Hybrid high-order methods for the biharmonic problem

Alexandre Ern

ENPC and INRIA, Paris, France
joint work with Zhaonan Dong (INRIA)

Irish Numerical Analysis Forum, 12/05/2022

Outline

- HHO for Poisson model problem
- HHO for biharmonic problem
- Numerical results
- Error analysis with low regularity

HHO for Poisson model problem

HHO methods: basic ideas

- Introduced in [Di Pietro, AE, Lemaire 14] (linear diffusion) and [Di Pietro, AE 15] (locking-free linear elasticity)
- Degrees of freedom (dofs) attached to mesh cells and faces

HHO methods: basic ideas

- Introduced in [Di Pietro, AE, Lemaire 14] (linear diffusion) and [Di Pietro, AE 15] (locking-free linear elasticity)
- Degrees of freedom (dofs) attached to mesh cells and faces
- Let us start with polynomials of the same degree $k \geq 0$ on cells and faces (dots do not mean point evaluation here)
mesh

HHO methods: basic ideas

- Introduced in [Di Pietro, AE, Lemaire 14] (linear diffusion) and [Di Pietro, AE 15] (locking-free linear elasticity)
- Degrees of freedom (dofs) attached to mesh cells and faces
- Let us start with polynomials of the same degree $k \geq 0$ on cells and faces (dots do not mean point evaluation here)
mesh

- In each cell, one devises a local gradient reconstruction operator
- One adds local stabilization to weakly enforce the matching of cell dof traces with face dofs

Assembly and static condensation

- Global dofs $\hat{u}_{h}=\left(u_{\mathcal{T}}, u_{\mathcal{F}}\right)(\mathcal{T}:=\{$ mesh cells $\}, \mathcal{F}:=\{$ mesh faces $\})$

$$
\hat{U}_{h}:=\mathbb{P}^{k}(\mathcal{T}) \times \mathbb{P}^{k}(\mathcal{F}), \quad \mathbb{P}^{k}(\mathcal{T}):=\chi_{T \in \mathcal{T}} \mathbb{P}^{k}(T), \quad \mathbb{P}^{k}(\mathcal{F}):=\chi_{F \in \mathcal{F}} \mathbb{P}^{k}(F)
$$

- Cell dofs eliminated locally by static condensation
- only face dofs are globally coupled
- cell dofs recovered by local post-processing
- Dirichlet conditions enforced on face boundary dofs \rightarrow subspace $\hat{U}_{h 0}$

Main assets of HHO methods

- General meshes: polytopal cells, hanging nodes
- Optimal error estimates
- $O\left(h^{t}\right) H^{1}$-error estimate if $u \in H^{1+t}(\Omega), t \in\left(\frac{1}{2}, k+1\right]$

$$
\text { face dofs of order } k \geq 0 \Longrightarrow O\left(h^{k+1}\right) H^{1} \text {-error estimate }
$$

- duality argument for L^{2}-error estimate

Main assets of HHO methods

- General meshes: polytopal cells, hanging nodes
- Optimal error estimates
- $O\left(h^{t}\right) H^{1}$-error estimate if $u \in H^{1+t}(\Omega), t \in\left(\frac{1}{2}, k+1\right]$

$$
\text { face dofs of order } k \geq 0 \Longrightarrow O\left(h^{k+1}\right) H^{1} \text {-error estimate }
$$

- duality argument for L^{2}-error estimate
- Local conservation
- optimally convergent and algebraically balanced fluxes on faces
- as any face-based method, balance at cell level
- Attractive computational costs
- only face dofs are globally coupled
- compact stencil

Local dofs and gradient reconstruction

mesh cell $T \in \mathcal{T}$

- $\hat{u}_{T}=\left(u_{T}, u_{\partial T}\right)$ with cell dofs $u_{T} \in \mathbb{P}^{k}(T)$ and face dofs $u_{\partial T} \in \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)$

$$
\hat{u}_{T} \in \hat{U}_{T}:=\mathbb{P}^{k}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right), \quad \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right):=\chi_{F \in \mathcal{F}_{\partial T}} \mathbb{P}^{k}(F)
$$

Local dofs and gradient reconstruction

mesh cell $T \in \mathcal{T}$

- $\hat{u}_{T}=\left(u_{T}, u_{\partial T}\right)$ with cell dofs $u_{T} \in \mathbb{P}^{k}(T)$ and face dofs $u_{\partial T} \in \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)$

$$
\hat{u}_{T} \in \hat{U}_{T}:=\mathbb{P}^{k}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right), \quad \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right):=\chi_{F \in \mathcal{F}_{\partial T}} \mathbb{P}^{k}(F)
$$

- Potential reconstruction $R_{T}: \hat{U}_{T} \rightarrow \mathbb{P}^{k+1}(T)$
- Main idea: mimic integration by parts (smooth functions u, q):

$$
(\nabla u, \nabla q)_{T}=-(u, \Delta q)_{T}+\left(u, \nabla q \cdot \mathbf{n}_{T}\right)_{\partial T}
$$

Local dofs and gradient reconstruction

mesh cell $T \in \mathcal{T}$

- $\hat{u}_{T}=\left(u_{T}, u_{\partial T}\right)$ with cell dofs $u_{T} \in \mathbb{P}^{k}(T)$ and face dofs $u_{\partial T} \in \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)$

$$
\hat{u}_{T} \in \hat{U}_{T}:=\mathbb{P}^{k}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right), \quad \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right):=\varliminf_{F \in \mathcal{F} \partial T} \mathbb{P}^{k}(F)
$$

- Potential reconstruction $R_{T}: \hat{U}_{T} \rightarrow \mathbb{P}^{k+1}(T)$
- Main idea: mimic integration by parts (smooth functions u, q):

$$
(\nabla u, \nabla q)_{T}=-(u, \Delta q)_{T}+\left(u, \nabla q \cdot \mathbf{n}_{T}\right)_{\partial T}
$$

- We require that $\forall q \in \mathbb{P}^{k+1}(T) / \mathbb{P}^{0}$,

$$
\left(\nabla R_{T}\left(\hat{u}_{T}\right), \nabla q\right)_{T}=-\left(u_{T}, \Delta q\right)_{T}+\left(u_{\partial T}, \nabla q \cdot \mathbf{n}_{T}\right)_{\partial T}
$$

together with $\left(R_{T}\left(\hat{u}_{T}\right), 1\right)_{T}=\left(u_{T}, 1\right)_{T}$

- Gradient reconstruction $\mathbf{G}_{T}\left(\hat{u}_{T}\right):=\nabla R_{T}\left(\hat{u}_{T}\right) \in\left[\mathbb{P}^{k}(T)\right]^{d}$

Local stabilization and bilinear form

- In all cases, the local bilinear form writes

$$
a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right):=\underbrace{\left(\nabla R_{T}\left(\hat{u}_{T}\right), \nabla R_{T}\left(\hat{w}_{T}\right)\right)_{T}}_{\approx(\nabla u, \nabla w)_{T}}+\underbrace{h_{T}^{-1}\left(S_{\partial T}\left(\hat{u}_{T}\right), S_{\partial T}\left(\hat{w}_{T}\right)\right)_{\partial T}}_{\text {weakly enforces }\left.u_{T}\right|_{\partial T}-u_{\partial T} \approx 0}
$$

Local stabilization and bilinear form

- In all cases, the local bilinear form writes

$$
a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right):=\underbrace{\left(\nabla R_{T}\left(\hat{u}_{T}\right), \nabla R_{T}\left(\hat{w}_{T}\right)\right)_{T}}_{\approx(\nabla u, \nabla w)_{T}}+\underbrace{h_{T}^{-1}\left(S_{\partial T}\left(\hat{u}_{T}\right), S_{\partial T}\left(\hat{w}_{T}\right)\right)_{\partial T}}_{\text {weakly enforces }\left.u_{T}\right|_{\partial T}-u_{\partial T} \approx 0}
$$

- Local stabilization operator acting on $\delta:=\left.u_{T}\right|_{\partial T}-u_{\partial T}$

$$
S_{\partial T}\left(\hat{u}_{T}\right):=\Pi_{\partial T}^{k}(\delta-\underbrace{\left.\left(\left(I-\Pi_{T}^{k}\right) R_{T}(0, \delta)\right)\right|_{\partial T}}_{\text {high-order correction }})
$$

Local stabilization and bilinear form

- In all cases, the local bilinear form writes

$$
a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right):=\underbrace{\left(\nabla R_{T}\left(\hat{u}_{T}\right), \nabla R_{T}\left(\hat{w}_{T}\right)\right)_{T}}_{\approx(\nabla u, \nabla w)_{T}}+\underbrace{h_{T}^{-1}\left(S_{\partial T}\left(\hat{u}_{T}\right), S_{\partial T}\left(\hat{w}_{T}\right)\right)_{\partial T}}_{\text {weakly enforces }\left.u_{T}\right|_{\partial T}-u_{\partial T} \approx 0}
$$

- Local stabilization operator acting on $\delta:=\left.u_{T}\right|_{\partial T}-u_{\partial T}$

$$
S_{\partial T}\left(\hat{u}_{T}\right):=\Pi_{\partial T}^{k}(\delta-\underbrace{\left.\left(\left(I-\Pi_{T}^{k}\right) R_{T}(0, \delta)\right)\right|_{\partial T}}_{\text {high-order correction }})
$$

- (Important) variant on cell dofs and stabilization
- mixed-order setting: $(k+1)$ for cell dofs and $k \geq 0$ for face dofs
- Lehrenfeld-Schöberl HDG stabilization

$$
S_{\partial T}\left(\hat{u}_{T}\right):=\Pi_{\partial T}^{k}(\delta)
$$

- slightly higher cost for static condensation compensated by lower cost for computing stabilization

Link to other methods

- $\mathrm{HHO}(k=0)$ equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]

Link to other methods

- $\mathrm{HHO}(k=0)$ equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]
- HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
- flux variable in HDG $\leftrightarrow \mathrm{HHO}$ grad. rec.
- numerical flux trace in HHO is $-\nabla R_{T}\left(\hat{u}_{T}\right) \cdot \mathbf{n}_{T}+h_{T}^{-1}\left(\tilde{S}_{\partial T}^{*} \circ \tilde{S}_{\partial T}\right)(\delta)$
- HHO allows for a simpler analysis based on L^{2}-projections: avoids special HDG projection

Link to other methods

- $\mathrm{HHO}(k=0)$ equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]
- HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
- flux variable in $\mathrm{HDG} \leftrightarrow \mathrm{HHO}$ grad. rec.
- numerical flux trace in HHO is $-\nabla R_{T}\left(\hat{u}_{T}\right) \cdot \mathbf{n}_{T}+h_{T}^{-1}\left(\tilde{S}_{\partial T}^{*} \circ \tilde{S}_{\partial T}\right)(\delta)$
- HHO allows for a simpler analysis based on L^{2}-projections: avoids special HDG projection
- Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
- weak gradient $\leftrightarrow \mathrm{HHO}$ grad. rec.
- WG often uses plain LS stabilization (in general, suboptimal: face dofs of order $k \geq 0 \Longrightarrow O\left(h^{k}\right) H^{1}$-estimate)

Link to other methods

- $\mathrm{HHO}(k=0)$ equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]
- HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
- flux variable in HDG $\leftrightarrow \mathrm{HHO}$ grad. rec.
- numerical flux trace in HHO is $-\nabla R_{T}\left(\hat{u}_{T}\right) \cdot \mathbf{n}_{T}+h_{T}^{-1}\left(\tilde{S}_{\partial T}^{*} \circ \tilde{S}_{\partial T}\right)(\delta)$
- HHO allows for a simpler analysis based on L^{2}-projections: avoids special HDG projection
- Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
- weak gradient $\leftrightarrow \mathrm{HHO}$ grad. rec.
- WG often uses plain LS stabilization (in general, suboptimal: face dofs of order $k \geq 0 \Longrightarrow O\left(h^{k}\right) H^{1}$-estimate)
- HHO equivalent (up to stab.) to ncVEM [Ayuso, Manzini, Lipnikov 16]
- HHO dof space \hat{U}_{T} isomorphic to virtual space \mathcal{V}_{T}

$$
\mathbb{P}^{k+1}(T) \subsetneq \mathcal{V}_{T}:=\left\{v \in H^{1}(T)\left|\Delta v \in \mathbb{P}^{k}(T), \mathbf{n} \cdot \nabla v\right|_{\partial T} \in \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)\right\}
$$

- see [Chaumont, AE, Lemaire, Valentin 21] for equivalence with MHM

Link to other methods

- $\mathrm{HHO}(k=0)$ equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]
- HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
- flux variable in $\mathrm{HDG} \leftrightarrow \mathrm{HHO}$ grad. rec.
- numerical flux trace in HHO is $-\nabla R_{T}\left(\hat{u}_{T}\right) \cdot \mathbf{n}_{T}+h_{T}^{-1}\left(\tilde{S}_{\partial T}^{*} \circ \tilde{S}_{\partial T}\right)(\delta)$
- HHO allows for a simpler analysis based on L^{2}-projections: avoids special HDG projection
- Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
- weak gradient $\leftrightarrow \mathrm{HHO}$ grad. rec.
- WG often uses plain LS stabilization (in general, suboptimal: face dofs of order $k \geq 0 \Longrightarrow O\left(h^{k}\right) H^{1}$-estimate)
- HHO equivalent (up to stab.) to ncVEM [Ayuso, Manzini, Lipnikov 16]
- HHO dof space \hat{U}_{T} isomorphic to virtual space \mathcal{V}_{T}

$$
\mathbb{P}^{k+1}(T) \subsetneq \mathcal{V}_{T}:=\left\{v \in H^{1}(T)\left|\Delta v \in \mathbb{P}^{k}(T), \mathbf{n} \cdot \nabla v\right|_{\partial T} \in \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)\right\}
$$

- see [Chaumont, AE, Lemaire, Valentin 21] for equivalence with MHM
- Different devising viewpoints should be mutually enriching!

Applications, libraries, textbooks

- Broad area of applications (non-exhaustive list...)
- solid mechanics: nonlinear elasticity, hyperlasticity and plasticity, contact, Tresca friction, obstacle pb
- fluid mechanics/porous media: Stokes, NS, poroelasticity, fractures
- Leray-Lions, spectral pb, H^{-1}-loads, magnetostatics, de Rham complexes

Applications, libraries, textbooks

- Broad area of applications (non-exhaustive list...)
- solid mechanics: nonlinear elasticity, hyperlasticity and plasticity, contact, Tresca friction, obstacle pb
- fluid mechanics/porous media: Stokes, NS, poroelasticity, fractures
- Leray-Lions, spectral pb, H^{-1}-loads, magnetostatics, de Rham complexes
- Libraries
- industry (code_aster, code_saturne, EDF R\&D), ongoing developments at CEA
- academia: diskpp (C++) (ENPC/INRIA github.com/wareHHOuse), HArD::Core (Monash/Montpellier github. com/jdroniou/HArDCore)

Applications, libraries, textbooks

- Broad area of applications (non-exhaustive list...)
- solid mechanics: nonlinear elasticity, hyperlasticity and plasticity, contact, Tresca friction, obstacle pb
- fluid mechanics/porous media: Stokes, NS, poroelasticity, fractures
- Leray-Lions, spectral pb, H^{-1}-loads, magnetostatics, de Rham complexes
- Libraries
- industry (code_aster, code_saturne, EDF R\&D), ongoing developments at CEA
- academia: diskpp (C++) (ENPC/INRIA github.com/wareHHOuse), HArD::Core (Monash/Montpellier github.com/jdroniou/HArDCore)
- Textbooks
- Di Pietro, Droniou, The HHO method for polytopal meshes. Design, analysis and applications (Springer, 2020)
- Cicuttin, AE, Pignet, HHO methods. A primer with application to solid mechanics (Springer Briefs, 2021)

Main ideas in error analysis $(1 / 3)$

- Recall $a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right):=\left(\nabla R_{T}\left(\hat{u}_{T}\right), \nabla R_{T}\left(\hat{w}_{T}\right)\right)_{T}+h_{T}^{-1}\left(S_{\partial T}\left(\hat{u}_{T}\right), S_{\partial T}\left(\hat{w}_{T}\right)\right)_{\partial T}$
- Discrete problem: Find $\hat{u}_{h} \in \hat{U}_{h 0}$ s.t.

$$
a_{h}\left(\hat{u}_{h}, \hat{w}_{h}\right):=\sum_{T \in \mathcal{T}} a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right)=\left(f, w_{\mathcal{T}}\right)_{\Omega}, \quad \forall \hat{w}_{h} \in \hat{U}_{h 0}
$$

Main ideas in error analysis $(1 / 3)$

- Recall $a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right):=\left(\nabla R_{T}\left(\hat{u}_{T}\right), \nabla R_{T}\left(\hat{w}_{T}\right)\right)_{T}+h_{T}^{-1}\left(S_{\partial T}\left(\hat{u}_{T}\right), S_{\partial T}\left(\hat{w}_{T}\right)\right)_{\partial T}$
- Discrete problem: Find $\hat{u}_{h} \in \hat{U}_{h 0}$ s.t.

$$
a_{h}\left(\hat{u}_{h}, \hat{w}_{h}\right):=\sum_{T \in \mathcal{T}} a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right)=\left(f, w_{\mathcal{T}}\right)_{\Omega}, \quad \forall \hat{w}_{h} \in \hat{U}_{h 0}
$$

- Stability and boundedness: There are $0<\alpha \leq \omega$ s.t. for all $T \in \mathcal{T}$,

$$
\alpha\left\|\hat{u}_{T}\right\|_{\hat{U}_{T}}^{2} \leq a_{T}\left(\hat{u}_{T}, \hat{u}_{T}\right) \leq \omega\left\|\hat{u}_{T}\right\|_{\hat{U}_{T}}^{2}, \quad \forall \hat{u}_{T} \in \hat{U}_{T}
$$

with $\left\|\hat{u}_{T}\right\|_{\hat{U}_{T}}^{2}:=\left\|\nabla u_{T}\right\|_{T}^{2}+h_{T}^{-1}\left\|\left.u_{T}\right|_{\partial T}-u_{\partial T}\right\|_{\partial T}^{2}$

Main ideas in error analysis $(1 / 3)$

- Recall $a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right):=\left(\nabla R_{T}\left(\hat{u}_{T}\right), \nabla R_{T}\left(\hat{w}_{T}\right)\right)_{T}+h_{T}^{-1}\left(S_{\partial T}\left(\hat{u}_{T}\right), S_{\partial T}\left(\hat{w}_{T}\right)\right)_{\partial T}$
- Discrete problem: Find $\hat{u}_{h} \in \hat{U}_{h 0}$ s.t.

$$
a_{h}\left(\hat{u}_{h}, \hat{w}_{h}\right):=\sum_{T \in \mathcal{T}} a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right)=\left(f, w_{\mathcal{T}}\right)_{\Omega}, \quad \forall \hat{w}_{h} \in \hat{U}_{h 0}
$$

- Stability and boundedness: There are $0<\alpha \leq \omega$ s.t. for all $T \in \mathcal{T}$,

$$
\alpha\left\|\hat{u}_{T}\right\|_{\hat{U}_{T}}^{2} \leq a_{T}\left(\hat{u}_{T}, \hat{u}_{T}\right) \leq \omega\left\|\hat{u}_{T}\right\|_{\hat{U}_{T}}^{2}, \quad \forall \hat{u}_{T} \in \hat{U}_{T}
$$

with $\left\|\hat{u}_{T}\right\|_{\hat{U}_{T}}^{2}:=\left\|\nabla u_{T}\right\|_{T}^{2}+h_{T}^{-1}\left\|\left.u_{T}\right|_{\partial T}-u_{\partial T}\right\|_{\partial T}^{2}$

- $\left\|\hat{u}_{h}\right\|_{\hat{U}_{h}}^{2}:=\sum_{T \in \mathcal{T}}\left\|\hat{u}_{T}\right\|_{\hat{U}_{T}}^{2}$ defines a norm on $\hat{U}_{h 0}$
- Discrete problem is well-posed (Lax-Milgram lemma)

Main ideas in error analysis $(2 / 3)$

- Local approximation operator $J_{T}^{\text {нно }}: H^{1}(T) \rightarrow \mathbb{P}^{k+1}(T)$

$$
J_{T}^{\text {нно }}: H^{1}(T) \xrightarrow{\hat{\Lambda}_{T}} \hat{U}_{T} \xrightarrow{R_{T}} \mathbb{P}^{k+1}(T), \quad \hat{I}_{T}(v):=\left(\Pi_{T}^{k}(v), \Pi_{\partial T}^{k}\left(\left.v\right|_{\partial T}\right)\right)
$$

- $J_{T}^{\text {нно }}$ is the elliptic projector onto $\mathbb{P}^{k+1}(T)$
- $h_{T}^{-\frac{1}{2}}\left\|S_{\partial T}\left(\hat{I}_{T}(v)\right)\right\|_{\partial T} \lesssim \| \nabla\left(v-J_{T}^{\text {нн० }}(v) \|_{T} \lesssim h_{T}^{k+1}|\nu|_{H^{k+2}(T)}\right.$

Main ideas in error analysis $(2 / 3)$

- Local approximation operator $J_{T}^{\text {нно }}: H^{1}(T) \rightarrow \mathbb{P}^{k+1}(T)$

$$
J_{T}^{\mathrm{HHo}}: H^{1}(T) \xrightarrow{\hat{I}_{T}} \hat{U}_{T} \xrightarrow{R_{T}} \mathbb{P}^{k+1}(T), \quad \hat{I}_{T}(v):=\left(\Pi_{T}^{k}(v), \Pi_{\partial T}^{k}\left(\left.v\right|_{\partial T}\right)\right)
$$

- $J_{T}^{\text {нно }}$ is the elliptic projector onto $\mathbb{P}^{k+1}(T)$
- $h_{T}^{-\frac{1}{2}}\left\|S_{\partial T}\left(\hat{I}_{T}(v)\right)\right\|_{\partial T} \lesssim\left\|\nabla\left(v-J_{T}^{\mathrm{HHO}}(v)\right)\right\|_{T} \lesssim h_{T}^{k+1}|v|_{H^{k+2}(T)}$
- Assume exact solution u is in $H^{1+s}(\Omega), s>\frac{1}{2}$
- Set $\|v\|_{\sharp, T}^{2}:=\|\nabla v\|_{T}^{2}+h_{T}\left\|\nabla v \cdot \mathbf{n}_{T}\right\|_{\partial T}^{2}$ and $\|v\|_{\sharp, \mathcal{T}}^{2}:=\sum_{T \in \mathcal{T}}\|v\|_{\sharp, T}^{2}$
- The following error estimate holds:

$$
\left\|\nabla_{\mathcal{T}}\left(u-R_{\mathcal{T}}\left(\hat{u}_{h}\right)\right)\right\|_{\Omega} \lesssim\left\|u-J_{\mathcal{T}}^{\text {нно }}(u)\right\|_{\sharp, \mathcal{T}}
$$

with $R_{\mathcal{T}}$ and $J_{\mathcal{T}}^{\text {нно }}$ defined cellwise using R_{T} and $J_{T}^{\text {нно }}$

Main ideas in error analysis $(2 / 3)$

- Local approximation operator $J_{T}^{\text {нно }}: H^{1}(T) \rightarrow \mathbb{P}^{k+1}(T)$

$$
J_{T}^{\mathrm{HHo}}: H^{1}(T) \xrightarrow{\hat{I}_{T}} \hat{U}_{T} \xrightarrow{R_{T}} \mathbb{P}^{k+1}(T), \quad \hat{I}_{T}(v):=\left(\Pi_{T}^{k}(v), \Pi_{\partial T}^{k}\left(\left.v\right|_{\partial T}\right)\right)
$$

- $J_{T}^{\text {нно }}$ is the elliptic projector onto $\mathbb{P}^{k+1}(T)$
- $h_{T}^{-\frac{1}{2}}\left\|S_{\partial T}\left(\hat{I}_{T}(v)\right)\right\|_{\partial T} \lesssim\left\|\nabla\left(v-J_{T}^{\mathrm{HHO}}(v)\right)\right\|_{T} \lesssim h_{T}^{k+1}|v|_{H^{k+2}(T)}$
- Assume exact solution u is in $H^{1+s}(\Omega), s>\frac{1}{2}$
- Set $\|v\|_{\sharp, T}^{2}:=\|\nabla v\|_{T}^{2}+h_{T}\left\|\nabla v \cdot \mathbf{n}_{T}\right\|_{\partial T}^{2}$ and $\|v\|_{\sharp, \mathcal{T}}^{2}:=\sum_{T \in \mathcal{T}}\|v\|_{\sharp, T}^{2}$
- The following error estimate holds:

$$
\left\|\nabla_{\mathcal{T}}\left(u-R_{\mathcal{T}}\left(\hat{u}_{h}\right)\right)\right\|_{\Omega} \lesssim\left\|u-J_{\mathcal{T}}^{\text {нно }}(u)\right\|_{\sharp, \mathcal{T}}
$$

with $R_{\mathcal{T}}$ and $J_{\mathcal{T}}^{\text {нно }}$ defined cellwise using R_{T} and $J_{T}^{\text {нно }}$

- If $u \in H^{1+t}(\Omega)$ with $t \in\left(\frac{1}{2}, k+1\right],\left\|\nabla_{\mathcal{T}}\left(u-R_{\mathcal{T}}\left(\hat{u}_{h}\right)\right)\right\|_{\Omega} \lesssim h^{t}|u|_{H^{1+t}(\Omega)}$

Main ideas in error analysis (3/3)

- Bound on consistency error: For all $\hat{w}_{h} \in \hat{U}_{h 0}$,

$$
\begin{aligned}
\left(f, w_{\mathcal{T}}\right)_{\Omega}=\sum_{T \in \mathcal{T}}\left(-\Delta u, w_{T}\right)_{T} & =\sum_{T \in \mathcal{T}}\left(\nabla u, \nabla w_{T}\right)_{T}-\left(\nabla u \cdot \mathbf{n}_{T}, w_{T}\right)_{\partial T} \\
& =\sum_{T \in \mathcal{T}}\left(\nabla u, \nabla w_{T}\right)_{T}-\left(\nabla u \cdot \mathbf{n}_{T}, w_{T}-w_{\partial T}\right)_{\partial T}
\end{aligned}
$$

Key step where regularity assumption $u \in H^{1+s}(\Omega), s>\frac{1}{2}$, is used

Main ideas in error analysis $(3 / 3)$

- Bound on consistency error: For all $\hat{w}_{h} \in \hat{U}_{h 0}$,

$$
\begin{aligned}
\left(f, w_{\mathcal{T}}\right)_{\Omega}=\sum_{T \in \mathcal{T}}\left(-\Delta u, w_{T}\right)_{T} & =\sum_{T \in \mathcal{T}}\left(\nabla u, \nabla w_{T}\right)_{T}-\left(\nabla u \cdot \mathbf{n}_{T}, w_{T}\right)_{\partial T} \\
& =\sum_{T \in \mathcal{T}}\left(\nabla u, \nabla w_{T}\right)_{T}-\left(\nabla u \cdot \mathbf{n}_{T}, w_{T}-w_{\partial T}\right)_{\partial T}
\end{aligned}
$$

Key step where regularity assumption $u \in H^{1+s}(\Omega), s>\frac{1}{2}$, is used

- Recalling $J_{T}^{\text {нно }}=R_{T} \circ \hat{I}_{T}$ and definition of $R_{T}\left(\hat{w}_{T}\right)$ gives

$$
\begin{aligned}
\chi\left(\hat{w}_{h}\right):=\left(f, w_{\mathcal{T}}\right)_{\Omega}-\sum_{T \in \mathcal{T}} a_{T}\left(\hat{I}_{T}(u), \hat{w}_{T}\right) & =\left(f, w_{\mathcal{T}}\right)_{\Omega}-\sum_{T \in \mathcal{T}}\left(\nabla J_{T}^{\text {Нно }}(u), \nabla R_{T}\left(\hat{w}_{T}\right)\right)_{T}+\mathrm{stb} . \\
& =\sum_{T \in \mathcal{T}}\left(\nabla \eta, \nabla w_{T}\right)_{T}-\left(\nabla \eta \cdot \mathbf{n}_{T}, w_{T}-w_{\partial T}\right)_{\partial T}+\mathrm{stb} .
\end{aligned}
$$

with $\left.\eta\right|_{T}:=\left.u\right|_{T}-J_{T}^{\mathrm{HHO}}(u), \ldots$ so that $\left|\chi\left(\hat{w}_{h}\right)\right| \lesssim\|\eta\|_{\sharp, \mathcal{T}}\left\|\hat{w}_{h}\right\|_{\hat{U}_{h}}$

Main ideas in error analysis $(3 / 3)$

- Bound on consistency error: For all $\hat{w}_{h} \in \hat{U}_{h 0}$,

$$
\begin{aligned}
\left(f, w_{\mathcal{T}}\right)_{\Omega}=\sum_{T \in \mathcal{T}}\left(-\Delta u, w_{T}\right)_{T} & =\sum_{T \in \mathcal{T}}\left(\nabla u, \nabla_{w_{T}}\right)_{T}-\left(\nabla u \cdot \mathbf{n}_{T}, w_{T}\right)_{\partial T} \\
& =\sum_{T \in \mathcal{T}}\left(\nabla u, \nabla_{w_{T}}\right)_{T}-\left(\nabla u \cdot \mathbf{n}_{T}, w_{T}-w_{\partial T}\right)_{\partial T}
\end{aligned}
$$

Key step where regularity assumption $u \in H^{1+s}(\Omega), s>\frac{1}{2}$, is used

- Recalling $J_{T}^{\text {нно }}=R_{T} \circ \hat{I}_{T}$ and definition of $R_{T}\left(\hat{w}_{T}\right)$ gives

$$
\begin{aligned}
\chi\left(\hat{w}_{h}\right):=\left(f, w_{\mathcal{T}}\right)_{\Omega}-\sum_{T \in \mathcal{T}} a_{T}\left(\hat{I}_{T}(u), \hat{w}_{T}\right) & =\left(f, w_{\mathcal{T}}\right)_{\Omega}-\sum_{T \in \mathcal{T}}\left(\nabla J_{T}^{\text {Нно }}(u), \nabla R_{T}\left(\hat{w}_{T}\right)\right)_{T}+\mathrm{stb} . \\
& =\sum_{T \in \mathcal{T}}\left(\nabla \eta, \nabla w_{T}\right)_{T}-\left(\nabla \eta \cdot \mathbf{n}_{T}, w_{T}-w_{\partial T}\right)_{\partial T}+\mathrm{stb} .
\end{aligned}
$$

with $\left.\eta\right|_{T}:=\left.u\right|_{T}-J_{T}^{\text {нно }}(u), \ldots$ so that $\left|\chi\left(\hat{w}_{h}\right)\right| \lesssim\|\eta\|_{\sharp, \mathcal{T}}\left\|\hat{w}_{h}\right\|_{\hat{U}_{h}}$

- Regularity assumption $s>\frac{1}{2}$ is classical for any nonconforming method (CR, Nitsche, dG, HDG, ...); how to circumvent it?
- modify RHS using suitable bubble functions; see [Veeser, Zanotti, 18-] for general theory and [AE, Zanotti, 20] for $\mathrm{HHO} \Longrightarrow$ optimal in H^{1}
- keep RHS but give weaker meaning to facewise normal derivative [AE, Guermond 21 (FoCM)] \Longrightarrow allow for any $s>0$

HHO for biharmonic problem

Model problem

- Open, bounded, polytopal Lipschitz domain $\Omega \subset \mathbb{R}^{d}, d \geq 2$
- $\operatorname{Load} f \in L^{2}(\Omega)$

$$
\Delta^{2} u=f+\mathrm{BC} \text { 's } \begin{cases}u=0, \partial_{n} u=0 \quad \text { (type I) } \\ u=0, \partial_{n n} u=0 \quad \text { (type II) }\end{cases}
$$

Model problem

- Open, bounded, polytopal Lipschitz domain $\Omega \subset \mathbb{R}^{d}, d \geq 2$
- $\operatorname{Load} f \in L^{2}(\Omega)$

$$
\Delta^{2} u=f+\mathrm{BC} \text { 's } \begin{cases}u=0, \partial_{n} u=0 & \text { (type I) } \\ u=0, \partial_{n n} u=0 & \text { (type II) }\end{cases}
$$

- Focusing on type I BC's, the weak formulation is

Find $u \in H_{0}^{2}(\Omega)$ s.t. $\quad\left(\nabla^{2} u, \nabla^{2} w\right)_{\Omega}=(f, w)_{\Omega} \quad \forall w \in H_{0}^{2}(\Omega)$
This problem is well-posed (Lax-Milgram lemma)

- It is also possible to consider type II BC's, non-homogeneous BC's, and mix both BC's

Local HHO dofs

- Recall for second-order PDEs that local HHO dofs comprise
- cell dofs to approximate the solution in mesh cells
- face dofs to approximate the solution trace on mesh faces

$$
\hat{U}_{T}:=\mathbb{P}^{k+1}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right) \quad \text { or } \quad \mathbb{P}^{k}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right) \quad k \geq 0
$$

Local HHO dofs

- Recall for second-order PDEs that local HHO dofs comprise
- cell dofs to approximate the solution in mesh cells
- face dofs to approximate the solution trace on mesh faces

$$
\hat{U}_{T}:=\mathbb{P}^{k+1}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right) \quad \text { or } \quad \mathbb{P}^{k}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right) \quad k \geq 0
$$

- For biharmonic problem, we need additional face dofs
- either approximating the full gradient trace on mesh faces (vector-valued)
- or just the normal derivative on mesh faces (scalar-valued)

Local HHO dofs

- Recall for second-order PDEs that local HHO dofs comprise
- cell dofs to approximate the solution in mesh cells
- face dofs to approximate the solution trace on mesh faces

$$
\hat{U}_{T}:=\mathbb{P}^{k+1}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right) \quad \text { or } \quad \mathbb{P}^{k}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right) \quad k \geq 0
$$

- For biharmonic problem, we need additional face dofs
- either approximating the full gradient trace on mesh faces (vector-valued)
- or just the normal derivative on mesh faces (scalar-valued)
- The choice studied in [Bonaldi, Di Pietro, Geymonat, Krasucki, 18] is

$$
\hat{U}_{T}:=\mathbb{P}^{k}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right) \times\left[\mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)\right]^{d} \quad k \geq 1
$$

Local HHO dofs

- Recall for second-order PDEs that local HHO dofs comprise
- cell dofs to approximate the solution in mesh cells
- face dofs to approximate the solution trace on mesh faces

$$
\hat{U}_{T}:=\mathbb{P}^{k+1}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right) \quad \text { or } \quad \mathbb{P}^{k}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right) \quad k \geq 0
$$

- For biharmonic problem, we need additional face dofs
- either approximating the full gradient trace on mesh faces (vector-valued)
- or just the normal derivative on mesh faces (scalar-valued)
- The choice studied in [Bonaldi, Di Pietro, Geymonat, Krasucki, 18] is

$$
\hat{U}_{T}:=\mathbb{P}^{k}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right) \times\left[\mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)\right]^{d} \quad k \geq 1
$$

- We consider instead the following two alternatives, both with $k \geq 0$

$$
\hat{U}_{T}:= \begin{cases}\mathbb{P}^{k+2}(T) \times \mathbb{P}^{k+1}\left(\mathcal{F}_{\partial T}\right) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right) & d=2 \rightarrow \mathrm{HHO}(\mathrm{~A}) \\ \mathbb{P}^{k+2}(T) \times \mathbb{P}^{k+2}\left(\mathcal{F}_{\partial T}\right) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right) & d \geq 2 \rightarrow \mathrm{HHO}(\mathrm{~B})\end{cases}
$$

Local reconstruction

- Let $T \in \mathcal{T}$
- We want to mimic the integration by parts formula (smooth v, w):

$$
\left(\nabla^{2} v, \nabla^{2} w\right)_{T}=\left(v, \Delta^{2} w\right)_{T}-\left(v, \partial_{n} \Delta w\right)_{\partial T}+\left(\partial_{n} v, \partial_{n n} w\right)_{\partial T}+\left(\partial_{t} v, \partial_{n t} w\right)_{\partial T}
$$

Local reconstruction

- Let $T \in \mathcal{T}$
- We want to mimic the integration by parts formula (smooth v, w):

$$
\left(\nabla^{2} v, \nabla^{2} w\right)_{T}=\left(v, \Delta^{2} w\right)_{T}-\left(v, \partial_{n} \Delta w\right)_{\partial T}+\left(\partial_{n} v, \partial_{n n} w\right)_{\partial T}+\left(\partial_{t} v, \partial_{n t} w\right)_{\partial T}
$$

- Let $\hat{v}_{T}:=\left(v_{T}, v_{\partial T}, \gamma_{\partial T}\right) \in \hat{U}_{T}$
- Potential reconstruction $R_{T}: \hat{U}_{T} \rightarrow \mathbb{P}^{k+2}(T)$ s.t. $\forall w \in \mathbb{P}^{k+2}(T) / \mathbb{P}^{1}$, $\left(\nabla^{2} R_{T}\left(\hat{v}_{T}\right), \nabla^{2} w\right)_{T}=\left(v_{T}, \Delta^{2} w\right)_{T}-\left(v_{\partial T}, \partial_{n} \Delta w\right)_{\partial T}+\left(\gamma_{\partial T}, \partial_{n n} w\right)_{\partial T}+\left(\partial_{t} v_{\partial T}, \partial_{n t} w\right)_{\partial T}$ together with $\left(R_{T}\left(\hat{v}_{T}\right), \xi\right)_{T}=\left(v_{T}, \xi\right)_{T}$ for all $\xi \in \mathbb{P}^{1}(T)$
- Hessian reconstruction $\mathcal{H}_{T}\left(\hat{v}_{T}\right):=\nabla^{2} R_{T}\left(\hat{v}_{T}\right) \in\left[\mathbb{P}^{k}(T)\right]^{d \times d}$

Local stabilization

- The goal of stabilization is to weakly enforce

$$
\left.v_{T}\right|_{\partial T} \approx v_{\partial T},\left.\quad \partial_{n} v_{T}\right|_{\partial T} \approx \gamma_{\partial T}, \quad \forall \hat{v}_{T}:=\left(v_{T}, v_{\partial T}, \gamma_{\partial T}\right) \in \hat{U}_{T}
$$

Local stabilization

- The goal of stabilization is to weakly enforce

$$
\left.v_{T}\right|_{\partial T} \approx v_{\partial T},\left.\quad \partial_{n} v_{T}\right|_{\partial T} \approx \gamma_{\partial T}, \quad \forall \hat{v}_{T}:=\left(v_{T}, v_{\partial T}, \gamma_{\partial T}\right) \in \hat{U}_{T}
$$

- For $\mathrm{HHO}(\mathrm{B})$ with $\hat{U}_{T}:=\mathbb{P}^{k+2}(T) \times \mathbb{P}^{k+2}\left(\mathcal{F}_{\partial T}\right) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)$,

$$
S_{\partial T}\left(\hat{v}_{T}, \hat{v}_{T}\right):=h_{T}^{-3}\left\|\left.v_{T}\right|_{\partial T}-v_{\partial T}\right\|_{\partial T}^{2}+h_{T}^{-1}\left\|\Pi_{\partial T}^{k}\left(\left.\partial_{n} v_{T}\right|_{\partial T}\right)-\gamma_{\partial T}\right\|_{\partial T}^{2}
$$

\rightarrow natural extension of LS stabilization to biharmonic problem

Local stabilization

- The goal of stabilization is to weakly enforce

$$
\left.v_{T}\right|_{\partial T} \approx v_{\partial T},\left.\quad \partial_{n} v_{T}\right|_{\partial T} \approx \gamma_{\partial T}, \quad \forall \hat{v}_{T}:=\left(v_{T}, v_{\partial T}, \gamma_{\partial T}\right) \in \hat{U}_{T}
$$

- For $\mathrm{HHO}(\mathrm{B})$ with $\hat{U}_{T}:=\mathbb{P}^{k+2}(T) \times \mathbb{P}^{k+2}\left(\mathcal{F}_{\partial T}\right) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)$,

$$
S_{\partial T}\left(\hat{v}_{T}, \hat{v}_{T}\right):=h_{T}^{-3}\left\|\left.v_{T}\right|_{\partial T}-v_{\partial T}\right\|_{\partial T}^{2}+h_{T}^{-1}\left\|\Pi_{\partial T}^{k}\left(\left.\partial_{n} v_{T}\right|_{\partial T}\right)-\gamma_{\partial T}\right\|_{\partial T}^{2}
$$

\rightarrow natural extension of LS stabilization to biharmonic problem

- For $\mathrm{HHO}(\mathrm{A})$ with $\hat{U}_{T}:=\mathbb{P}^{k+2}(T) \times \mathbb{P}^{k+1}\left(\mathcal{F}_{\partial T}\right) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)$ and $d=2$
$S_{\partial T}\left(\hat{v}_{T}, \hat{v}_{T}\right):=h_{T}^{-3}\left\|\Upsilon_{\partial T}^{k+1}\left(\left.v_{T}\right|_{\partial T}-v_{\partial T}\right)\right\|_{\partial T}^{2}+h_{T}^{-1}\left\|\Pi_{\partial T}^{k}\left(\left.\partial_{n} v_{T}\right|_{\partial T}\right)-\gamma_{\partial T}\right\|_{\partial T}^{2}$
where on each face $F \in \mathcal{F}_{\partial T}, \Upsilon_{\partial T}^{k+1}$ matches endpoint values and moments on F up to degree ($k-1$)
- commuting property with tangential derivative (cf. 1D de Rham complex)
- similar operator available for any $d \geq 2$ but maps onto $\mathbb{P}^{k+d-1}\left(\mathcal{F}_{\partial T}\right)$

Discrete problem (1/2)

- The local bilinear form writes

$$
a_{T}\left(\hat{v}_{T}, \hat{w}_{T}\right):=\left(\nabla^{2} R_{T}\left(\hat{v}_{T}\right), \nabla^{2} R_{T}\left(\hat{w}_{T}\right)\right)_{T}+S_{\partial T}\left(\hat{v}_{T}, \hat{w}_{T}\right)
$$

Discrete problem (1/2)

- The local bilinear form writes

$$
a_{T}\left(\hat{v}_{T}, \hat{w}_{T}\right):=\left(\nabla^{2} R_{T}\left(\hat{v}_{T}\right), \nabla^{2} R_{T}\left(\hat{w}_{T}\right)\right)_{T}+S_{\partial T}\left(\hat{v}_{T}, \hat{w}_{T}\right)
$$

- Global dofs $\hat{v}_{h}:=\left(v_{\mathcal{T}}, v_{\mathcal{F}}, \gamma_{\mathcal{F}}\right) \in \hat{U}_{h}$ with

$$
\hat{U}_{h}:=\mathbb{P}^{k+2}(\mathcal{T}) \times \mathbb{P}^{k+\delta}(\mathcal{F}) \times \mathbb{P}^{k}(\mathcal{F}), \quad \delta \in\{1,2\}
$$

- all faces oriented by fixed unit normal $\mathbf{n}_{F}, \gamma_{F}$ approximates $\mathbf{n}_{F} \cdot \nabla v$
- local dofs of \hat{v}_{h} in a mesh cell $T \in \mathcal{T}:\left(v_{T},\left(v_{F}\right)_{F \in \mathcal{F}_{\partial T}},\left(\left(\mathbf{n}_{T} \cdot \mathbf{n}_{F}\right) \gamma_{F}\right)_{F \in \mathcal{F}_{\partial T}}\right.$

Discrete problem (1/2)

- The local bilinear form writes

$$
a_{T}\left(\hat{v}_{T}, \hat{w}_{T}\right):=\left(\nabla^{2} R_{T}\left(\hat{v}_{T}\right), \nabla^{2} R_{T}\left(\hat{w}_{T}\right)\right)_{T}+S_{\partial T}\left(\hat{v}_{T}, \hat{w}_{T}\right)
$$

- Global dofs $\hat{v}_{h}:=\left(v_{\mathcal{T}}, v_{\mathcal{F}}, \gamma_{\mathcal{F}}\right) \in \hat{U}_{h}$ with

$$
\hat{U}_{h}:=\mathbb{P}^{k+2}(\mathcal{T}) \times \mathbb{P}^{k+\delta}(\mathcal{F}) \times \mathbb{P}^{k}(\mathcal{F}), \quad \delta \in\{1,2\}
$$

- all faces oriented by fixed unit normal $\mathbf{n}_{F}, \gamma_{F}$ approximates $\mathbf{n}_{F} \cdot \nabla v$
- local dofs of \hat{v}_{h} in a mesh cell $T \in \mathcal{T}:\left(v_{T},\left(v_{F}\right)_{F \in \mathcal{F}_{\partial T}},\left(\left(\mathbf{n}_{T} \cdot \mathbf{n}_{F}\right) \gamma_{F}\right)_{F \in \mathcal{F}_{\partial T}}\right.$
- Type I BC's enforced on face boundary dofs by setting $v_{F}=\gamma_{F}=0$ for all $F \subset \partial \Omega \rightarrow$ subspace $\hat{U}_{h 0}$

Discrete problem (2/2)

- Discrete problem: Find $\hat{u}_{h} \in \hat{U}_{h 0}$ s.t.

$$
a_{h}\left(\hat{u}_{h}, \hat{w}_{h}\right):=\sum_{T \in \mathcal{T}} a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right)=\left(f, w_{\mathcal{T}}\right)_{\Omega}, \quad \forall \hat{w}_{h} \in \hat{U}_{h 0}
$$

Discrete problem (2/2)

- Discrete problem: Find $\hat{u}_{h} \in \hat{U}_{h 0}$ s.t.

$$
a_{h}\left(\hat{u}_{h}, \hat{w}_{h}\right):=\sum_{T \in \mathcal{T}} a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right)=\left(f, w_{\mathcal{T}}\right)_{\Omega}, \quad \forall \hat{w}_{h} \in \hat{U}_{h 0}
$$

- Cell dofs eliminated locally by static condensation
- only face dofs are globally coupled
- cell dofs recovered by local post-processing

Discrete problem (2/2)

- Discrete problem: Find $\hat{u}_{h} \in \hat{U}_{h 0}$ s.t.

$$
a_{h}\left(\hat{u}_{h}, \hat{w}_{h}\right):=\sum_{T \in \mathcal{T}} a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right)=\left(f, w_{\mathcal{T}}\right)_{\Omega}, \quad \forall \hat{w}_{h} \in \hat{U}_{h 0}
$$

- Cell dofs eliminated locally by static condensation
- only face dofs are globally coupled
- cell dofs recovered by local post-processing
- Comparison of globally coupled unknowns per mesh interface
- $d=2:(3 k+3)$ in [Bonaldi et al., 18$]$ vs. $(2 k+3)$ in $\mathrm{HHO}(\mathrm{A})$
- $d=3:(4 k+4)$ in [Bonaldi et al., 18$]$ vs. $(2 k+4)$ in $\mathrm{HHO}(\mathrm{B})$
- static condensation is slightly more expensive in $\mathrm{HHO}(\mathrm{A}-\mathrm{B})$, but cost is compensated by simpler stabilization

Stability

- Stability and boundedness: There are $0<\alpha \leq \omega$ s.t. for all $T \in \mathcal{T}$,

$$
\alpha\left\|\hat{v}_{T}\right\|_{\hat{U}_{T}}^{2} \leq a_{T}\left(\hat{v}_{T}, \hat{v}_{T}\right) \leq \omega\left\|\hat{v}_{T}\right\|_{\hat{U}_{T}}^{2}, \quad \forall \hat{v}_{T} \in \hat{U}_{T}
$$

with $\left\|\hat{v}_{T}\right\|_{\hat{U}_{T}}^{2}:=\left\|\nabla^{2} v_{T}\right\|_{T}^{2}+h_{T}^{-3}\left\|v_{T}-v_{\partial T}\right\|_{\partial T}^{2}+h_{T}^{-1}\left\|\left.\partial_{n} v_{T}\right|_{\partial T}-\gamma_{\partial T}\right\|_{\partial T}^{2}$

Stability

- Stability and boundedness: There are $0<\alpha \leq \omega$ s.t. for all $T \in \mathcal{T}$,

$$
\alpha\left\|\hat{v}_{T}\right\|_{\hat{U}_{T}}^{2} \leq a_{T}\left(\hat{v}_{T}, \hat{v}_{T}\right) \leq \omega\left\|\hat{v}_{T}\right\|_{\hat{U}_{T}}^{2}, \quad \forall \hat{v}_{T} \in \hat{U}_{T}
$$

with $\left\|\hat{v}_{T}\right\|_{\hat{U}_{T}}^{2}:=\left\|\nabla^{2} v_{T}\right\|_{T}^{2}+h_{T}^{-3}\left\|v_{T}-v_{\partial T}\right\|_{\partial T}^{2}+h_{T}^{-1}\left\|\left.\partial_{n} v_{T}\right|_{\partial T}-\gamma_{\partial T}\right\|_{\partial T}^{2}$

- $\left\|\hat{v}_{h}\right\|_{\hat{U}_{h}}^{2}:=\sum_{T \in \mathcal{T}}\left\|\hat{v}_{T}\right\|_{\hat{U}_{T}}^{2}$ defines a norm on $\hat{U}_{h 0}$
- Discrete problem is well-posed (Lax-Milgram lemma)

Approximation

- Local approximation operator $J_{T}^{\text {нно }}: H^{2}(T) \rightarrow \mathbb{P}^{k+2}(T)$

$$
\begin{aligned}
& J_{T}^{\text {но }}: H^{2}(T) \xrightarrow{\hat{I}_{T}} \hat{U}_{T} \xrightarrow{R_{T}} \mathbb{P}^{k+2}(T) \\
& \hat{I}_{T}(v):= \begin{cases}\left(\Pi_{T}^{k+2}(v), \Upsilon_{\partial T}^{k+1}\left(\left.v\right|_{\partial T}\right), \Pi_{\partial T}^{k}\left(\left.\mathbf{n}_{T} \cdot \nabla v\right|_{\partial T}\right)\right) & \text { for } \mathrm{HHO}(\mathrm{~A}) \\
\left(\Pi_{T}^{k+2}(v), \Pi_{\partial T}^{k+2}\left(\left.v\right|_{\partial T}\right), \Pi_{\partial T}^{k}\left(\left.\mathbf{n}_{T} \cdot \nabla v\right|_{\partial T}\right)\right) & \text { for } \mathrm{HHO}(\mathrm{~B})\end{cases}
\end{aligned}
$$

Approximation

- Local approximation operator $J_{T}^{\text {нно }}: H^{2}(T) \rightarrow \mathbb{P}^{k+2}(T)$

$$
\begin{aligned}
& J_{T}^{\text {ноо }}: H^{2}(T) \xrightarrow{\hat{T}_{T}} \hat{U}_{T} \xrightarrow{R_{T}} \mathbb{P}^{k+2}(T) \\
& \hat{I}_{T}(v):= \begin{cases}\left(\Pi_{T}^{k+2}(v), \Upsilon_{\partial T}^{k+1}\left(\left.v\right|_{\partial T}\right), \Pi_{\partial T}^{k}\left(\left.\mathbf{n}_{T} \cdot \nabla v\right|_{\partial T}\right)\right) & \text { for } \mathrm{HHO}(\mathrm{~A}) \\
\left(\Pi_{T}^{k+2}(v), \Pi_{\partial T}^{k+2}\left(\left.v\right|_{\partial T}\right), \Pi_{\partial T}^{k}\left(\left.\mathbf{n}_{T} \cdot \nabla v\right|_{\partial T}\right)\right) & \text { for } \mathrm{HHO}(\mathrm{~B})\end{cases}
\end{aligned}
$$

- For all $v \in H^{2+s}(T), s>\frac{3}{2}$, set

$$
\|v\|_{\sharp, T}^{2}:=\left\|\nabla^{2} v\right\|_{T}+h_{T}^{3}\left\|\partial_{n} \Delta v\right\|_{\partial T}^{2}+h_{T}\left\|\partial_{n} \nabla v\right\|_{\partial T}^{2}
$$

Approximation

- Local approximation operator $J_{T}^{\text {нно }}: H^{2}(T) \rightarrow \mathbb{P}^{k+2}(T)$

$$
\begin{aligned}
& J_{T}^{\text {нно }}: H^{2}(T) \xrightarrow{\hat{I}_{T}} \hat{U}_{T} \xrightarrow{R_{T}} \mathbb{P}^{k+2}(T) \\
& \hat{I}_{T}(v):= \begin{cases}\left(\Pi_{T}^{k+2}(v), \Upsilon_{\partial T}^{k+1}\left(\left.v\right|_{\partial T}\right), \Pi_{\partial T}^{k}\left(\left.\mathbf{n}_{T} \cdot \nabla v\right|_{\partial T}\right)\right) & \text { for } \mathrm{HHO}(\mathrm{~A}) \\
\left(\Pi_{T}^{k+2}(v), \Pi_{\partial T}^{k+2}\left(\left.v\right|_{\partial T}\right), \Pi_{\partial T}^{k}\left(\left.\mathbf{n}_{T} \cdot \nabla v\right|_{\partial T}\right)\right) & \text { for } \mathrm{HHO}(\mathrm{~B})\end{cases}
\end{aligned}
$$

- For all $v \in H^{2+s}(T), s>\frac{3}{2}$, set

$$
\|v\|_{\sharp, T}^{2}:=\left\|\nabla^{2} v\right\|_{T}+h_{T}^{3}\left\|\partial_{n} \Delta v\right\|_{\partial T}^{2}+h_{T}\left\|\partial_{n} \nabla v\right\|_{\partial T}^{2}
$$

- The following optimal approximation properties hold:

$$
\begin{gathered}
\left\|v-J_{T}^{\text {нно }}(v)\right\|_{\sharp, T} \lesssim\left\|v-\Pi_{T}^{k+2}(v)\right\|_{\sharp, T} \\
S_{\partial T}\left(\hat{I}_{T}(v), \hat{I}_{T}(v)\right)^{\frac{1}{2}} \\
\lesssim\left\|\nabla^{2}\left(v-\Pi_{T}^{k+2}(v)\right)\right\|_{T}
\end{gathered}
$$

Moreover, for $\mathrm{HHO}(\mathrm{A}), J_{T}^{\text {нно }}$ coincides with the H^{2}-elliptic projector

Consistency

- Assume exact solution u is in $H^{2+s}(\Omega), s>\frac{3}{2}$

Consistency

- Assume exact solution u is in $H^{2+s}(\Omega), s>\frac{3}{2}$
- Key step when bounding the consistency error: For all $\hat{w}_{h} \in \hat{U}_{h 0}$,

$$
\begin{aligned}
& \left(f, w_{\mathcal{T}}\right)_{\Omega}=\sum_{T \in \mathcal{T}}\left(\Delta^{2} u, w_{\mathcal{T}}\right)_{\Omega} \\
& =\sum_{T \in \mathcal{T}}\left(\nabla^{2} u, \nabla^{2} w_{\mathcal{T}}\right)_{T}+\left(\partial_{n} \Delta u, w_{\mathcal{T}}\right)_{\partial T}-\left(\partial_{n n} u, \partial_{n} w \mathcal{T}^{)_{\partial T}-\left(\partial_{n t} u, \partial_{t} w_{\mathcal{T}}\right)_{\partial T}}\right. \\
& =\sum_{T \in \mathcal{T}}\left(\nabla^{2} u, \nabla^{2} w_{\mathcal{T}}\right)_{T}+\left(\partial_{n} \Delta u, w_{\mathcal{T}}-w_{\partial T}\right)_{\partial T}-\left(\partial_{n n} u, \partial_{n} w_{\mathcal{T}}-\gamma_{\partial T}\right)_{\partial T}-\left(\partial_{n t} u, \partial_{t}\left(w_{\mathcal{T}}-w_{\partial T}\right)\right)_{\partial T}
\end{aligned}
$$

Consistency

- Assume exact solution u is in $H^{2+s}(\Omega), s>\frac{3}{2}$
- Key step when bounding the consistency error: For all $\hat{w}_{h} \in \hat{U}_{h 0}$,

$$
\begin{aligned}
& \left(f, w_{\mathcal{T}}\right)_{\Omega}=\sum_{T \in \mathcal{T}}\left(\Delta^{2} u, w_{\mathcal{T}}\right)_{\Omega} \\
& =\sum_{T \in \mathcal{T}}\left(\nabla^{2} u, \nabla^{2} w_{\mathcal{T}}\right)_{T}+\left(\partial_{n} \Delta u, w \mathcal{T}\right)_{\partial T}-\left(\partial_{n n} u, \partial_{n} w \mathcal{T}\right)_{\partial T}-\left(\partial_{n t} u, \partial_{t} w \mathcal{T}\right)_{\partial T} \\
& =\sum_{T \in \mathcal{T}}\left(\nabla^{2} u, \nabla^{2} w_{\mathcal{T}}\right)_{T}+\left(\partial_{n} \Delta u, w_{\mathcal{T}}-w_{\partial T}\right)_{\partial T}-\left(\partial_{n n} u, \partial_{n} w_{\mathcal{T}}-\gamma_{\partial T}\right)_{\partial T}-\left(\partial_{n t} u, \partial_{t}\left(w_{\mathcal{T}}-w_{\partial T}\right)\right)_{\partial T}
\end{aligned}
$$

- Then, letting $\chi\left(\hat{w}_{h}\right):=\left(f, w_{\mathcal{T}}\right)_{\Omega}-a_{h}\left(\hat{I}_{\mathcal{T}}(u), \hat{w}_{h}\right)$, we obtain

$$
\left|\chi\left(\hat{w}_{h}\right)\right| \lesssim\|\eta\|_{\sharp, \mathcal{T}}\left\|\hat{w}_{h}\right\|_{\hat{U}_{h}},\left.\quad \eta\right|_{T}:=\left.u\right|_{T}-J_{T}^{\mathrm{HнO}}(u)
$$

and $\|\eta\|_{\sharp, \mathcal{T}}$ is bounded by $\left\|u-\Pi_{\mathcal{T}}^{k+2}(u)\right\|_{\sharp, \mathcal{T}}\left(\right.$ with $\left.\|\cdot\|_{\sharp, \mathcal{T}}^{2}:=\sum_{T \in \mathcal{T}}\|\cdot\|_{\sharp, T}^{2}\right)$

Error estimate

- Recall assumption $u \in H^{2+s}(\Omega), s>\frac{3}{2}$
- The following error estimate holds:

$$
\left\|\nabla_{\mathcal{T}}^{2}\left(u-R_{\mathcal{T}}\left(\hat{u}_{h}\right)\right)\right\|_{\Omega} \lesssim\left\|u-\Pi_{\mathcal{T}}^{k+2}(u)\right\|_{\sharp, \mathcal{T}}
$$

Error estimate

- Recall assumption $u \in H^{2+s}(\Omega), s>\frac{3}{2}$
- The following error estimate holds:

$$
\left\|\nabla_{\mathcal{T}}^{2}\left(u-R_{\mathcal{T}}\left(\hat{u}_{h}\right)\right)\right\|_{\Omega} \lesssim\left\|u-\Pi_{\mathcal{T}}^{k+2}(u)\right\|_{\sharp, \mathcal{T}}
$$

- If $k \geq 1$ and $u \in H^{k+3}(\Omega),\left\|\nabla_{\mathcal{T}}^{2}\left(u-R_{\mathcal{T}}\left(\hat{u}_{h}\right)\right)\right\|_{\Omega} \lesssim h^{k+1}|u|_{H^{k+3}}$
- If $k=0,\left\|\nabla_{\mathcal{T}}^{2}\left(u-R_{\mathcal{T}}\left(\hat{u}_{h}\right)\right)\right\|_{\Omega} \lesssim h\left(|u|_{H^{3}}+h^{\sigma}|u|_{H^{3+\sigma}}\right), \sigma:=\min (s-1,1)$

Error estimate

- Recall assumption $u \in H^{2+s}(\Omega), s>\frac{3}{2}$
- The following error estimate holds:

$$
\left\|\nabla_{\mathcal{T}}^{2}\left(u-R_{\mathcal{T}}\left(\hat{u}_{h}\right)\right)\right\|_{\Omega} \lesssim\left\|u-\Pi_{\mathcal{T}}^{k+2}(u)\right\|_{\sharp, \mathcal{T}}
$$

- If $k \geq 1$ and $u \in H^{k+3}(\Omega),\left\|\nabla_{\mathcal{T}}^{2}\left(u-R_{\mathcal{T}}\left(\hat{u}_{h}\right)\right)\right\|_{\Omega} \lesssim h^{k+1}|u|_{H^{k+3}}$
- If $k=0,\left\|\nabla_{\mathcal{T}}^{2}\left(u-R_{\mathcal{T}}\left(\hat{u}_{h}\right)\right)\right\|_{\Omega} \lesssim h\left(|u|_{H^{3}}+h^{\sigma}|u|_{H^{3+\sigma}}\right), \sigma:=\min (s-1,1)$
- Circumventing regularity assumption
- [Veeser, Zanotti, 18-19] for Morley element and $C^{0}-\operatorname{IPDG}\left(f \in H^{-2}(\Omega)\right.$ in 2D); extension to 3D with arbitrary degree not obvious
- [Carstensen, Nataraj, 21] for further results on lowest-order methods
- it is also possible to extend the techniques of [AE, Guermond, 21 (FoCM)] \Longrightarrow allow for any $s>1$ (and even $s>0$ for type II BC's)

Literature overview

- Comparison with WG
- WG are designed using suboptimal plain least-squares stabilization
- in the table, all the methods deliver $O\left(h^{k+1}\right) H^{2}$-error estimate

method	cell	face	grad	k	ref.
WG	$k+2$	$k+2$	$[k+1]^{d}$	$k \geq 0$	[Mu, Wang, Ye, 14]
	$k+2$	$k+2$	$k+1$	$k \geq 0$	[Mu, Wang, Ye, 14]
	$k+2$	$k+1$	$k+1$	$k \geq 0$	[Zhang, Zhai, 15]
	1	1	$[1]^{d}$	$k=0$	[Ye, Zhang, Zhang, 20]
HHO	k	k	$[k]^{d}$	$k \geq 1$	[Bonaldi et al., 18]
HHO(A)	$k+2$	$k+1$	k	$k \geq 0$	present $(d=2)$
HHO(B)	$k+2$	$k+2$	k	$k \geq 0$	present $(d \geq 2)$

Literature overview

- Comparison with WG
- WG are designed using suboptimal plain least-squares stabilization
- in the table, all the methods deliver $O\left(h^{k+1}\right) H^{2}$-error estimate

method	cell	face	grad	k	ref.
WG	$k+2$	$k+2$	$[k+1]^{d}$	$k \geq 0$	[Mu, Wang, Ye, 14]
	$k+2$	$k+2$	$k+1$	$k \geq 0$	[Mu, Wang, Ye, 14]
	$k+2$	$k+1$	$k+1$	$k \geq 0$	[Zhang, Zhai, 15]
	1	1	$[1]^{d}$	$k=0$	[Ye, Zhang, Zhang, 20]
HHO	k	k	$[k]^{d}$	$k \geq 1$	[Bonaldi et al., 18]
HHO(A)	$k+2$	$k+1$	k	$k \geq 0$	present $(d=2)$
HHO(B)	$k+2$	$k+2$	k	$k \geq 0$	present $(d \geq 2)$

- Broader literature review
- C^{1}-VEM [Brezzi, Marini, 13; Chinosi, Marini, 16; Antonietti, Manzini, Verani, 20], C^{0}-VEM [Zhao, Chen, Zhang, 16]
- DG [Mozolevski, Süli, 03; Georgoulis, Houston, 09], C^{0}-IPDG [Engel et al., 02; Brenner, Sung, 05]

Further topics

- Nitsche's method and curved boundaries
- extends ideas from [Burman, AE, 18; Burman, Cicuttin, Delay, AE, 21] on second-order (interface) problems
- key idea: discard integrals on $\partial \Omega$ when building reconstruction operator
- boundary-penalty term needs $O(1)$ coefficient

Further topics

- Nitsche's method and curved boundaries
- extends ideas from [Burman, AE, 18; Burman, Cicuttin, Delay, AE, 21] on second-order (interface) problems
- key idea: discard integrals on $\partial \Omega$ when building reconstruction operator
- boundary-penalty term needs $O(1)$ coefficient
- Singular perturbation

$$
-\Delta u+\varepsilon \Delta^{2} u=f, \quad \varepsilon \geq 0
$$

- use local cutoff function $\sigma_{T}=\max \left(1, \varepsilon h_{T}^{-2}\right)$ to weigh stabilization terms
- method and analysis fully robust up to $\varepsilon=0$

Further topics

- Nitsche's method and curved boundaries
- extends ideas from [Burman, AE, 18; Burman, Cicuttin, Delay, AE, 21] on second-order (interface) problems
- key idea: discard integrals on $\partial \Omega$ when building reconstruction operator
- boundary-penalty term needs $O(1)$ coefficient
- Singular perturbation

$$
-\Delta u+\varepsilon \Delta^{2} u=f, \quad \varepsilon \geq 0
$$

- use local cutoff function $\sigma_{T}=\max \left(1, \varepsilon h_{T}^{-2}\right)$ to weigh stabilization terms
- method and analysis fully robust up to $\varepsilon=0$
- C^{0}-HHO: an extension of C^{0}-FEM!
- restrict to simplicial/quad/hex meshes
- local dofs related to the solution trace no longer needed

$$
\hat{U}_{T}:=\mathbb{P}^{k+2}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)
$$

- error analysis proceeds as above

Numerical results

Convergence rates

- Smooth solution $u(x, y)=\sin (\pi x)^{2} \sin (\pi y)^{2}$
- $\mathrm{HHO}(\mathrm{A}), k \in\{0,1,2,3\}$, rectangular and polygonal (Voronoi) meshes
- Left: H^{2}-seminorm, $O\left(h^{k+1}\right)$
- Right: L^{2}-norm, $O\left(h^{k+3}\right)$ for $k \geq 1$ and $O\left(h^{2}\right)$ for $k=0$

Computational times

- Time spent on reconstruction, stabilization and static condensation
- Comparison of $\mathrm{HHO}(\mathrm{A}), \mathrm{HHO}(\mathrm{B})$, and $\mathrm{HHO}(\mathrm{C})$ which uses reconstruction in stabilization
- $k \in\{0, \ldots, 5\}$, polygonal mesh with 16 k cells
- $\mathrm{HHO}(\mathrm{A})$ is the most efficient method

Comparison with DG

- $\mathrm{HHO}(\mathrm{A})$ and DG on polygonal mesh (16 k cells)
- $k \in\{0,1,2,3\}$ for $\mathrm{HHO}(\mathrm{A})$ and $\ell=k+2$ for DG
- Disclaimer: simple Matlab implementation, no optimization
- Some (preliminary) comments
- HHO leads to less dofs and lower assembling time than DG (cell dofs richer than face ones; numerical DG fluxes longer to evaluate)
- solving time smaller for DG for $k \leq 2$ and smaller for HHO if $k \geq 3$ (HHO stencil less compact than DG stencil)

Comparison with Morley, HCT and C^{0}-IPDG

- Triangular meshes, finest one has 32 k cells \& 49k edges
- All compared methods deliver same decay rate on H^{2}-error
- Morley FEM more efficient than $\mathrm{HHO}(k=0)$
- HCT FEM more efficient than $\mathrm{HHO}(k=1)$ if assembling time is considered, but not if solving time is considered
- $\mathrm{HHO}(k)$ more efficient than $C^{0}-\operatorname{IPDG}(k+2), k \in\{0,1\}$

Singular perturbation on curved domain

- Triangular mesh composed of 9.4 k cells, $k=1$
- From top to bottom: $\varepsilon=1, \varepsilon=10^{-3}, \varepsilon=0(!)$
- From left to right: solution, gradient, Hessian (reconstructed)

Error analysis with low regularity

Localizing normal traces

- Brief summary of [AE, Guermond 21 (FoCM \& Finite Elements, Chaps. 40-41)]
- Let $p>2$ and $q \in\left(\frac{2 d}{d+2}, 2\right]$
- There is $\rho \in(2, p]$ s.t. $q \geq \frac{\rho d}{\rho+d}$; let $\rho^{\prime} \in\left[p^{\prime}, 2\right)$ s.t. $\frac{1}{\rho}+\frac{1}{\rho^{\prime}}=1$

Localizing normal traces

- Brief summary of [AE, Guermond 21 (FoCM \& Finite Elements, Chaps. 40-41)]
- Let $p>2$ and $q \in\left(\frac{2 d}{d+2}, 2\right]$
- There is $\rho \in(2, p]$ s.t. $q \geq \frac{\rho d}{\rho+d}$; let $\rho^{\prime} \in\left[p^{\prime}, 2\right)$ s.t. $\frac{1}{\rho}+\frac{1}{\rho^{\prime}}=1$
- For all $T \in \mathcal{T}$ and all $F \in \mathcal{F}_{\partial T}$, consider

$$
L_{F}^{T}: W^{\frac{1}{\rho}, \rho^{\prime}}(F) \xrightarrow{\text { zero extension }} W^{\frac{1}{\rho}, \rho^{\prime}}(\partial T) \xrightarrow{\text { trace lifting }} W^{1, \rho^{\prime}}(T)
$$

Localizing normal traces

- Brief summary of [AE, Guermond 21 (FoCM \& Finite Elements, Chaps. 40-41)]
- Let $p>2$ and $q \in\left(\frac{2 d}{d+2}, 2\right]$
- There is $\rho \in(2, p]$ s.t. $q \geq \frac{\rho d}{\rho+d}$; let $\rho^{\prime} \in\left[p^{\prime}, 2\right)$ s.t. $\frac{1}{\rho}+\frac{1}{\rho^{\prime}}=1$
- For all $T \in \mathcal{T}$ and all $F \in \mathcal{F}_{\partial T}$, consider

$$
L_{F}^{T}: W^{\frac{1}{\rho}, \rho^{\prime}}(F) \xrightarrow{\text { zero extension }} W^{\frac{1}{\rho}, \rho^{\prime}}(\partial T) \xrightarrow{\text { trace lifting }} W^{1, \rho^{\prime}}(T)
$$

- Let $\sigma \in \mathbf{S}^{\mathrm{d}}(T):=\left\{\tau \in \mathbf{L}^{p}(T) ; \nabla \cdot \tau \in L^{q}(T)\right\}$ (${ }^{\mathrm{d}}$ stands for divergence)
- Define $\gamma_{T, F}^{\mathrm{d}}(\sigma) \in\left(W^{\frac{1}{\rho}, \rho^{\prime}}(F)\right)^{\prime}$ s.t. for all $\phi \in W^{\frac{1}{\rho}, \rho^{\prime}}(F)$,

$$
\left\langle\gamma_{T, F}^{\mathrm{d}}(\sigma), \phi\right\rangle_{F}:=\int_{T}\left\{\sigma \cdot \nabla L_{F}^{T}(\phi)+(\nabla \cdot \sigma) L_{F}^{T}(\phi)\right\}
$$

If σ is smooth, $\gamma_{T, F}^{\mathrm{d}}(\sigma)=\left.\left(\sigma \cdot \mathbf{n}_{T}\right)\right|_{F}$

Poisson problem with DG (1/2)

- Assume $u \in V_{\#}:=\left\{v \in H^{1+s}(\Omega) ; \Delta v \in L^{q}(\Omega)\right\}, s>0$
- For all $v \in V_{\sharp}, \nabla v \in \mathbf{H}^{s}(\Omega) \hookrightarrow \mathbf{L}^{p}(\Omega), p>2$; hence,

$$
\nabla v \in \mathbf{S}^{\mathrm{d}}(\Omega):=\left\{\sigma \in \mathbf{L}^{p}(\Omega) ; \nabla \cdot \sigma \in L^{q}(\Omega)\right\}
$$

Poisson problem with $D G(1 / 2)$

- Assume $u \in V_{\#}:=\left\{v \in H^{1+s}(\Omega) ; \Delta v \in L^{q}(\Omega)\right\}, s>0$
- For all $v \in V_{\sharp}, \nabla v \in \mathbf{H}^{s}(\Omega) \hookrightarrow \mathbf{L}^{p}(\Omega), p>2$; hence,

$$
\nabla v \in \mathbf{S}^{\mathrm{d}}(\Omega):=\left\{\sigma \in \mathbf{L}^{p}(\Omega) ; \nabla \cdot \sigma \in L^{q}(\Omega)\right\}
$$

- Bilinear form on $\left(V_{\#}+\mathbb{P}^{k}(\mathcal{T})\right) \times \mathbb{P}^{k}(\mathcal{T})$

$$
n_{\sharp}^{(2)}\left(v, w_{\mathcal{T}}\right):=\sum_{T \in \mathcal{T}} \sum_{F \in \mathcal{F}_{\partial T}}\left\langle\gamma_{T, F}^{\mathrm{d}}(\nabla v),\left.w_{T}\right|_{F}-\left\{w_{\mathcal{T}}\right\}_{F}\right\rangle_{F}
$$

Notice that $n_{\sharp}^{(2)}\left(v_{\mathcal{T}}, w_{\mathcal{T}}\right)=\sum_{F \in \mathcal{F}} \int_{F}\left\{\nabla v_{\mathcal{T}}\right\}_{F} \cdot \mathbf{n}_{F} \llbracket w_{\mathcal{T}} \rrbracket_{F}$ if $v_{\mathcal{T}} \in \mathbb{P}^{k}(\mathcal{T})$

Poisson problem with $D G(1 / 2)$

- Assume $u \in V_{\sharp}:=\left\{v \in H^{1+s}(\Omega) ; \Delta v \in L^{q}(\Omega)\right\}, s>0$
- For all $v \in V_{\sharp}, \nabla v \in \mathbf{H}^{s}(\Omega) \hookrightarrow \mathbf{L}^{p}(\Omega), p>2$; hence,

$$
\nabla v \in \mathbf{S}^{\mathrm{d}}(\Omega):=\left\{\sigma \in \mathbf{L}^{p}(\Omega) ; \nabla \cdot \sigma \in L^{q}(\Omega)\right\}
$$

- Bilinear form on $\left(V_{\sharp}+\mathbb{P}^{k}(\mathcal{T})\right) \times \mathbb{P}^{k}(\mathcal{T})$

$$
n_{\sharp}^{(2)}\left(v, w_{\mathcal{T}}\right):=\sum_{T \in \mathcal{T}} \sum_{F \in \mathscr{F}_{\partial T}}\left\langle\gamma_{T, F}^{\mathrm{d}}(\nabla v),\left.w_{T}\right|_{F}-\left\{w_{\mathcal{T}}\right\}_{F}\right\rangle_{F}
$$

Notice that $n_{\sharp}^{(2)}\left(v_{\mathcal{T}}, w_{\mathcal{T}}\right)=\sum_{F \in \mathcal{F}} \int_{F}\left\{\nabla v_{\mathcal{T}}\right\}_{F} \cdot \mathbf{n}_{F} \llbracket w_{\mathcal{T}} \rrbracket_{F}$ if $v_{\mathcal{T}} \in \mathbb{P}^{k}(\mathcal{T})$

- Using commuting mollification operators, one proves that for all $v \in V_{\sharp}$,

$$
n_{\sharp}^{(2)}\left(v, w_{\mathcal{T}}\right)=\sum_{T \in \mathcal{T}}\left(\nabla v, \nabla w_{T}\right)_{T}+\left(\Delta v, w_{T}\right)_{T}
$$

This property essentially appears as an assumption in the medius analysis [Gudi, 10]

Poisson problem with DG (2/2)

- Consider interior penalty DG (IPDG) [Arnold, 82]
- The key relation for consistency is

$$
\left(f, w_{\mathcal{T}}\right)_{\Omega}=\sum_{T \in \mathcal{T}}\left(-\Delta u, w_{T}\right)_{T}=\sum_{T \in \mathcal{T}}\left(\nabla u, \nabla w_{T}\right)_{T}-n_{\sharp}^{(2)}\left(u, w_{\mathcal{T}}\right)
$$

Poisson problem with DG (2/2)

- Consider interior penalty DG (IPDG) [Arnold, 82]
- The key relation for consistency is

$$
\left(f, w_{\mathcal{T}}\right)_{\Omega}=\sum_{T \in \mathcal{T}}\left(-\Delta u, w_{T}\right)_{T}=\sum_{T \in \mathcal{T}}\left(\nabla u, \nabla w_{T}\right)_{T}-n_{\sharp}^{(2)}\left(u, w_{\mathcal{T}}\right)
$$

- For IPDG, $a_{\mathcal{T}}^{\mathrm{DG}}\left(v_{\mathcal{T}}, w_{\mathcal{T}}\right)=\sum_{T \in \mathcal{T}}\left(\nabla v_{T}, \nabla w_{T}\right)_{T}-n_{\sharp}^{(2)}\left(v_{\mathcal{T}}, w_{\mathcal{T}}\right)+\mathrm{stb}$.

Poisson problem with DG (2/2)

- Consider interior penalty DG (IPDG) [Arnold, 82]
- The key relation for consistency is

$$
\left(f, w_{\mathcal{T}}\right)_{\Omega}=\sum_{T \in \mathcal{T}}\left(-\Delta u, w_{T}\right)_{T}=\sum_{T \in \mathcal{T}}\left(\nabla u, \nabla w_{T}\right)_{T}-n_{\sharp}^{(2)}\left(u, w_{\mathcal{T}}\right)
$$

- For IPDG, $a_{\mathcal{T}}^{\mathrm{DG}}\left(v_{\mathcal{T}}, w_{\mathcal{T}}\right)=\sum_{T \in \mathcal{T}}\left(\nabla v_{T}, \nabla w_{T}\right)_{T}-n_{\sharp}^{(2)}\left(v_{\mathcal{T}}, w_{\mathcal{T}}\right)+\mathrm{stb}$.
- Letting $\eta:=u-\Pi_{\mathcal{T}}^{k}(u)$, the consistency error is bounded as follows:

$$
\begin{aligned}
\chi\left(w_{\mathcal{T}}\right) & :=\left(f, w_{\mathcal{T}}\right)_{\Omega}-a_{\mathcal{T}}^{\mathrm{DG}}\left(\Pi_{\mathcal{T}}^{k}(u), w_{\mathcal{T}}\right) \\
& =\sum_{T \in \mathcal{T}}\left(\nabla \eta, \nabla w_{T}\right)_{T}-n_{\sharp}^{(2)}\left(\eta, w_{\mathcal{T}}\right)+\mathrm{stb} .
\end{aligned}
$$

Conclude with boundedness property $\left|n_{\sharp}^{(2)}\left(\eta, w_{\mathcal{T}}\right)\right| \lesssim\|\eta\|_{\sharp, \mathcal{T}}\left\|w_{\mathcal{T}}\right\|_{h}$

Adaptation to HHO

- Exploiting the face variable representing the trace, we define the following bilinear form on $\left(V_{\#}+\mathbb{P}^{k+1}(\mathcal{T})\right) \times \hat{U}_{h 0}$:

$$
\hat{n}_{\sharp}^{(2)}\left(v, \hat{w}_{h}\right):=\sum_{T \in \mathcal{T}} \sum_{F \in \mathcal{F}}\left\langle\gamma_{T, F}^{\mathrm{d}}(\nabla v),\left.w_{T}\right|_{F}-\left.w_{\partial T}\right|_{F}\right\rangle_{F}
$$

Adaptation to HHO

- Exploiting the face variable representing the trace, we define the following bilinear form on $\left(V_{\#}+\mathbb{P}^{k+1}(\mathcal{T})\right) \times \hat{U}_{h 0}$:

$$
\hat{n}_{\sharp}^{(2)}\left(v, \hat{w}_{h}\right):=\sum_{T \in \mathcal{T}} \sum_{F \in \mathcal{F}_{\partial T}}\left\langle\gamma_{T, F}^{\mathrm{d}}(\nabla v),\left.w_{T}\right|_{F}-\left.w_{\partial T}\right|_{F}\right\rangle_{F}
$$

- The first key relation is $\hat{n}_{\sharp}^{(2)}\left(v, \hat{w}_{h}\right)=n_{\sharp}^{(2)}\left(v, w_{\mathcal{T}}\right)$ for all $v \in V_{\sharp}$

Adaptation to HHO

- Exploiting the face variable representing the trace, we define the following bilinear form on $\left(V_{\sharp}+\mathbb{P}^{k+1}(\mathcal{T})\right) \times \hat{U}_{h 0}$:

$$
\hat{n}_{\sharp}^{(2)}\left(v, \hat{w}_{h}\right):=\sum_{T \in \mathcal{T}} \sum_{F \in \mathcal{F}_{\partial T}}\left\langle\gamma_{T, F}^{\mathrm{d}}(\nabla v),\left.w_{T}\right|_{F}-\left.w_{\partial T}\right|_{F}\right\rangle_{F}
$$

- The first key relation is $\hat{n}_{\sharp}^{(2)}\left(v, \hat{w}_{h}\right)=n_{\sharp}^{(2)}\left(v, w_{\mathcal{T}}\right)$ for all $v \in V_{\sharp}$
- The link to the reconstruction operator is as follows:

$$
\begin{aligned}
a_{h}\left(\hat{I}_{\mathcal{T}}(u), \hat{w}_{h}\right) & =\sum_{T \in \mathcal{T}}\left(\nabla J_{T}^{\mathrm{HHO}}(u), \nabla R_{T}\left(\hat{w}_{T}\right)\right)_{T}+\mathrm{stb} . \\
& =\sum_{T \in \mathcal{T}}\left(\nabla J_{T}^{\mathrm{HHO}}(u), \nabla w_{T}\right)_{T}-\hat{n}_{\sharp}^{(2)}\left(J_{\mathcal{T}}^{\mathrm{HHO}}(u), \hat{w}_{h}\right)+\mathrm{stb} .
\end{aligned}
$$

Adaptation to HHO

- Exploiting the face variable representing the trace, we define the following bilinear form on $\left(V_{\sharp}+\mathbb{P}^{k+1}(\mathcal{T})\right) \times \hat{U}_{h 0}$:

$$
\hat{n}_{\sharp}^{(2)}\left(v, \hat{w}_{h}\right):=\sum_{T \in \mathcal{T}} \sum_{F \in \mathcal{F}_{\partial T}}\left\langle\gamma_{T, F}^{\mathrm{d}}(\nabla v),\left.w_{T}\right|_{F}-\left.w_{\partial T}\right|_{F}\right\rangle_{F}
$$

- The first key relation is $\hat{n}_{\sharp}^{(2)}\left(v, \hat{w}_{h}\right)=n_{\sharp}^{(2)}\left(v, w_{\mathcal{T}}\right)$ for all $v \in V_{\sharp}$
- The link to the reconstruction operator is as follows:

$$
\begin{aligned}
a_{h}\left(\hat{I}_{\mathcal{T}}(u), \hat{w}_{h}\right) & =\sum_{T \in \mathcal{T}}\left(\nabla J_{T}^{\mathrm{HHO}}(u), \nabla R_{T}\left(\hat{w}_{T}\right)\right)_{T}+\mathrm{stb} . \\
& =\sum_{T \in \mathcal{T}}\left(\nabla J_{T}^{\mathrm{HHO}}(u), \nabla w_{T}\right)_{T}-\hat{n}_{\sharp}^{(2)}\left(J_{\mathcal{T}}^{\mathrm{HHO}}(u), \hat{w}_{h}\right)+\mathrm{stb} .
\end{aligned}
$$

- Letting $\eta:=u-J_{\mathcal{T}}^{\text {нно }}(u)$, we recover

$$
\chi\left(\hat{w}_{h}\right)=\sum_{T \in \mathcal{T}}\left(\nabla \eta, w_{T}\right)_{T}-\hat{n}_{\sharp}^{(2)}\left(\eta, \hat{w}_{h}\right)+\text { stb. }
$$

Biharmonic problem

- Above technique extends to IPDG/HHO for biharmonic problem
- The critical step is to give a meaning to $\partial_{n} \Delta v$ on mesh faces

Biharmonic problem

- Above technique extends to IPDG/HHO for biharmonic problem
- The critical step is to give a meaning to $\partial_{n} \Delta v$ on mesh faces
- If $u \in H^{3+s}(\Omega), s>0$, and $f \in L^{q}(\Omega), q \in\left(\frac{2 d}{2+d}, 2\right]$, then

$$
\sigma:=\nabla \Delta u \in \mathbf{S}^{\mathrm{d}}(\Omega)
$$

$\Longrightarrow \gamma_{T, F}^{\mathrm{d}}(\sigma)$ is well defined on all the mesh faces

C^{0}-methods with type II BC's (1/2)

- In this setting, we can lower the regularity even further

$$
u \in H^{2+s}(\Omega), s>0, \quad f \in H^{-1}(\Omega)
$$

With type II BC's, one has $\Delta u \in H_{0}^{1}(\Omega) \Longrightarrow \nabla \Delta u \in \mathbf{L}^{2}(\Omega)$!

C^{0}-methods with type II BC's (1/2)

- In this setting, we can lower the regularity even further

$$
u \in H^{2+s}(\Omega), s>0, \quad f \in H^{-1}(\Omega)
$$

With type II BC's, one has $\Delta u \in H_{0}^{1}(\Omega) \Longrightarrow \nabla \Delta u \in \mathbf{L}^{2}(\Omega)$!

- Let us set $V_{\#}:=\left\{v \in H^{2+s}(\Omega) ; \Delta v \in H_{0}^{1}(\Omega)\right\}$
- In C^{0}-HHO, the cell dofs are in $\mathbb{P}^{g, k}(\mathcal{T}):=\mathbb{P}^{k}(\mathcal{T}) \cap H_{0}^{1}(\Omega)$

C^{0}-methods with type II BC's (1/2)

- In this setting, we can lower the regularity even further

$$
u \in H^{2+s}(\Omega), s>0, \quad f \in H^{-1}(\Omega)
$$

With type II BC's, one has $\Delta u \in H_{0}^{1}(\Omega) \Longrightarrow \nabla \Delta u \in \mathbf{L}^{2}(\Omega)$!

- Let us set $V_{\#}:=\left\{v \in H^{2+s}(\Omega) ; \Delta v \in H_{0}^{1}(\Omega)\right\}$
- In C^{0}-HHO, the cell dofs are in $\mathbb{P}^{g}, k(\mathcal{T}):=\mathbb{P}^{k}(\mathcal{T}) \cap H_{0}^{1}(\Omega)$
- We consider on $\left(V_{\sharp} \times \mathbb{P}^{g}, k(\mathcal{T})\right) \times \mathbb{P}^{g}, k(\mathcal{T})$ the bilinear form

$$
n_{\sharp}^{(4)}\left(v, w_{\mathcal{T}}\right):=\sum_{T \in \mathcal{T}} \sum_{F \in \mathcal{F}_{\partial T}} \sum_{i \in\{1: d\}}\left\langle\gamma_{T, F}^{\mathrm{d}}\left(\nabla \partial_{i} v\right),\left.\mathbf{n}_{T, i}\left(\partial_{n} w_{T}-\mathbf{n}_{T} \cdot\left\{\nabla w_{\mathcal{T}}\right\}_{F}\right)\right|_{F}\right\rangle_{F}
$$

Notice that $\nabla \partial_{i} v \in \mathbf{S}^{\mathrm{d}}(\Omega)$ for all $i \in\{1: d\}$ (with $q=2$)

C^{0}-methods with type II BC's (2/2)

- The key relation for consistency in C^{0}-IPDG is

$$
\left\langle\Delta^{2} u, w_{\mathcal{T}}\right\rangle_{H^{-1}, H_{0}^{1}}=\sum_{T \in \mathcal{T}}\left(\nabla^{2} u, \nabla^{2} w_{T}\right)_{T}-n_{\sharp}^{(4)}\left(u, w_{\mathcal{T}}\right)
$$

C^{0}-methods with type II BC's (2/2)

- The key relation for consistency in C^{0}-IPDG is

$$
\left\langle\Delta^{2} u, w_{\mathcal{T}}\right\rangle_{H^{-1}, H_{0}^{1}}=\sum_{T \in \mathcal{T}}\left(\nabla^{2} u, \nabla^{2} w_{T}\right)_{T}-n_{\sharp}^{(4)}\left(u, w_{\mathcal{T}}\right)
$$

- For $C^{0}-\mathrm{HHO}$, one exploits the presence of the face variable representing the normal derivative by setting

$$
\hat{n}_{\sharp}^{(4)}\left(v, \hat{w}_{h}\right):=\sum_{i \in\{1: d\}} \sum_{T \in \mathcal{T}} \sum_{F \in \mathcal{F}_{\partial T}}\left\langle\gamma_{T, F}^{\mathrm{d}}\left(\nabla \partial_{i} v\right),\left.\mathbf{n}_{T, i}\left(\partial_{n} w_{T}-\chi_{\partial T}\right)\right|_{F}\right\rangle_{F}
$$

C^{0}-methods with type II BC's (2/2)

- The key relation for consistency in C^{0}-IPDG is

$$
\left\langle\Delta^{2} u, w_{\mathcal{T}}\right\rangle_{H^{-1}, H_{0}^{1}}=\sum_{T \in \mathcal{T}}\left(\nabla^{2} u, \nabla^{2} w_{T}\right)_{T}-n_{\sharp}^{(4)}\left(u, w_{\mathcal{T}}\right)
$$

- For $C^{0}-\mathrm{HHO}$, one exploits the presence of the face variable representing the normal derivative by setting

$$
\hat{n}_{\sharp}^{(4)}\left(v, \hat{w}_{h}\right):=\sum_{i \in\{1: d\}} \sum_{T \in \mathcal{T}} \sum_{F \in \mathcal{F}_{\partial T}}\left\langle\gamma_{T, F}^{\mathrm{d}}\left(\nabla \partial_{i} v\right),\left.\mathbf{n}_{T, i}\left(\partial_{n} w_{T}-\chi_{\partial T}\right)\right|_{F}\right\rangle_{F}
$$

- The link to the reconstruction operator is as follows:

$$
a_{h}\left(\hat{I}_{\mathcal{T}}(u), \hat{w}_{h}\right)=\sum_{T \in \mathcal{T}}\left(\nabla^{2} J_{T}^{\text {н̈O }}(u), \nabla^{2} w_{T}\right)_{T}-\hat{n}_{\sharp}^{(4)}\left(J_{\mathcal{T}}^{\text {н०० }}(u), \hat{w}_{h}\right)+\mathrm{stb} .
$$

Moreover,

$$
\left\langle\Delta^{2} u, w_{\mathcal{T}}\right\rangle_{H^{-1}, H_{0}^{1}}=\sum_{T \in \mathcal{T}}\left(\nabla^{2} u, \nabla^{2} w_{T}\right)_{T}-\hat{n}_{\sharp}^{(4)}\left(u, \hat{w}_{h}\right)
$$

Some references

- HHO
- [Di Pietro, AE, Lemaire 14 (CMAM); Di Pietro, AE 15 (CMAME)]
- HHO for biharmonic problem
- [Bonaldi et al. 18 (M2AN)]
- [Dong \& AE 21 (hal-03185683); 21 (M2AN)]
- Error analysis with low regularity [AE, Guermond 21 (FoCM)]

Some references

- HHO
- [Di Pietro, AE, Lemaire 14 (CMAM); Di Pietro, AE 15 (CMAME)]
- HHO for biharmonic problem
- [Bonaldi et al. 18 (M2AN)]
- [Dong \& AE 21 (hal-03185683); 21 (M2AN)]
- Error analysis with low regularity [AE, Guermond 21 (FoCM)]
- Recent Finite Element book(s) (Springer, TAM vols. 72-74, 2021)
with J.-L. Guermond, 83 chapters of $12 / 14$ pages plus about 500 exercises

Finite Elements I

Finite Elements II ancentresm Finite Elements III

Some references

- HHO
- [Di Pietro, AE, Lemaire 14 (CMAM); Di Pietro, AE 15 (CMAME)]
- HHO for biharmonic problem
- [Bonaldi et al. 18 (M2AN)]
- [Dong \& AE 21 (hal-03185683); 21 (M2AN)]
- Error analysis with low regularity [AE, Guermond 21 (FoCM)]
- Recent Finite Element book(s) (Springer, TAM vols. 72-74, 2021) with J.-L. Guermond, 83 chapters of $12 / 14$ pages plus about 500 exercises

Finite Elements I

Finite Elements II momenmanan

Finite Elements III

Thank you for your attention!

