) denote the unique solution to the regularized
problem, with n ∈ N. Then, for each fixed n ∈ N, as h→ 0+,

Tn,h → Tn strongly in Lp(Ω)d×dsym for all p ∈
[
1, 1 + 1

n

)
,

ε(un,h) ⇀ ε(un) weakly in Lp(Ω)d×dsym for all p ∈ [1, n+ 1].

For each n ∈ N,

ε(un,h)→ ε(un) strongly in Ln(Ω)d×dsym.

Furthermore, if λ satisfies (A3’), we have that, for any Ω0 ⊂⊂ Ω,

lim
n→∞

lim
h→0+

‖Tn,h −T‖L1(Ω0) = 0 and lim
n→∞

lim
h→0+

‖un,h − u‖C(Ω) = 0,

lim
n→∞

lim
h→0+

‖ε(un,h)− ε(u)‖Lp(Ω0) = 0 ∀Ω0 ⊂⊂ Ω, ∀p ∈ [1,∞).
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lim
n→∞

lim
h→0+

‖Tn,h −T‖L1(Ω0) = 0 and lim
n→∞

lim
h→0+

‖un,h − u‖C(Ω) = 0,

lim
n→∞

lim
h→0+

‖ε(un,h)− ε(u)‖Lp(Ω0) = 0 ∀Ω0 ⊂⊂ Ω, ∀p ∈ [1,∞).
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Lemma (Strong convergence)

Let F ∈ L1+ 1
n
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Theorem

In addition to the assumptions of the previous lemma also suppose that
the functions s ∈ R 7→ λ(s)s ∈ R and S ∈ Rd×dsym 7→ µ(|S|)S ∈ Rd×dsym are
Hölder-continuous with exponent β ∈ (0, 1], i.e., there exists a Λ > 0 s.t.

|λ(r)r − λ(s)s| ≤ Λ|r − s|β ∀ r, s ∈ R,
|µ(|R|)R− µ(|S|)S| ≤ Λ|R− S|β ∀R,S ∈ Rd×dsym .

Then, for any n ∈ N, ζ ∈ (0, 1] and γ ∈ (0, 1], as h→ 0+,

‖Tn,h −ΠhTn‖L1(Ω) ≤ Ch
γ
n

(
‖ε(un)‖

W
γ
n
,∞(Ω)

+ ‖Tn‖
1
n

Wγ,∞(Ω)

)
,

as h→ 0+, where C = C(d,Λ, n, γ, |Ω|).
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Crack problem

(0, 2) (1, 2)

(0, 3
2)

(0, 1
2)

(1
2 ,

1
2)

(0, 0) (1, 0)

I

I

II III

IV

IV

A horizontal compressive force Tν = (f, 0)T for f > 0 is applied on the
side III, while no force (i.e., Tν = 0) is imposed on the side marked by
I and II. The top and bottom sides are fixed, i.e., u = 0.
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Set λ(s) = µ(s) = (1 + s2)−
1
2 , n = 100. The domain is partitioned into

16384 elements of minimal diameter h = 0.011.

The figures show the deformed domain, for different force-magnitudes
f = 0.25, 0.5, 0.75, 1 (from left to right) pulling the right edge, edge III,
of the original domain. The grey scale indicates the magnitude of the
displacement |u|, where white corresponds to 0 and black to 0.92.
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The table below reports the variation of ‖∇uh‖L∞(Ω) and ‖Th‖L∞(Ω) as
the magnitude of the force increases. The influence of the latter is severe
on ‖Th‖L∞(Ω) while relatively moderate on ‖ε(uh)‖L∞(Ω) ≤ ‖∇uh‖L∞(Ω).

f = 0.25 f = 0.5 f = 0.75 f = 1 f = 1.25 f = 1.5

‖∇un,1,h‖L∞(Ω) 1.0656 2.2510 3.5032 5.2703 7.0492 8.8003
‖Tn,1,h‖L∞(Ω) 0.92231 5.3090 18.17 46.5215 95.3902 166.335

This is in accordance with the properties of the strain-limiting model.

21 / 22



Open questions and extensions

Optimal error bounds for T as h→ 0? An idea may be to use that:

|∇Tn|2

(1 + |Tn|a)1+ 1
a

b
∈ L1

loc(Ω), a > 0.

In addition:

log(1 + |Tn|)
b
∈W 1,2

loc (Ω) for d = 2,

(1 + |Tn|2)
2−q

2
b
∈W 1,2

loc (Ω) for d = 3 and 1 ≤ q < 5
3 .

Convergence analysis in the case of mixed Dirichlet–Neumann
boundary conditions?

M Buĺıček, V Patel, Y. Şengül, and E Süli. Existence of large-data global weak solutions to a model of a strain-limiting

viscoelastic body. Comm. on Pure and Applied Analysis. May 2021, 20(5): 1931-1960.

M Buĺıček, V Patel, Y. Şengül, and E Süli. Existence and uniqueness of global weak solutions to strain-limiting

viscoelasticity with Dirichlet boundary data. (Submitted). Available from: arXiv:2011.11683 [math.AP].
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