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e HHO for Poisson model problem
e HHO for biharmonic problem
e Numerical results

e Error analysis with low regularity
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@ Introduced in [Di Pietro, AE, Lemaire 14] (linear diffusion) and [Di Pietro, AE
151 (locking-free linear elasticity)

@ Degrees of freedom (dofs) attached to mesh cells and faces
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@ Let us start with polynomials of the same degree k > 0 on cells and
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@ Introduced in [Di Pietro, AE, Lemaire 14] (linear diffusion) and [Di Pietro, AE
15] (locking-free linear elasticity)

@ Degrees of freedom (dofs) attached to mesh cells and faces

@ Let us start with polynomials of the same degree k > 0 on cells and
faces (dots do not mean point evaluation here)

mesh k=0 k=1 k=2
d ' g ¢ ' e '
°
¢ 'Y . R 'Y ¢
° ° ¢ °° e o ¢ eee  eee ¢

@ In each cell, one devises a local gradient reconstruction operator

@ One adds local stabilization to weakly enforce the matching of cell dof
traces with face dofs
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Assembly Static condensation

L]
[0

@ Global dofs i1, = (ug, 1+) (7 := {mesh cells}, ¥ := {mesh faces})

Uy =PRI x P, PR = XA, PR = PR

TeT FeF

o% Cell unknowns « « Face unknowns

@ Cell dofs eliminated locally by static condensation

e only face dofs are globally coupled
o cell dofs recovered by local post-processing

e Dirichlet conditions enforced on face boundary dofs — subspace (/0

5/41



@ General meshes: polytopal cells, hanging nodes

@ Optimal error estimates
o O(h') H'-error estimate if u € H'*/(Q), 1 € (%, k+1]

face dofs of order k > 0 = O(K**1) H'-error estimate

o duality argument for L2-error estimate
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@ General meshes: polytopal cells, hanging nodes

@ Optimal error estimates
o O(K') H'-error estimate if u € H'*/(Q), t € (%,k +1]

face dofs of order k > 0 = O(K**1) H'-error estimate

o duality argument for L2-error estimate

@ Local conservation

e optimally convergent and algebraically balanced fluxes on faces
@ as any face-based method, balance at cell level

@ Attractive computational costs

o only face dofs are globally coupled
e compact stencil
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meshcell T € T~ k=0 k=1 k=2

A

@ ity = (ur, uyr) with cell dofs ur € PX(T) and face dofs sy € PX(To7)

iy € Ur = PO x B (Tor), B(Tar) = ) FA(E)
FeFar
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meshcell T € T~ k=0 k=1 k=2

A

@ ity = (ur, uyr) with cell dofs ur € PX(T) and face dofs sy € PX(To7)

ir € Up =P x B (For), B(Far) = X PN
FeFar

@ Potential reconstruction Ry : Uy — P**1(T)
@ Main idea: mimic integration by parts (smooth functions u, g):

(Vua Vq)T = —(M, Aq)T + (ua VLI‘nT)aT
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meshcell T € T~ k=0

7 SeS S

iy = (ur, uor) with cell dofs ur € PX(T) and face dofs sy € PX(To7)

ir € Up =PHO) x PN (Tor),  PX(Tar) = X PA(F)

Fefor

@ Potential reconstruction Ry : U7 — PF(T)

@ Main idea: mimic integration by parts (smooth functions u, g):

(Vua Vq)T = _(u’ Aq)T + (ua V‘]‘“T)GT

We require that Vg € P<1(T) /PO,
(VRr(itr), V@)1 = ~(ur, AQ)T + (1157, Vgmr)ar
together with (Ry(iir), )7 = (up, 1)r

Gradient reconstruction Gr(iir) := VR (iir) € [PX(T)]?
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@ In all cases, the local bilinear form writes

ar(iir, r) == (VRr(iir), VRr(W))r + hy' (Sar(itr), Sar(vr)ar

~(Vu, Vw)r weakly enforces ur|gr — 1157 = 0

8/41



@ In all cases, the local bilinear form writes

ar(iir, r) == (VRr(iir), VRr(W))r + hy' (Sar(itr), Sar(vr)ar

~(Vu, Vw)r weakly enforces ur|gr — 1157 = 0

@ Local stabilization operator acting on 6 := urlgr — ugr

Sor(itr) =Ty (6 = (1 = THRr(0.6)lr )

high-order correction
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Local stabilization and bilin—

@ In all cases, the local bilinear form writes

ar(iir, r) == (VRr(iir), VRr(W))r + hy' (Sar(itr), Sar(vr)ar

~(Vu, Vw)r weakly enforces ur|ar — s = 0

@ Local stabilization operator acting on 6 := ur|gr — ugr

Sar(ir) := Wy (6 = (1 = TR0, ) lor )

high-order correction

@ (Important) variant on cell dofs and stabilization

e mixed-order setting: (k + 1) for cell dofs and & > O for face dofs
o Lehrenfeld—Schoberl HDG stabilization

Sar(ir) = T15,.(5)

o slightly higher cost for static condensation compensated by lower cost for
computing stabilization
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@ HHO(k = 0) equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic
Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]
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@ HHO(k = 0) equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic
Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]

@ HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
o flux variable in HDG <> HHO grad. rec.
o numerical flux trace in HHO is —VRz(ii7)-ny + h;l(SBT 0 S57)(6)
e HHO allows for a simpler analysis based on L2-projections: avoids special
HDG projection
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o numerical flux trace in HHO is —VR7(ii7)-n7 + h;l %7 0 Sar)(©)
o HHO allows for a simpler analysis based on L2-projections: avoids special
HDG projection

@ Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
o weak gradient «> HHO grad. rec.
@ WG often uses plain LS stabilization (in general, suboptimal: face dofs of
orderk > 0 = O(K¥) H!-estimate)
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@ HHO(k = 0) equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic
Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]

@ HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
o flux variable in HDG < HHO grad. rec.
o numerical flux trace in HHO is —VR7(ii7)-n7 + h;l %7 0 Sar)(©)
o HHO allows for a simpler analysis based on L2-projections: avoids special
HDG projection

@ Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
o weak gradient «> HHO grad. rec.
@ WG often uses plain LS stabilization (in general, suboptimal: face dofs of
orderk > 0 = O(K¥) H!-estimate)

@ HHO equivalent (up to stab.) to ncVEM [Ayuso, Manzini, Lipnikov 16]
e HHO dof space (/7 isomorphic to virtual space Vy

PUT) € Vp = {v e HY(T) | Av € PXT), n-Vv|gr € PX(Far)}

@ see [Chaumont, AE, Lemaire, Valentin 21] for equivalence with MHM
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Link to other methods _

@ HHO(k = 0) equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic
Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]

@ HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
o flux variable in HDG < HHO grad. rec.
o numerical flux trace in HHO is —VR7(ii7)-n7 + h;l %7 0 Sar)(©)
o HHO allows for a simpler analysis based on L2-projections: avoids special
HDG projection

@ Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
o weak gradient «> HHO grad. rec.
@ WG often uses plain LS stabilization (in general, suboptimal: face dofs of
orderk > 0 = O(K¥) H!-estimate)

@ HHO equivalent (up to stab.) to ncVEM [Ayuso, Manzini, Lipnikov 16]
e HHO dof space (/7 isomorphic to virtual space Vy

PUT) € Vp = {v e HY(T) | Av € PXT), n-Vv|gr € PX(Far)}

@ see [Chaumont, AE, Lemaire, Valentin 21] for equivalence with MHM

@ Different devising viewpoints should be mutually enriching!
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@ Broad area of applications (non-exhaustive list...)
o solid mechanics: nonlinear elasticity, hyperlasticity and plasticity,
contact, Tresca friction, obstacle pb
o fluid mechanics/porous media: Stokes, NS, poroelasticity, fractures
o Leray-Lions, spectral pb, H ~LJoads, magnetostatics, de Rham complexes
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o Leray-Lions, spectral pb, H ~LJoads, magnetostatics, de Rham complexes

@ Libraries
o industry (code_aster, code_saturne, EDF R&D), ongoing
developments at CEA
o academia: diskpp (C++) (ENPC/INRIA github.com/wareHHOuse),
HArD::Core (Monash/Montpellier github.com/jdroniou/HArDCore)
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Applications, libraries, textbooks _

@ Broad area of applications (non-exhaustive list...)
o solid mechanics: nonlinear elasticity, hyperlasticity and plasticity,
contact, Tresca friction, obstacle pb
o fluid mechanics/porous media: Stokes, NS, poroelasticity, fractures
o Leray-Lions, spectral pb, H~Lloads, magnetostatics, de Rham complexes

@ Libraries
o industry (code_aster, code_saturne, EDF R&D), ongoing
developments at CEA
o academia: diskpp (C++) (ENPC/INRIA github.com/wareHHOuse),
HArD::Core (Monash/Montpellier github.com/jdroniou/HArDCore)

@ Textbooks
@ Di Pietro, Droniou, The HHO method for polytopal meshes. Design, analysis and
applications (Springer, 2020)
@ Cicuttin, AE, Pignet, HHO methods. A primer with application to solid mechanics
(Springer Briefs, 2021)
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e Recall ar(ir, wr) := (VRr(itr), VRr(Wr))r + hy' (Sor(itr), Sor(wr))or

@ Discrete problem: Find i1, € l7h0 s.t.

ap(ity, W) = Z ar(iir, wr) = (f,wg)as Vi, € Uno
TeT
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e Recall ar(ir, wr) := (VRr(itr), VRr(Wr))r + hy' (Sor(itr), Sor(wr))or

@ Discrete problem: Find i1, € o s.t.

ap(ity, W) = Z ar(iir, wr) = (f,wg)as Vi, € Uno
TeT

@ Stability and boundedness: There are 0 < @ < w s.t. forall T € T,
A2 PO A2 N P
allirlly, < ar(is, i) < wllirllz, , - Vir € Ur

with IIitTIIZfJT = 1Vurll7 + kg lurlor = wor i3,
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Recall ar(iir, wr) := (VRr(iir), VRTOvr))r + by (Sar(iir), Sar(Wr))er

@ Discrete problem: Find i1, € o s.t.
ap(itp, Wp,) = Z ar(iir, wr) = (f,wg)as Vivy, € Upo
TeT

Stability and boundedness: There are 0 < @ < w s.t. forall T € T,
A2 PO A2 N ;
allirlly, < ar(is, i) < wllirllz, , - Vir € Ur

with IIitTIIZﬁT = 1Vurll7 + kg lurlor = wor i3,

||ith||%/ =Y er IIQTII%, defines a norm on U/
h T

Discrete problem is well-posed (Lax—Milgram lemma)
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@ Local approximation operator J4*° : H'(T) — P*!(T)

7o 1Ty LS Oy BBy, ) = (A, T, (o)

e JiH9 s the elliptic projector onto P(T)

_1 .
o h 2 [Sar(Ir(llar < IV = ZHOW) I < B vlgrear
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@ Local approximation operator J4*° : H'(T) — P*!(T)

Jumo Hl(T) I b BL RNy, () = (k) 1 or(lar))

e J¥HC is the elliptic projector onto P(T)
_1 R
o hp 2 [Sar(Irllar < IV = TEOW)lr < B Ve
@ Assume exact solution u is in H'*(Q), s > 1
. 2 2 2
® Set V[l := [IVVII7. + Az [|Vvnrll3, and VIl - = Ereq VIl
@ The following error estimate holds:

IV (u = Rr(i)lla < llu—JF W)y, 7

with Ry and Ji*° defined cellwise using Ry and J3°
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@ Local approximation operator J4*° : H'(T) — P*!(T)
e BN 25 0y BB ) = [T, 0100)
° J?*:O is the elliptic projector onto PK*1(T)
o h 2 |ISar(Ir)llar < IV = JO))lly < K VIgke2 ()
© Assume exact solution u is in H'*(Q), s > 1
o Set [M]2, = IV + iyl vyl and IWI2 - o= Sirer VI,
@ The following error estimate holds:
IV7(u — Ry(iin)ll < llu = JF° @)l 7
with Ry and Ji*° defined cellwise using Ry and J3°
o Ifue H'*(Q) witht € (%,k + 1], IV (u = Rr())ll < 2l i)
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@ Bound on consistency error: For all v, € Uho,

(f, wra = Z(—Au, wr)T = Z(Vu, Vwr)r = (Vunr, wr)or
TeT TeT

= Z(Vu, Vwr)r = (Vung, wr —wor)or
TeT

: i I+s 1
Key step where regularity assumption u € /() s > 5, is used
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@ Bound on consistency error: For all v, € 0h0,

(f, wra = Z(—Au, wr)T = Z(Vu, Vwr)r = (Vunr, wr)or
TeT TeT

= Z(Vu, Vwr)r = (Vung, wr —war)ar
TeT

; : 1+s J
Key step where regularity assumption u € /() s > 5, is used

@ Recalling J3"° = Ry o I7 and definition of R7(/v7) gives

X)) = (Fwpa = D ar(r@, vr) = (Fwrda = Y (VI°@w), VRr(v)r + stb.
TeT TeT

= Z(Vn, Vwr)r = (Vipng, wr = wor)ar + stb.
TeT

with 7|7 := ulr — J3"(u), . .. so that | x(W,)| < ||n||ﬁ’7—||wh||i,h
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@ Bound on consistency error: For all v, € Uso,

(f, wra = Z(—Au, wr)r = Z(Vu, Vwr)r — (Vu-nr, wr)ar
TeT TeT

= Z (Vu, Vwr)r — (Vung, wr = wor)ar
TeT

i : I+s 1
Key step where regularity assumption u € /() s > 5, is used

@ Recalling J3"° = Ry o 17 and definition of Ry (/1) gives

x () = (f, wr)a — Z ar(Ir(w), wr) = (f, wra - Z(V1¥H°(u), VRr(Wr))r + stb.
TeT TeT

= Z(VU, Vwr)r — (Vipng, wr — wor)ar + stb.
TeT

with 77l7 = uly = J7"(u), ... . so that |y (Wn)| < lInllg, 7l

@ Regularity assumption s > % is classical for any nonconforming method
(CR, Nitsche, dG, HDG, ...); how to circumvent it?
o modify RHS using suitable bubble functions; see [Veeser, Zanotti, 18-] for
general theory and [AE, Zanotti, 20] for HHO = optimal in /'
o keep RHS but give weaker meaning to facewise normal derivative [AE,
Guermond 21 (FoCM)] = allow for any s > 0
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@ Open, bounded, polytopal Lipschitz domain Q c R, d > 2
@ Loadf € L*(Q)

u=0, d,u=0 (typel)

Au=f + BCs
u=0, 9yu=0 (typell)
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@ Open, bounded, polytopal Lipschitz domain Q c R, d > 2
@ Loadf € L*(Q)

=0, 0u=0 (typel
Azu =f + BC,S u nu (ype )
u=0, 9yu=0 (typell)
@ Focusing on type I BC’s, the weak formulation is
Findu € Hy(Q)st.  (Vu, Vw)o = (Lw)a  VYw € H3(Q)

This problem is well-posed (Lax—Milgram lemma)

@ It is also possible to consider type II BC’s, non-homogeneous BC’s, and
mix both BC’s
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@ Recall for second-order PDEs that local HHO dofs comprise

o cell dofs to approximate the solution in mesh cells
e face dofs to approximate the solution trace on mesh faces

Ur = PM*NT) x P (For) or PMTYxPN(For) k>0
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o cell dofs to approximate the solution in mesh cells
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Up =P T)x P (For) or PHT)xPNFor) k=0
@ For biharmonic problem, we need additional face dofs

o either approximating the full gradient trace on mesh faces (vector-valued)
@ or just the normal derivative on mesh faces (scalar-valued)
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@ Recall for second-order PDEs that local HHO dofs comprise

o cell dofs to approximate the solution in mesh cells
e face dofs to approximate the solution trace on mesh faces

Ur = PM*NT) x P (For) or PMTYxPN(For) k>0

@ For biharmonic problem, we need additional face dofs

o either approximating the full gradient trace on mesh faces (vector-valued)
@ or just the normal derivative on mesh faces (scalar-valued)

@ The choice studied in [Bonaldi, Di Pietro, Geymonat, Krasucki, 18] is

Up := PXT) x P (For) x [F(For)]! k=1
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@ Recall for second-order PDEs that local HHO dofs comprise

o cell dofs to approximate the solution in mesh cells
e face dofs to approximate the solution trace on mesh faces

Up =P T)x P (For) or PHT)xPNFor) k=0

@ For biharmonic problem, we need additional face dofs

e either approximating the full gradient trace on mesh faces (vector-valued)
@ or just the normal derivative on mesh faces (scalar-valued)

@ The choice studied in [Bonaldi, Di Pietro, Geymonat, Krasucki, 18] is

Uz := PKT) x P (For) x [PX(For)] k=1

@ We consider instead the following two alternatives, both with £ > 0

o B X EY N (Forn) x BN (Tor) d =2 — HHO(A)
DB ) ) ) P (T d 22— HHOB)
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@ LletT e T

@ We want to mimic the integration by parts formula (smooth v, w):

(V2V, VZW)T = (V, A2W)T - (V, 6nAW)6T + (anv’ 6rmW)¢9T + (atvy antw)aT
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@ letT e T

@ We want to mimic the integration by parts formula (smooth v, w):
(V2, V2W)r = (5 A°W)r = (v, 8uAW)ar + (v, Bunw)ar + (Brv, Buw)ar

o Let 07 := (vr,var, vor) € Ur

@ Potential reconstruction Ry : Ur — P*2(T) s.t. Yw € PK(T)/P!,

(V2R (07), V2W)r = (v, A*W) =007, OuAW)ar+(y 75 BunW)ar+(0,v 75 BuW)ar
together with (R7 (1), &)r = (vr, &)r for all &€ € P(T)

@ Hessian reconstruction Hy(v7) := V2Ry(v7) € [PX(T)]¥<¢
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@ The goal of stabilization is to weakly enforce

vrlor ® var,  Owvrlar = vor, Y97 = (vr,vor, vor) € Ur
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@ The goal of stabilization is to weakly enforce
vrlor = var,  Owvrlor = vor, Vo1 = (vr,var, vor) € Ur
@ For HHO(B) with U7 := P**2(T) x P (7 or) X PX(F o),

Sor(vr, v7) := h Wvrlar = vorll3y + hi' 1M Bavrlar) = vorll3;

— natural extension of LS stabilization to biharmonic problem
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@ The goal of stabilization is to weakly enforce

vrlor = vor,  Owvrlor = vor, Y1 = (vr,vor, vor) € Ur

@ For HHO(B) with U7 := P**2(T) x P (7 or) X PX(F o),
Sor(vr, v7) = h vrlor = vor i3y + hp' I (Buvrlor) — vorll3y
— natural extension of LS stabilization to biharmonic problem
@ For HHO(A) with Uy := PM2(T) x PN (750) X PX(F o7 ) and d = 2
Sor(vr, o7) 1= P |05 vrlar = vy + i T (Bavrlar) — vorll3,

where on each face F € Fyr, 'Y’Z}l matches endpoint values and
moments on F up to degree (k — 1)

e commuting property with tangential derivative (cf. 1D de Rham complex)
e similar operator available for any d > 2 but maps onto PK*4=1 ()
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@ The local bilinear form writes

ar(vr, wr) := (V2Rp(97), V2R (W) + Sar(vr, wr)
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@ The local bilinear form writes

ar(vr, wr) := (V2Rp(97), V2R (W) + Sar(vr, wr)

@ Global dofs 0y, := (vy, vr, v7) € Uy, with

Uy = P2(T) x P>y x P, 6 e {1,2}

o all faces oriented by fixed unit normal ng, yr approximates ng-Vv
o local dofs of ¥, inamesh cell T € T: (v, (Vr)Fegy,» (Mrnp)yr)FeF,,
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@ The local bilinear form writes
ar(vr, wr) := (V2Rp(97), V2R (W) + Sar(vr, wr)
@ Global dofs 0y, := (vy, vr, v7) € Uy, with
Uy = P2 T) x P9y x PR, 6 e{1,2}

o all faces oriented by fixed unit normal ng, yr approximates ng-Vv
o local dofs of ¥, inamesh cell T € T: (v, (Vr)Fegy,» (Mrnp)yr)FeF,,

@ Type I BC’s enforced on face boundary dofs by setting vp = yr = 0 for
all F c 9Q — subspace ffho
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@ Discrete problem: Find i, € Upo s.t.

ah(ﬁh, Wh) = Z aT(ﬁT, WT) = (f, WT)Q, Vﬁ/h (S f]h()
TeT
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@ Discrete problem: Find i, € Upo s.t.
ap(ity, W) = Z ar(iir, wr) = (f,wg)as Vi € Uno
TeT

@ Cell dofs eliminated locally by static condensation

e only face dofs are globally coupled
o cell dofs recovered by local post-processing
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@ Discrete problem: Find i, € ﬁho S.t.

ap(iip, W) = Z ar(iir, wr) = (f,wg)as Vivy € Uno
TeT

@ Cell dofs eliminated locally by static condensation

e only face dofs are globally coupled
o cell dofs recovered by local post-processing

@ Comparison of globally coupled unknowns per mesh interface
o d =2: (3k+3) in [Bonaldi et al., 18] vs. (2k + 3) in HHO(A)
o d =3: (4k +4) in [Bonaldi et al., 18] vs. (2k + 4) in HHO(B)
e static condensation is slightly more expensive in HHO(A-B), but cost is
compensated by simpler stabilization
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@ Stability and boundedness: There are 0 < @ < w s.t. forall T € T,

CV||\7T||20T < ar(r, vr) < w||\7T||?7T, Vir € Ur

with 0717 = (IV2vrll7 + b lvr = vor i3, + b @avrlor = vor I3
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@ Stability and boundedness: There are 0 < @ < w s.t. forall T € T,
A2 A A2 - p
allvrllz, < ar(vr, vr) < wllrlly, . Vir € Ur
with 0717 = (IV2vrll7 + b lvr = vor i3, + b @avrlor = vor I3
° ||f1h||%h = Yrer ||\7T||lz7r defines a norm on /

@ Discrete problem is well-posed (Lax—Milgram lemma)
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@ Local approximation operator J;“O : HZ(T) — ]pk+2(T)
HHO 2 It~ Rr _iin
Jp HY(T) — Ur — P"(T)

; (I52w), Y55 (vlar), 11, (07 Vvlor)) - for HHO(A)
IT(V) = oT
(52 (), T2 (lor), 11, (- Vvl 7)) for HHO(B)
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@ Local approximation operator J;“O : H2(T) — ]pk+2(T)
HHO 2 It~ Rr _iin
J7'  HY(T) — Ur — P(T)

Ir(v) = (TT&2 (), Y5 (vlar), 115 (ny-Vlor))  for HHO(A)
PR (20, T2 (0] ), 114 (0 90]7)) for HHO(B)

e Forallv e H**(T),s > 3, set

VI = V2Vl + B 10,12, + hrll, 9vII3,
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@ Local approximation operator J;"° : H*(T) — P*(T)

7o 21y 5 0 5 B

Ir(v) = (IE2(), CE (vlar), 11 (n7-Vv[57)) for HHO(A)
@R ), T (vlar), 11 (- Vilsr)) - for HHO(B)

@ Forall v e H>*(T), s > 2, set

VI == ||v2v||T + 118,013, + hr 10,913,

@ The following optimal approximation properties hold:

v =Tl r < v =520l 7
Sar(lr(v), Ir(v)? < [IV3(v — 52 )iz

Moreover, for HHO(A), J5#° coincides with the H?-elliptic projector
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@ Assume exact solution u is in H>*(Q), s > %
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@ Assume exact solution u is in H>*(Q), s > %

@ Key step when bounding the consistency error: For all i, € Uy,
(wra = ) (A% wr)a
TeT

= Z(VZM, VIwr)r + (Bndit, wr)ar — (Buntty, Suwr)aT — (Ouitt, dwy)ar
TeT

= Z(Vzu, V2w + (Bulity wr = 10o7) a1 — (Ountts Ouwr — Vor)or — Burtts O(wy — wor))or
TeT

22/41



@ Assume exact solution u is in H>*(Q), s > %

@ Key step when bounding the consistency error: For all i, € Uy,

(wra = ) (A% wr)a

TeT

= > (V2u, V2w )1 + (BuAs wr)ar = (Dt Suwr)ar = (Duitts Gwr)ar
TeT

= Z(Vzm V2Wr)r + (Bnlu, wr = wo1)ar = Buntty Ouwy = vor)or — (Bt S(wy = wor)ar
TeT
@ Then, letting x (W) := (f, wr)a — an(I7-(u), Wy,), we obtain
xOvml < linllg, 7 1Wnll,» nlr = ulr = J3"°(u)

and |[77|ly 7 is bounded by [lu = T+ w)lly 7~ (With [[[1} - == Zrer 1117 )
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@ Recall assumption 1 € H>*(Q), s >

[\S][9%)

@ The following error estimate holds:

IV5-(u = Ryl < llu = T2 ()l 7
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@ Recall assumption u € H>*(Q), s > 3

@ The following error estimate holds:

IV5-(u = Ryl < llu = T2 ()l 7

o Ifk > 1and u € H*3(Q), V2 (u - Ry (ii))lla < K" ul s

o Itk =0, |V2(u - Ry(@n)lla < hlulys +h [ulgec ), o == min(s — 1, 1)

24/41



@ Recall assumption u € H>*(Q), s > 3

@ The following error estimate holds:

IV5-(u = Ryl < llu = T2 ()l 7

Ifk > 1and u € H*3(Q), |IV2(u — Rr(i)lla $ W ulggees

Ifk = 0, [V2-(u = Ry(@)lla < hlulygs + h |ulpgser ), o = min(s — 1, 1)

Circumventing regularity assumption
o [Veeser, Zanotti, 18-19] for Morley element and C%-IPDG (f € H~2(Q) in
2D); extension to 3D with arbitrary degree not obvious
@ [Carstensen, Nataraj, 21] for further results on lowest-order methods
e it is also possible to extend the techniques of [AE, Guermond, 21 (FoCM)]
= allow for any s > 1 (and even s > 0 for type Il BC’s)
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@ Comparison with WG

o WG are designed using suboptimal plain least-squares stabilization
o in the table, all the methods deliver O(hK*1) H2-error estimate

| method | cell  face grad | k[ ref |
WG k+2 k+2 [k+1]7 | k>0 | [Mu, Wang, Ye, 14]
k+2 k+2 k+1 k>0 | [Mu, Wang, Ye, 14]
k+2 k+1 k+1 k >0 | [Zhang, Zhai, 15]

1 1 (114 k=0 | [Ye, Zhang, Zhang, 20]
HHO k k [k19 k>1 | [Bonaldietal., 18]
HHORA) | k+2 k+1 k k>0 | present(d = 2)

HHO®B) | k+2 k+2 k k>0 | present(d > 2)
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@ Comparison with WG

o WG are designed using suboptimal plain least-squares stabilization
o in the table, all the methods deliver O(hK*1) H2-error estimate

| method | cell  face grad | k[ ref |
WG k+2 k+2 [k+1]7 | k>0 | [Mu, Wang, Ye, 14]
k+2 k+2 k+1 k>0 | [Mu, Wang, Ye, 14]
k+2 k+1 k+1 k >0 | [Zhang, Zhai, 15]

1 1 [ k=0 | [Ye, Zhang, Zhang, 20]
HHO k k k19 k> 1 | [Bonaldietal., 18]
HHORA) | k+2 k+1 k k>0 | present (d = 2)
HHO®B) | k+2 k+2 k k>0 | present(d >2)

@ Broader literature review
o C!.-VEM [Brezzi, Marini, 13; Chinosi, Marini, 16; Antonietti, Manzini, Verani,
201, CO-VEM [Zhao, Chen, Zhang, 16]
o DG [Mozolevski, Siili, 03; Georgoulis, Houston, 09], cO-1PDG [Engel et al., 02;
Brenner, Sung, 05]
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@ Nitsche’s method and curved boundaries

e extends ideas from [Burman, AE, 18; Burman, Cicuttin, Delay, AE, 21] on
second-order (interface) problems

e key idea: discard integrals on Q) when building reconstruction operator

@ boundary-penalty term needs O(1) coefficient
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@ Nitsche’s method and curved boundaries

e extends ideas from [Burman, AE, 18; Burman, Cicuttin, Delay, AE, 21] on
second-order (interface) problems

e key idea: discard integrals on Q) when building reconstruction operator

@ boundary-penalty term needs O(1) coefficient

@ Singular perturbation

~Au+eNu=f, >0

o use local cutoff function oy = max(1, 8h}2) to weigh stabilization terms
o method and analysis fully robustupto e =0
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@ Nitsche’s method and curved boundaries

e extends ideas from [Burman, AE, 18; Burman, Cicuttin, Delay, AE, 21] on
second-order (interface) problems

e key idea: discard integrals on Q) when building reconstruction operator

@ boundary-penalty term needs O(1) coefficient

@ Singular perturbation

~Au+eNu=f, >0

o use local cutoff function oy = max(1, sh}z) to weigh stabilization terms
o method and analysis fully robustupto e =0

o CP-HHO: an extension of C°-FEM!

e restrict to simplicial/quad/hex meshes
@ local dofs related to the solution trace no longer needed

Up = P20 < 2 (T o)
e error analysis proceeds as above
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Converge

@ Smooth solution u(x, y) = sin(x)? sin(ry)>

@ HHO(A), k € {0, 1,2, 3}, rectangular and polygonal (Voronoi) meshes
@ Left: H?-seminorm, O(h**!)

@ Right: L?-norm, O(K**3) for k > 1 and O(h?) for k = 0

2

norm

Relative H? seminorm
3
S
Relative L,

28/41



@ Time spent on reconstruction, stabilization and static condensation

@ Comparison of HHO(A), HHO(B), and HHO(C) which uses
reconstruction in stabilization

@ ke {0,...,5}, polygonal mesh with 16k cells
@ HHO(A) is the most efficient method

2500

12000

nstruction I Reconstruction
n tabilisation
[ static Condensation 10000 | [ Static Condensation
2000

1500
1000

500

0 0
AKO BKO CkO Akl Bkl Ck1 Ak2 Bk2 Ck2 AK3 Bk3 Ck3 Aks Bkd Ck4 AKS BK5 Ck5
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Comparison with DG

@ HHO(A) and DG on polygonal mesh (16k cells)
@ ke{0,1,2,3} for HHO(A) and ¢ = k + 2 for DG
@ Disclaimer: simple Matlab implementation, no optimization

@ Some (preliminary) comments
o HHO leads to less dofs and lower assembling time than DG (cell dofs
richer than face ones; numerical DG fluxes longer to evaluate)
e solving time smaller for DG for £ < 2 and smaller for HHO if k > 3 (HHO
stencil less compact than DG stencil)

Polygonal meshes ) Polygonal meshes

10°

“&-HHO(A) k0|

Relative H? seminorm

106 }{~@+HHO(A) k3| ®, A
-8-dG k2 -,
#-dG k3

© -A-dG k4 °
—6-dG k5

10°®
10° 10° 10* 102 10° 10
Asscmbling time Solving time
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Comparison with Morley, HCT and C°-IPDG

Triangular meshes, finest one has 32k cells & 49k edges
All compared methods deliver same decay rate on H>-error
Morley FEM more efficient than HHO(k = 0)

HCT FEM more efficient than HHO(k = 1) if assembling time is
considered, but not if solving time is considered

HHO(k) more efficient than CO-IPDG(k + 2), k € {0, 1}

Relative H* seminorm
Relative H? seminori
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Singular perturbation on curved domain _

@ Triangular mesh composed of 9.4k cells, k = 1
@ From top to bottom: £ = 1, & = 1073, £ = 0(!)
@ From left to right: solution, gradient, Hessian (reconstructed)
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@ Brief summary of [AE, Guermond 21 (FoCM & Finite Elements, Chaps. 40-41)]
2d
@ Letp >2andq € (55,2]

@ Thereis p € (2,p]s.t. g > let p’ e[p’2)st—+;%=l

= p+d’
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_ Localizing normal traces 1

@ Brief summary of [AE, Guermond 21 (FoCM & Finite Elements, Chaps. 40-41)]
@ Letp>2andg € (d+2,2]

@ Thereis p € (2,p]s.t. ¢ > p+d,1etp €[p,2)s.t —+% =1

@ Forall T € 7 and all F € Fyr, consider

zero extension trace lifting

LE s Wit/ (F) ———— W*'(0T) ——— W'/(T)
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@ Brief summary of [AE, Guermond 21 (FoCM & Finite Elements, Chaps. 40-41)]

° Letp>23ndqe(d+2,2]

There is p € (2,p] s.t. q_p+d,1etp €[p,2)s.t —+%:1
@ Forall T € 7 and all F € Fyr, consider

zero extension trace lifting

LL Wi (F) ———— W (aT) ——— W' (T)

Let o € SYT) := {7 € LA(T); V- € LY(T)} (¢ stands for divergence)

Define yg p(o) € (W%’p,(F))’ s.t. forall ¢ € Wflr’p'(F),

4 1), B)r 1= /T [0-VLE(@) + (V-o)LE($)}

If o is smooth, . (o) = (o-n7)|r
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@ Assume u € Vy := {v € H'"™(Q); Av € LY(Q)}, s> 0

@ Forallv € V4, Vv € H*(Q) — LP(Q), p > 2; hence,

Vv e S4Q) := {0 € LP(Q); V-0 € LI(Q)}
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Poisso

@ Assume u € Vy := {v € H'"™(Q); Av € LY(Q)}, s> 0

@ Forallv € V4, Vv € H*(Q) — LP(Q), p > 2; hence,
Vv e S4Q) := {0 € LP(Q); V-0 € LI(Q)}
e Bilinear form on (Vj + PX(77)) X PX(T")

nPwr) = ) Y O p(Vwrle = fwrde)e

TeT FeFor

Notice that ng)(vT, wr) = Lrer [p{Vvatrnplwr g if vy € BX(T)
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@ Assume u € Vy := {v e H'™(Q);Av € L1(Q)}, s > 0

@ Forallv € V4, Vv € H*(Q) — LP(Q), p > 2; hence,

Vv € S4Q) := {0 € LP(Q); V-0 € L1(Q)}
e Bilinear form on (Vj + PX(77)) X PX(T")

nDowr) = Y D e (Vowrle = fwr e

TeT FeFor

Notice that naz)(wr, wr) = Lrer [p{Vvatrnplwr g if vy € BX(T)

@ Using commuting mollification operators, one proves that for all v € Vy,

D0 wr) = (W, Vwp)r + (Av,wr)r
TeT

This property essentially appears as an assumption in the medius
analysis [Gudi, 10]
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@ Consider interior penalty DG (IPDG) [Arnold, 82]

@ The key relation for consistency is

(fiwg)a = Z(—Au, wr)r = Z(Vu, Vwr)r - n§2)(u’ W)

TeT TeT

26/41



Poi

@ Consider interior penalty DG (IPDG) [Arnold, 82]

@ The key relation for consistency is

(fiwg)a = Z(—Au, wr)r = Z(Vu, Vwr)r - néz)(u, W)

TeT TeT

@ For IPDG, a2f (v, wy) = Z (Vvp, Vwp)r — n‘(f)(\/r;—, wq) + stb.
TeT
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@ Consider interior penalty DG (IPDG) [Arnold, 82]

@ The key relation for consistency is

(Fwra = ) (=Auwr)r = Y (Vi Vwr)r = wr)

TeT TeT

@ For IPDG, a2f (v, wy) = Z (Vvp, Vwp)r — n‘(f)(v«;—, wq) + stb.
TeT

@ Lettingn 1= u — H’fr(u), the consistency error is bounded as follows:

xwr) = (f, wea — a5S(T4-(u), wy)

= Z (Y, Vwr)r — ngz)(n, wq) + stb.
TeT

Conclude with boundedness property |n§2)(n, wol < nlly, 7 llwelln
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@ Exploiting the face variable representing the trace, we define the
following bilinear form on (Vy + P (T)) x Upo:

ﬁgz)(v, W) = Z Z (YCTI,F(VV), wrlp = worlr)F
TeT FeFsr
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_Adsptation to HHO

@ Exploiting the face variable representing the trace, we define the
following bilinear form on (Vy + P (T)) x Upo:

ﬁgz)(v’ W) 1= Z Z VR wrlr = worle)r
TeT FeFsr

@ The first key relation is ﬁ;z)(v, Wp) = n’(f)(v, wq) forall v € Vy
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@ Exploiting the face variable representing the trace, we define the
following bilinear form on (Vy + P (T)) x Upo:

ﬁéz)(v, Wp) 1= Z Z (YCTI,F(VV), wrlr = worlr)F

TeT FeFor

@ The first key relation is ﬁi(f)(v, W) = n’(f)(v, wq) forall v € Vy

@ The link to the reconstruction operator is as follows:

an(r (i) = ) (V) VRr(vr))r + sib.
TeT

= Z (V3O (u), Vwr )y — ﬁf)(J;‘.HO(u), Yy) + stb.
TeT
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@ Exploiting the face variable representing the trace, we define the
following bilinear form on (Vy + P (T)) x Upo:

ﬁéz)(v, W) = Z Z (YCTl,F(VV), wrlr = worlr)F

TeT FeFor

@ The first key relation is ﬁi(f)(v, W) = ni(f)(v, wq) forall v € Vy

@ The link to the reconstruction operator is as follows:

an(r (i) = ) (V) VRr(vr))r + sib.

TeT
= Z (V3O (u), Vwr )y — ﬁf)(J;‘f‘O(u), Yy) + stb.
TeT

@ Letting 7 := u — Ji¥°(u), we recover

X)) = 3" (Y wr)r = A2 (7, + stb.
TeT
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@ Above technique extends to IPDG/HHO for biharmonic problem

@ The critical step is to give a meaning to d,Av on mesh faces
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@ Above technique extends to IPDG/HHO for biharmonic problem
@ The critical step is to give a meaning to d,Av on mesh faces

o Ifue H(Q),s>0,andf € LYQ), g € (£%.2], then
o = VAu € S4Q)

= y% (o) is well defined on all the mesh faces
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@ In this setting, we can lower the regularity even further
ue H*Q), s>0, feH Q)

With type I BC’s, one has Au € H}(Q) = VAu € L*(Q)!
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C%m

@ In this setting, we can lower the regularity even further
ue H*Q), s>0, feH Q)
With type I BC’s, one has Au € H}(Q) = VAu € L*(Q)!
o Letusset Vy := {v € H**(Q); Av € H)(Q)}

@ In C°-HHO, the cell dofs are in P&*(77) := PX(7) N H}(Q)
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@ In this setting, we can lower the regularity even further

ue H*Q), s>0, feH Q)
With type I BC’s, one has Au € H}(Q) = VAu € L*(Q)!
o Letusset Vy := {v € H**(Q); Av € H)(Q)}
@ In C°-HHO, the cell dofs are in P&*(77) := PX(7) N H}(Q)

@ We consider on (V4 X P&X(77)) X PEX(T") the bilinear form

n)wr)i= Y0 3 Y 0 (VO nr(Gwr —nr-{(Vwr ki)l

TeT FeFaric{l:d}

Notice that Vo,v € SU(Q) for all i € {1:d} (with g = 2)
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@ The key relation for consistency in CO-IPDG is

(A%u, WT>H—1,H3 = Z (V2u, Vwr)r — ng‘)(u, W)
TeT
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@ The key relation for consistency in CO-IPDG is

(A%u, WT>H‘1,H(1) = Z (V2u, Vwr)r — ng‘)(u, wa)
TeT

@ For C°-HHO, one exploits the presence of the face variable representing
the normal derivative by setting

ﬁ;4)(v, Wp) 1= Z Z Z (y%’F(VaiV), nr(O,wr — xor)lF)rF

ie{l:d} TeT FeFor
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@ The key relation for consistency in CO-IPDG is

(AU, W ygr gt = Z(Vzu, Viwr)r - '154)(“, W)
oY TeT

@ For CY-HHO, one exploits the presence of the face variable representing
the normal derivative by setting

)= Y T Y O (VO @awr = vonle)E

ie{l:d} TeT FeFor

@ The link to the reconstruction operator is as follows:

an(lr (i) = ) (VI Vowr)r = i (7)) + stb.
TeT

Moreover,

(A%u, W1 gl = Z(V2u, Viwr)r - ﬁgt)(u, Wi)
TeT
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e HHO
@ [Di Pietro, AE, Lemaire 14 (CMAM); Di Pietro, AE 15 (CMAME)]

@ HHO for biharmonic problem
@ [Bonaldi et al. 18 (M2AN)]
@ [Dong & AE 21 (hal-03185683); 21 (M2AN)]

@ Error analysis with low regularity [AE, Guermond 21 (FoCM)]
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e HHO
@ [Di Pietro, AE, Lemaire 14 (CMAM); Di Pietro, AE 15 (CMAME)]

@ HHO for biharmonic problem

@ [Bonaldi et al. 18 (M2AN)]
@ [Dong & AE 21 (hal-03185683); 21 (M2AN)]

@ Error analysis with low regularity [AE, Guermond 21 (FoCM)]

@ Recent Finite Element book(s) (Springer, TAM vols. 72-74, 2021)
with J.-L. Guermond, 83 chapters of 12/14 pages plus about 500 exercises

Finite Elements | Finite Elements || Finite Elements Il

Dy Dy Dy
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e HHO
@ [Di Pietro, AE, Lemaire 14 (CMAM); Di Pietro, AE 15 (CMAME)]

@ HHO for biharmonic problem

@ [Bonaldi et al. 18 (M2AN)]
@ [Dong & AE 21 (hal-03185683); 21 (M2AN)]

@ Error analysis with low regularity [AE, Guermond 21 (FoCM)]

@ Recent Finite Element book(s) (Springer, TAM vols. 72-74, 2021)
with J.-L. Guermond, 83 chapters of 12/14 pages plus about 500 exercises

Finite Elements | Finite Elements || Finite Elements Il

Dy Dy Dy

Thank you for your attention!
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