Numerical examples

Final remarks

An adaptive splitting method for the Cox-Ingersoll-Ross process

Cónall Kelly¹ and Gabriel Lord²

¹University College Cork, Ireland.

²Radboud University, The Netherlands.

Irish Numerical Analysis Forum, Online Seminar, Feb 9, 2023

Outline

Introduction

Non-convergence of Euler-Maruyama Adaptive timestepping

- 2 The Cox-Ingersoll-Ross process
- 3 A splitting method
- 4 Numerical examples

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ④ < @ >

Introduction ••••••• •••	The Cox-Ingersoll-Ross process	A splitting method	Numerical examples	
NI	a of Euley Memory			

Outline

1 Introduction Non-convergence of Euler-Maruyama Adaptive timestepping

- (2)
- 3 A splitting method
- 4 Numerical examples

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Introduction 000000 00	The Cox-Ingersoll-Ross process	A splitting method	Numerical examples	Final remarks o
Non-convergence o	f Euler-Maruyama			

Motivating example

ODE with non-globally Lipschitz coefficient:

$$x'(t)=-x^3(t),\quad t\ge 0.$$

 $x(t) \equiv 0$ is globally asymptotically stable. Explicit Euler discretisation:

$$X_{n+1}=X_n-hX_n^3, \quad n\in\mathbb{N}.$$

• $X_n \equiv 0$ locally asy. stable: $x_0 \in \left(-\sqrt{2/h}, \sqrt{2/h}\right)$,

• $\left\{-\sqrt{2/h}, \sqrt{2/h}\right\}$ an unstable 2-cycle.

• $\lim_{\to\infty} |X_n| = \infty$ iff $X_0 \in \left(-\infty, -\sqrt{2/h}\right) \bigcup \left(\sqrt{2/h}, \infty\right);$

Scheme converges on [0, *T*] as *h* → 0, but new dynamics for fixed *h* > 0.

Introduction 000000 00	The Cox-Ingersoll-Ross process	A splitting method	Numerical examples	Final remarks o
Non-convergence o	f Euler-Maruyama			

Motivating example

ODE with non-globally Lipschitz coefficient:

$$x'(t)=-x^3(t),\quad t\ge 0.$$

 $x(t) \equiv 0$ is globally asymptotically stable. Explicit Euler discretisation:

$$X_{n+1}=X_n-hX_n^3, \quad n\in\mathbb{N}.$$

- $X_n \equiv 0$ locally asy. stable: $x_0 \in \left(-\sqrt{2/h}, \sqrt{2/h}\right)$,
- $\left\{-\sqrt{2/h}, \sqrt{2/h}\right\}$ an unstable 2-cycle.

•
$$\lim_{\to\infty} |X_n| = \infty$$
 iff $X_0 \in \left(-\infty, -\sqrt{2/h}\right) \bigcup \left(\sqrt{2/h}, \infty\right);$

Scheme converges on [0, *T*] as *h* → 0, but new dynamics for fixed *h* > 0.

Introduction 000000 00	The Cox-Ingersoll-Ross process	A splitting method	Numerical examples	Final remarks o
Non-convergence o	f Euler-Maruyama			

Motivating example

ODE with non-globally Lipschitz coefficient:

$$x'(t)=-x^3(t),\quad t\ge 0.$$

 $x(t) \equiv 0$ is globally asymptotically stable. Explicit Euler discretisation:

$$X_{n+1}=X_n-hX_n^3, \quad n\in\mathbb{N}.$$

- $X_n \equiv 0$ locally asy. stable: $x_0 \in \left(-\sqrt{2/h}, \sqrt{2/h}\right)$,
- $\left\{-\sqrt{2/h}, \sqrt{2/h}\right\}$ an unstable 2-cycle.

• $\lim_{\to\infty} |X_n| = \infty$ iff $X_0 \in \left(-\infty, -\sqrt{2/h}\right) \bigcup \left(\sqrt{2/h}, \infty\right);$

Scheme converges on [0, *T*] as *h* → 0, but new dynamics for fixed *h* > 0.

Introduction	The Cox-Ingersoll-Ross process	A splitting method	Numerical examples	Final remarks
000000 00				
Non-convergence	e of Euler-Maruyama			

Introducing a stochastic perturbation

Let *B* be a standard Brownian motion. The stochastic differential equation

$$dX(t) = -X(t)^3 + dB(t), \quad t \ge 0.$$

has Euler-Maruyama approximation

$$X_{n+1} = X_n - hX_n^3 + \underbrace{(B((n+1)h) - B(nh))}_{\mathcal{N}(0,h)}, n \in \mathbb{N}.$$

The perturbation may push trajectories out of the basin of attraction $\left(-\sqrt{2/h}, \sqrt{2/h}\right)$. Problem!

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction	The Cox-Ingersoll-Ross process	A splitting method	Numerical examples	Final remarks
000000 00				
Non-convergence	e of Euler-Maruyama			

Introducing a stochastic perturbation

Let *B* be a standard Brownian motion. The stochastic differential equation

$$dX(t) = -X(t)^3 + dB(t), \quad t \ge 0.$$

has Euler-Maruyama approximation

$$X_{n+1} = X_n - hX_n^3 + \underbrace{(B((n+1)h) - B(nh))}_{\mathcal{N}(0,h)}, \quad n \in \mathbb{N}.$$

The perturbation may push trajectories out of the basin of attraction $\left(-\sqrt{2/h}, \sqrt{2/h}\right)$. Problem!

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction 0000000 00	The Cox-Ingersoll-Ross process	A splitting method	Numerical examples	Final remarks o
Non-convergence of	Fuler-Maruvama			

Euler-Maruyama blows up asymptotically

On $[0,\infty)$, with fixed step size h > 0:

Mattingly, Stuart, Higham, 2002:

• Pathwise instability with positive probability:

 $\mathbb{P}[|X_n| \ge 2^n/\sqrt{h}, \text{ for all } n \in \mathbb{N}] > 0;$

• Second moment instability:

$$\lim_{n\to\infty}\mathbb{E}[|X_n|^2]=\infty.$$

Milstein & Tretyakov, 2005:

- Modified scheme: discard trajectories that leave a sufficiently large sphere;
- Weak convergence on [0, *T*] for non-globally Lipschitz coefficient equations.

Introduction	The Cox-Ingersoll-Ross process	A splitting method	Numerical examples	Final remarks O
Non-convergence o	f Fuler-Maruvama			

Euler-Maruyama blows up asymptotically

On $[0,\infty)$, with fixed step size h > 0:

Mattingly, Stuart, Higham, 2002:

• Pathwise instability with positive probability:

 $\mathbb{P}[|X_n| \ge 2^n/\sqrt{h}, \text{ for all } n \in \mathbb{N}] > 0;$

• Second moment instability:

$$\lim_{n\to\infty}\mathbb{E}[|X_n|^2]=\infty.$$

Milstein & Tretyakov, 2005:

- Modified scheme: discard trajectories that leave a sufficiently large sphere;
- Weak convergence on [0, *T*] for non-globally Lipschitz coefficient equations.

Introduction	The Cox-Ingersoll-Ross process	A splitting method	Numerical examples	Final remarks o
Non-convergence of	f Euler-Maruyama			

Weak and strong convergence

 $dX(t) = f(X(t))dt + g(X(t))dW(t), \quad t \ge 0.$

Euler-Maruyama approximation:

$$X_{n+1}=X_n+hf(X_n)+g(X_n)(W_{(n+1)h}-W_{nh}), \quad n\in N.$$

• Weak convergence with order γ if there exists $C \in \mathbb{R}$ such that

$$\|\mathbb{E}[ar{p}(X(\mathcal{T}))] - \mathbb{E}[ar{p}(X_{\mathcal{N}})]\| \leq Ch^{\gamma}$$

for any sufficiently smooth \bar{p} .

Strong convergence at time *T* with order β in L_p if there exists p ∈ [1,∞) and constants C_p, β > 0 such that

$$\left(\mathbb{E}\left[\|X(T)-X_N\|^p\right]\right)^{1/p} \leq C_p h^{\beta}.$$

Introduction	The Cox-Ingersoll-Ross process	A splitting method	Numerical examples	Final remar
Non-convergence	e of Euler-Maruvama			

Euler-Maruyama does not converge

On [0, T], with decreasing step size h = T/N:

$$dX(t) = f(X(t))dt + g(X(t))dW(t), \quad t \ge 0.$$

Euler-Maruyama approximation:

$$X_{n+1}=X_n+hf(X_n)+g(X_n)(W_{(n+1)h}-W_{nh}), \quad n\in N.$$

If either f or g

- are not globally Lipschitz continuous;
- and satisfy a polynomial growth condition,

No weak or strong-convergence (Hutzenthaler, Jentzen, Kloeden, 2011):

Introduction ○○○○○●○ ○○	The Cox-Ingersoll-Ross process	A splitting method	Numerical examples	Final remarks O
Maria a succession and a				

Non-convergence of Euler-Maruyama

Euler-Maruyama does not converge

On [0, T], with decreasing step size h = T/N:

$$dX(t) = f(X(t))dt + g(X(t))dW(t), \quad t \ge 0.$$

Euler-Maruyama approximation:

$$X_{n+1}=X_n+hf(X_n)+g(X_n)(W_{(n+1)h}-W_{nh}), \quad n\in N.$$

If either f or g

- are not globally Lipschitz continuous;
- and satisfy a polynomial growth condition,

No weak or strong-convergence (Hutzenthaler, Jentzen, Kloeden, 2011):

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Non-convergence of Euler-Maruyama

References

J. C. Mattingly, A. M. Stuart, and D. J. Higham Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stochastic Process. Appl., 101 (2002), pp. 185–232.
G. N. Milstein and M. N. Tretyakov Numerical integration of stochastic differential equations with non globally Lipschitz coefficients. SIAM J. Numer. Anal., 43 (2005), pp. 1139–1154.
M. Hutzenthaler, A. Jentzen, and P. E. Kloeden Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients.

Proc. R. Soc. A, **467**:2130 (2011), pp. 1563–1576.

Adaptive timestepping

Non-convergence of Euler-Maruyama Adaptive timestepping

- 2 The Cox-Ingersoll-Ross process
- **3** A splitting method
- 4 Numerical examples

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	The Cox-Ingersoll-Ross process	A splitting method	Numerical examples	Final remarks
0000000 00				
Adaptive timeste	epping			

Example: control stability via local dynamics

Explicit Euler-Maruyama for $dX(t) = -X(t)^3 + dB(t)$:

$$X_{n+1} = X_n - hX_n^3 + \Delta W_{n+1}, \quad n \in \mathbb{N}.$$

Unperturbed equation: basin of attraction $(-\sqrt{2/h}, \sqrt{2/h})$.

Strategy: when trajectory escapes the basin of attraction, increase it by choosing *h* sufficiently small.

Suggests

$$h_{n+1} = \frac{c}{2|X_n|^2}, \quad c \in (0,1).$$

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction	The Cox-Ingersoll-Ross process	A splitting method	Numerical examples	Final remarks
0000000 00				
Adaptive timeste	epping			

Example: control stability via local dynamics

Explicit Euler-Maruyama for $dX(t) = -X(t)^3 + dB(t)$:

$$X_{n+1} = X_n - hX_n^3 + \Delta W_{n+1}, \quad n \in \mathbb{N}.$$

Unperturbed equation: basin of attraction $(-\sqrt{2/h}, \sqrt{2/h})$.

Strategy: when trajectory escapes the basin of attraction, increase it by choosing *h* sufficiently small.

Suggests

$$h_{n+1} = rac{c}{2|X_n|^2}, \quad c \in (0,1).$$

(日) (日) (日) (日) (日) (日) (日) (日)

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

A square-root diffusion SDE

Cox, Ingersoll, and Ross, 1985

Linear drift and square-root diffusion:

 $dX(t) = \kappa \left(\theta - X(t)\right) dt + \sigma \sqrt{X(t)} dW(t), \ t \in [0, T].$

- Long run mean: $\theta > 0$;
- Speed of reversion: $\kappa > 0$;
- Stochastic intensity: $\sigma > 0$;
- Solutions a.s. nonnegative.

Theorem (Feller's condition)

Solutions are a.s. positive when $X(0) = X_0 > 0$ and

$$2\kappa\theta \geq \sigma^2$$
.

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

A square-root diffusion SDE

Cox, Ingersoll, and Ross, 1985

Linear drift and square-root diffusion:

 $dX(t) = \kappa \left(\theta - X(t)\right) dt + \sigma \sqrt{X(t)} dW(t), \ t \in [0, T].$

- Long run mean: $\theta > 0$;
- Speed of reversion: $\kappa > 0$;
- Stochastic intensity: $\sigma > 0$;
- Solutions a.s. nonnegative.

Theorem (Feller's condition)

Solutions are a.s. positive when $X(0) = X_0 > 0$ and

 $2\kappa\theta \ge \sigma^2$.

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Final remarks

Why discretise the CIR model?

Applications in finance:

- Feller condition: interest rate modelling;
- Outside Feller condition: stochastic volatility modelling;

Exact sampling difficult:

- No analytic solution available in terms of W;
- X(t)|X(s), 0 ≤ s < t: non-central chi-square distribution;
- Exact sampling for Monte Carlo estimation possible if *W* is uncorrelated, but numerically inefficient;
- Stochastic volatility models (e.g. Heston) use CIR in a vector SDE system with correlated noises.

The challenge for strong numerical approximation:

• Diffusion coefficeint $\sigma \sqrt{X}$: non-Lipschitz, even locally.

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Final remarks

Why discretise the CIR model?

Applications in finance:

- Feller condition: interest rate modelling;
- Outside Feller condition: stochastic volatility modelling;

Exact sampling difficult:

- No analytic solution available in terms of *W*;
- X(t)|X(s), 0 ≤ s < t: non-central chi-square distribution;
- Exact sampling for Monte Carlo estimation possible if *W* is uncorrelated, but numerically inefficient;
- Stochastic volatility models (e.g. Heston) use CIR in a vector SDE system with correlated noises.

The challenge for strong numerical approximation:

• Diffusion coefficeint $\sigma \sqrt{X}$: non-Lipschitz, even locally.

Introduction
00

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Why discretise the CIR model?

Applications in finance:

- Feller condition: interest rate modelling;
- Outside Feller condition: stochastic volatility modelling;

Exact sampling difficult:

- No analytic solution available in terms of *W*;
- X(t)|X(s), 0 ≤ s < t: non-central chi-square distribution;
- Exact sampling for Monte Carlo estimation possible if *W* is uncorrelated, but numerically inefficient;
- Stochastic volatility models (e.g. Heston) use CIR in a vector SDE system with correlated noises.

The challenge for strong numerical approximation:

• Diffusion coefficeint $\sigma\sqrt{X}$: non-Lipschitz, even locally.

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

The Heston stochastic volatility model

The spot price of an asset satisfies

$$dS(t) = rS(t)dt + \sqrt{V(t)}S(t)(\sqrt{1-\rho^2}dW^{(1)}(t) + \rho dW^{(2)}(t)),$$

with volatility process

$$dV(t) = \lambda V(t)(\mu - V(t))dt + \sigma \sqrt{V(t)}dW^{(2)}(t).$$

- $f(v) = \lambda \mu v \lambda v^2$, $g(v) = b\sigma v^{1/2}$: non-Lipschitz;
- Explicit Euler-Maruyama method does not converge (strongly/weakly);
- Strong convergence required for multi-level Monte Carlo approximation of ℝ [Λ(S)].

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Final remarks

The Heston stochastic volatility model

The spot price of an asset satisfies

$$dS(t) = rS(t)dt + \sqrt{V(t)}S(t)(\sqrt{1-\rho^2}dW^{(1)}(t) + \rho dW^{(2)}(t)),$$

with volatility process

$$dV(t) = \lambda V(t)(\mu - V(t))dt + \sigma \sqrt{V(t)}dW^{(2)}(t).$$

- $f(\mathbf{v}) = \lambda \mu \mathbf{v} \lambda \mathbf{v}^2$, $g(\mathbf{v}) = b\sigma \mathbf{v}^{1/2}$: non-Lipschitz;
- Explicit Euler-Maruyama method does not converge (strongly/weakly);
- Strong convergence required for multi-level Monte Carlo approximation of E [Λ(S)].

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Sources of error

Estimate value of derivative with payoff Λ_T written on *S* with risk-free rate *r* via Monte Carlo approximation of

$$\mathbb{E}_{\mathbb{Q}}\left[e^{-\int_{0}^{t}r(s)ds}\Lambda_{T}
ight]$$

The overall error associated with a sample size of M is

Sampling error + Numerical approximation error.

- Sampling error depends on *M* (and is $O(1/\sqrt{M})$);
- Numerical approximation error depends on *N*. Order of strong/weak convergence.
- Variance reduction (e.g. MLMC) may require strong convergence.

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Sources of error

Estimate value of derivative with payoff Λ_T written on *S* with risk-free rate *r* via Monte Carlo approximation of

$$\mathbb{E}_{\mathbb{Q}}\left[e^{-\int_{0}^{t}r(s)ds}\Lambda_{T}
ight]$$

The overall error associated with a sample size of *M* is

Sampling error + Numerical approximation error.

- Sampling error depends on *M* (and is $O(1/\sqrt{M})$);
- Numerical approximation error depends on *N*. Order of strong/weak convergence.
- Variance reduction (e.g. MLMC) may require strong convergence.

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

(日) (日) (日) (日) (日) (日) (日) (日)

Final remarks

Approach 1: Direct approximation of CIR

Fully truncated Euler method

 $\widetilde{X}_{n+1} = \widetilde{X}_n + h\kappa(\theta - \max\{\widetilde{X}_n, 0\}) + \sigma \sqrt{\max\{\widetilde{X}_n, 0\}} \Delta W_{n+1}$ $X_{n+1} = \max\{\widetilde{X}_{n+1}, 0\}.$

- Maintains non-negativity by truncating at zero.
- Widely used in practice.
- Lord, Koekkoek, and Van Dijk (2010): Strong *L*₁ convergence, no rate.
- Cozma & Reisinger (2020): Strong L_p convergence, rate 1/2 when

$$2\kappa\theta > 3\sigma^2$$
 for $2 \le p < \frac{2\kappa\theta}{\sigma^2} - 1$

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Final remarks

Approach 1: Direct approximation of CIR

Fully truncated Euler method

$$\begin{aligned} \widetilde{X}_{n+1} &= \widetilde{X}_n + h\kappa(\theta - \max\{\widetilde{X}_n, 0\}) + \sigma \sqrt{\max\{\widetilde{X}_n, 0\}} \Delta W_{n+1} \\ X_{n+1} &= \max\{\widetilde{X}_{n+1}, 0\}. \end{aligned}$$

- Maintains non-negativity by truncating at zero.
- Widely used in practice.
- Lord, Koekkoek, and Van Dijk (2010): Strong *L*₁ convergence, no rate.
- Cozma & Reisinger (2020): Strong L_p convergence, rate 1/2 when

$$2\kappa heta > 3\sigma^2$$
 for $2 \le p < rac{2\kappa heta}{\sigma^2} - 1$

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Approach 2: Approximation of transformed CIR Drift-implicit square-root Euler method

$$dX(t) = \kappa \left(heta - X(t)
ight) dt + \sigma \sqrt{X(t)} dW(t), \ t \in [0, T].$$

• Apply the transform $Y = \sqrt{X}$ to get

$$dY(t) = \left(\frac{\alpha}{Y(t)} + \beta Y(t)\right) dt + \gamma dW_t, \ t \in [0, T],$$

where $\alpha = (4\kappa\theta - \sigma^2)/8$, $\beta = (-4\kappa/8)$, $\gamma = \sigma/2$.

Drift f(y) = α/y + βy is not globally Lipschitz continuous. Satisfies a one-sided Lipschitz condition:

$$\langle f(x) - f(y), x - y \rangle \leq C |x - y|^2$$
, for all $x, y \in \mathbb{R}^+$.

• Diffusion $g(y) = \gamma$ is constant.

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

(日) (日) (日) (日) (日) (日) (日) (日)

Final remarks

Approach 2: Approximation of transformed CIR Drift-implicit square-root Euler method

$$dX(t) = \kappa \left(heta - X(t)
ight) dt + \sigma \sqrt{X(t)} dW(t), \ t \in [0, T].$$

• Apply the transform $Y = \sqrt{X}$ to get

$$dY(t) = \left(\frac{\alpha}{Y(t)} + \beta Y(t)\right) dt + \gamma dW_t, \ t \in [0, T],$$

where $\alpha = (4\kappa\theta - \sigma^2)/8$, $\beta = (-4\kappa/8)$, $\gamma = \sigma/2$.

Drift f(y) = α/y + βy is not globally Lipschitz continuous. Satisfies a one-sided Lipschitz condition:

$$\langle f(x) - f(y), x - y \rangle \leq C |x - y|^2$$
, for all $x, y \in \mathbb{R}^+$

• Diffusion $g(y) = \gamma$ is constant.

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Final remarks

Approach 2: Approximation of transformed CIR Drift-implicit square-root Euler method

With a uniform step size h > 0,

$$Y_{k+1} = Y_k + \left(\frac{\alpha}{Y_{k+1}} + \beta Y_{k+1}\right)h + \gamma \triangle W_{k+1}, \quad k \in \mathbb{N}$$

has unique positive solution

$$Y_{k+1} = \frac{Y_k + \gamma \bigtriangleup W_{n+1}}{2(1-\beta h)} + \sqrt{\frac{(Y_k + \gamma \bigtriangleup W_{n+1})^2}{4(1-\beta h)^2}} + \frac{\alpha h}{1-\beta h}, \quad k \in \mathbb{N}.$$

• Initial value $Y_0 = \sqrt{X(0)}$;

• Invert transform: $X_k = Y_k^2$;

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Final remarks

Approach 2: Approximation of transformed CIR Drift-implicit square-root Euler method

With a uniform step size h > 0,

$$Y_{k+1} = Y_k + \left(\frac{\alpha}{Y_{k+1}} + \beta Y_{k+1}\right)h + \gamma \triangle W_{k+1}, \quad k \in \mathbb{N}$$

has unique positive solution

$$Y_{k+1} = \frac{Y_k + \gamma \bigtriangleup W_{n+1}}{2(1-\beta h)} + \sqrt{\frac{(Y_k + \gamma \bigtriangleup W_{n+1})^2}{4(1-\beta h)^2} + \frac{\alpha h}{1-\beta h}}, \quad k \in \mathbb{N}.$$

• Initial value
$$Y_0 = \sqrt{X(0)};$$

• Invert transform: $X_k = Y_k^2$;

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Approach 2: Approximation of transformed CIR

Drift-implicit square-root Euler method

Theorem

Let $2\kappa\lambda > \sigma^2$. For all

$$1 \leq p < rac{4\kappa\lambda}{3\sigma^2}$$

there exists a constant $K_p > 0$ such that

$$\left(\mathbb{E}\left[\max_{t\in[0,T]}|X(t)-\widetilde{X}_t|^p\right]\right)^{1/p}\leq K_p\cdot h$$

where \widetilde{X}_t is continuous-time extension of X_k .

- \mathcal{L}_2 -convergence if $2\kappa\lambda > 3\sigma^2$;
- Alphonsi (2005, 2013);
- See also Dereich Neuenkirch and Storifch (501)

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Approach 2: Approximation of transformed CIR

Drift-implicit square-root Euler method

Theorem

Let $2\kappa\lambda > \sigma^2$. For all

$$1 \le p < rac{4\kappa\lambda}{3\sigma^2}$$

there exists a constant $K_p > 0$ such that

$$\left(\mathbb{E}\left[\max_{t\in[0,T]}|X(t)-\widetilde{X}_t|^p\right]\right)^{1/p}\leq K_p\cdot h$$

where \widetilde{X}_t is continuous-time extension of X_k .

- \mathcal{L}_2 -convergence if $2\kappa\lambda > 3\sigma^2$;
- Alphonsi (2005, 2013);
- See also Dereich, Neuenkirch, and Szpruch (2012)

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Approach 2: Approximation of transformed CIR Projected square-root Euler method

$$Y_{n+1} = \hat{Y}_n + \left(\frac{\alpha}{\hat{Y}_n} - \beta \hat{Y}_n\right)h + \gamma \Delta W_{n+1};$$

$$\hat{Y}_n = \max\left\{h^{1/4}, Y_n\right\}$$

Explicit scheme. Small values projected back up.

- $\kappa\theta > 5\sigma^2/2$: L_1 convergence of order 1;
- $\kappa\theta > 3\sigma^2/2$: L_1 convergence of order 1/2;
- $\kappa\theta > \sigma^2$: L_1 convergence of order

$$\max\left\{\frac{1}{6}, \frac{1}{2} - \frac{\sigma^2}{2\kappa\theta + \sigma^2}\right\}.$$

Chassagneux, Jacquier, and Mihaylov (2016).

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Approach 2: Approximation of transformed CIR Projected square-root Euler method

$$Y_{n+1} = \hat{Y}_n + \left(\frac{\alpha}{\hat{Y}_n} - \beta \hat{Y}_n\right)h + \gamma \Delta W_{n+1};$$

$$\hat{Y}_n = \max\left\{h^{1/4}, Y_n\right\}$$

Explicit scheme. Small values projected back up.

- $\kappa\theta > 5\sigma^2/2$: L_1 convergence of order 1;
- $\kappa\theta > 3\sigma^2/2$: L_1 convergence of order 1/2;
- $\kappa\theta > \sigma^2$: L_1 convergence of order

$$\max\left\{\frac{1}{6},\frac{1}{2}-\frac{\sigma^2}{2\kappa\theta+\sigma^2}\right\}.$$

• Chassagneux, Jacquier, and Mihaylov (2016).

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Approach 3: Truncated Milstein-type methods Hefter & Hurzwurm (2018)

$$R_{1} = \max\left\{\sigma\sqrt{\Delta t}/2, \sqrt{\max\{\sigma^{2}\Delta t/4, X_{n}\} + \frac{\sigma}{2}\Delta W_{n+1}}\right\}$$
$$X_{n+1} = \max\left\{R_{1}^{2} + \Delta t(\kappa\theta - \frac{\sigma^{2}}{4} - \kappa X_{2}), 0\right\}$$

• Lp-convergence across all parameter values with rate

$$\min\left\{\frac{1}{2p},\frac{2\kappa\theta}{p\sigma^2}\right\}-\varepsilon.$$

- For p = 2, this gives rate (any fixed $\varepsilon > 0$)
 - $1/4 \varepsilon$ when $\kappa \theta \ge 4\sigma^2$.
 - $\kappa\theta/\sigma^2 \varepsilon$ when $\kappa\theta < 4\sigma^2$.

・ロト・四ト・ヨト・ヨト・日・ つへぐ

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Some schemes with known convergence rates

Scheme	Norm	Parameter Range	Rate
Truncated Milstein (2018)	Lp	no restriction	$rac{1}{2p}\wedgerac{2\kappa heta}{p\sigma^2}-\epsilon$
Drift Implicit Square-Root Euler (2013)	$p \in [1,rac{L_p}{3\sigma^2})$	$\kappa heta > (1 \lor rac{3}{4} p) \sigma^2$	1
Projected Euler (2016)	L ₁	$ \begin{aligned} \kappa\theta &> \frac{5}{2}\sigma^2 \\ \kappa\theta &> \frac{3}{2}\sigma^2 \\ \kappa\theta &> \sigma^2 \end{aligned} $	$\frac{1}{\frac{1}{2}} \frac{1}{\frac{1}{2}} \sqrt{\left(\frac{1}{2} - \frac{\sigma^2}{2\kappa\theta + \sigma^2}\right)}$
Fully Truncated (2020)	$p \in [2, \frac{L_p}{\sigma^2} - 1)$	$\kappa heta > rac{3}{2}\sigma^2$	1/2
Symmetrized Milstein (2018)	L_{ρ} $\rho \ge 1$	$\kappa heta>rac{3}{2}\sigma^2(2[pee 2]+1)$	1

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Introduction
00

References

A. Alfonsi,

Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process.

Statistics and Probability Letters, 83, pp. 602-607, 2013.

J-F. Chassagneux, A. Jacquier, and I. Mihaylov,

An explicit Euler scheme with strong rate of convergence for financial SDEs with non-Lipschitz coefficients.

SIAM J. Financial Math. 7(1), pp. 993–1021, 2016

A. Cozma and C. Reisinger,

Strong order 1/2 convergence of full truncation Euler approximations to the Cox-Ingersoll-Ross process.

IMA J. Numer. Anal. 40(1), pp. 358–376, 2020.

S. Dereich, A. Neuenkirch, and L. Szpruch,

An Euler-Type Method for The Strong Approximation of The Cox-Ingersoll-Ross Process.

Prof. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 468(2140), pp. 1105-1115, 2011.

R. Lord, R. Koekkoek, and D. van Dijk,

A comparison of biased simulation schemes for stochastic volatility models, Quant. Finance, 10(2), pp. 177–194, 2010.

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Construction of a splitting method The transformed SDE

$$dY(t) = \left(\frac{\alpha}{Y(t)} - \beta Y(t)\right) dt + \gamma dW(t), \quad t \in [t_n, t_{n+1}].$$

has variation of constants form

$$Y(t) = e^{-\beta(t-t_n)}Y(t_n) + \int_{t_n}^t e^{-\beta(t-s)} \frac{\alpha}{Y(s)} ds + \gamma \int_{t_n}^t e^{-\beta(t-s)} dW(s),$$

The integral equation

$$z(t) = z(t_n) + \int_{t_n}^t \frac{\alpha}{z(s)} ds, \quad t \in [t_n, t_{n+1}],$$

has solution

$$Z(t) = \sqrt{Z(t_n)^2 + 2\alpha(t - t_n)}, \quad t \in [t_n, t_{n+1}].$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Final remarks

Construction of a splitting method The transformed SDE

$$dY(t) = \left(\frac{\alpha}{Y(t)} - \beta Y(t)\right) dt + \gamma dW(t), \quad t \in [t_n, t_{n+1}].$$

has variation of constants form

$$Y(t) = e^{-\beta(t-t_n)} Y(t_n) + \int_{t_n}^t e^{-\beta(t-s)} \frac{\alpha}{Y(s)} ds + \gamma \int_{t_n}^t e^{-\beta(t-s)} dW(s),$$

The integral equation

$$z(t) = z(t_n) + \int_{t_n}^t \frac{\alpha}{z(s)} ds, \quad t \in [t_n, t_{n+1}],$$

has solution

$$z(t) = \sqrt{z(t_n)^2 + 2\alpha(t-t_n)}, \quad t \in [t_n, t_{n+1}].$$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

э.

Our method is equivalent to the Lie-Trotter composition of the exact flows of the following subequations

$$dY^{[1]}(t) = \alpha \left(Y^{[1]}(t)\right)^{-1} dt, \quad Y^{[1]}(0) = Y_0^{[1]}$$

$$dY^{[2]}(t) = \gamma dW(t), \quad Y^{[2]}(0) = Y_0^{[2]};$$

$$dY^{[3]}(t) = -\beta Y^{[3]}(t) dt, \quad Y^{[3]}(0) = Y_0^{[3]}.$$

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Construction of the splitting method

We propose the splitting approximation for *Y*:

$$Y_{n+1} = e^{-\beta \Delta t_{n+1}} \left(\sqrt{(Y_n)^2 + 2\alpha \Delta t_{n+1}} + \gamma \Delta W_{n+1} \right)$$

The CIR approximation preserves a.s. non-negativity:

$$X_{n+1} = (Y_{n+1})^2.$$

Can this method work outside the Feller region?

- The SDE for Y fails at Y = 0: soft zero.
- If $\alpha < 0$ (i.e. $4\kappa\theta < \sigma^2$) then must adapt the stepsize:

$$\Delta t_n < \frac{Y_n^2}{2|\alpha|}.$$

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Final remarks

Construction of the splitting method

We propose the splitting approximation for *Y*:

$$Y_{n+1} = e^{-\beta \Delta t_{n+1}} \left(\sqrt{(Y_n)^2 + 2\alpha \Delta t_{n+1}} + \gamma \Delta W_{n+1} \right)$$

The CIR approximation preserves a.s. non-negativity:

$$X_{n+1} = (Y_{n+1})^2.$$

Can this method work outside the Feller region?

- The SDE for Y fails at Y = 0: soft zero.
- If $\alpha < 0$ (i.e. $4\kappa\theta < \sigma^2$) then must adapt the stepsize:

$$\Delta t_n < \frac{\mathbf{Y}_n^2}{\mathbf{2}|\alpha|}.$$

Introduction
00

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

(ロ) (同) (三) (三) (三) (○) (○)

Final remarks

Adaptivity in the mesh

- Consider a mesh $\{0 =: t_0, t_1, \dots, t_N := T\} \subset [0, T].$
- Set $\Delta t_{n+1} := t_{n+1} t_n$.
- (*F*_t)_{t≥0}, the natural filtration of *W*, can be extended to any *F*_t-stopping time *τ* by

$$\mathcal{F}_{\tau} := \{ \boldsymbol{B} \in \mathcal{F} : \boldsymbol{B} \cap \{ \tau \leq t \} \in \mathcal{F}_t \}.$$

If each *t_n* is an *F_t*-stopping time, this allows us to condition on *F_{t_n}* at any point on the random time-set {*t_n*}_{*n*∈ℕ}.

We need

- Δt_{n+1} to be \mathcal{F}_{t_n} -measurable and $N < \infty$ a.s.
- Maximum stepsize Δt_{max} . No minimum stepsize.

Introduction
00

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Adaptivity in the mesh

- Consider a mesh $\{0 =: t_0, t_1, \dots, t_N := T\} \subset [0, T].$
- Set $\Delta t_{n+1} := t_{n+1} t_n$.
- (*F*_t)_{t≥0}, the natural filtration of *W*, can be extended to any *F*_t-stopping time *τ* by

$$\mathcal{F}_{\tau} := \{ \boldsymbol{B} \in \mathcal{F} : \boldsymbol{B} \cap \{ \tau \leq t \} \in \mathcal{F}_t \}.$$

If each *t_n* is an *F_t*-stopping time, this allows us to condition on *F_{t_n}* at any point on the random time-set {*t_n*}_{*n*∈ℕ}.

We need

- Δt_{n+1} to be \mathcal{F}_{t_n} -measurable and $N < \infty$ a.s.
- Maximum stepsize Δt_{max} . No minimum stepsize.

Strong convergence

Suppose $\kappa\theta > \sigma^2$ so that Feller's condition ($2\kappa\theta > \sigma^2$) holds.

On adaptive mesh we can prove successively:

- Uniform moment bound for scheme interpolant;
- 2 Strong bound in L_1 for error of cns extension of scheme;
- **3** Strong convergence in L_2 for linear interpolant of error.

Definition (Error interpolant)

$$E_n := X(t_n) - X_n$$
, and define $(\mathcal{E}^2(t))_{t \in [0,T]}$ pathwise as

$$\mathcal{E}^2(s) := rac{t_{n+1}-s}{\Delta t_{n+1}} E_n^2 + rac{s-t_n}{\Delta t_{n+1}} E_{n+1}^2, \quad s \in [t_n, t_{n+1}], \quad a.s.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	The Cox-Ingersoll-Ross process	A splitting method	Numerical examples	Final remarks o

Strong convergence

Suppose $\kappa\theta > \sigma^2$ so that Feller's condition ($2\kappa\theta > \sigma^2$) holds.

On adaptive mesh we can prove successively:

Uniform moment bound for scheme interpolant;

- 2 Strong bound in L_1 for error of cns extension of scheme;
- **3** Strong convergence in L_2 for linear interpolant of error.

Definition (Error interpolant)

$$E_n := X(t_n) - X_n$$
, and define $(\mathcal{E}^2(t))_{t \in [0,T]}$ pathwise as

$$\mathcal{E}^2(s) := rac{t_{n+1}-s}{\Delta t_{n+1}} E_n^2 + rac{s-t_n}{\Delta t_{n+1}} E_{n+1}^2, \quad s \in [t_n, t_{n+1}], \quad a.s.$$

Introduction
00

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Main result on strong convergence

Theorem

Suppose $\kappa \theta > \sigma^2$ and $\{t_0, t_1, \dots, t_N\}$ are selected so that

$$\max_{n} \Delta t_{n} \leq \Delta t_{max} < \min\left\{1, \frac{1}{\kappa}, \frac{1}{4\kappa|1-\kappa|+\theta\kappa^{2}}\right\}.$$

Then there exists a constant $C < \infty$ such that

$$\max_{t\in[0,T]}\mathbb{E}[\mathcal{E}^2(t)]\leq C\Delta t_{max}^{1/2}.$$

Order 1/4 strong L₂-convergence over a uniform mesh.
Can reduce *C* if we choose (e.g.)

$$\Delta t_{n+1} = \frac{\Delta t_{\max}}{1 + 3 \exp(-150X_n)}.$$

Introduction
00

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Main result on strong convergence

Theorem

Suppose $\kappa \theta > \sigma^2$ and $\{t_0, t_1, \dots, t_N\}$ are selected so that

$$\max_{n} \Delta t_{n} \leq \Delta t_{max} < \min\left\{1, \frac{1}{\kappa}, \frac{1}{4\kappa|1-\kappa|+\theta\kappa^{2}}\right\}.$$

Then there exists a constant $C < \infty$ such that

$$\max_{t\in[0,T]}\mathbb{E}[\mathcal{E}^2(t)]\leq C\Delta t_{max}^{1/2}.$$

- Order 1/4 strong L_2 -convergence over a uniform mesh.
- Can reduce C if we choose (e.g.)

$$\Delta t_{n+1} = \frac{\Delta t_{\max}}{1 + 3 \exp(-150X_n)}.$$

Extension of scheme outside Feller's region

When
$$X_n < X_{\text{zero}}$$
, use splitting scheme with $\Delta t_{n+1} = \min\left\{0.95 \frac{X_n}{2|\alpha|}, \Delta t_{\max}\right\}.$

(

2 When $X_n < X_{zero}$ switch off noise: $u'(t) = \kappa(\theta - u(t))$ has solution

$$u(t) = e^{-\kappa(t-t_n)}u(t_n) + \theta\left(1 - e^{-\kappa(t-t_n)}\right), \quad t \geq t_n.$$

3 Set
$$X_{ ext{zero}} := rac{1}{2} u(t_n + \Delta t_{ ext{max}})|_{u(t_n)=0}$$
, so $X_{ ext{zero}} := heta(1 - e^{-\kappa \Delta t_{ ext{max}}})/2.$

4 When $X_n < X_{zero}$ we use the timestep

$$\Delta t_{n+1} = -\frac{1}{\kappa} \log \left(\frac{X_{\text{zero}} - \theta}{X_n - \theta} \right)$$

Then turn noise back on. Local error is preserved. Then turn noise back on.

Extension of scheme outside Feller's region

• When
$$X_n < X_{\text{zero}}$$
, use splitting scheme with $\Delta t_{n+1} = \min\left\{0.95 \frac{X_n}{2|\alpha|}, \Delta t_{\max}\right\}.$

2 When $X_n < X_{\text{zero}}$ switch off noise: $u'(t) = \kappa(\theta - u(t))$ has solution

$$u(t) = e^{-\kappa(t-t_n)}u(t_n) + \theta\left(1-e^{-\kappa(t-t_n)}\right), \quad t \geq t_n.$$

3 Set $X_{\text{zero}} := \frac{1}{2}u(t_n + \Delta t_{\max})|_{u(t_n)=0}$, so

$$X_{
m zero} := heta(1 - e^{-\kappa\Delta t_{
m max}})/2$$

As $\Delta t_{\text{max}} \rightarrow 0$, $X_{\text{zero}} \rightarrow 0$.

4 When $X_n < X_{\text{zero}}$ we use the timestep

$$\Delta t_{n+1} = -\frac{1}{\kappa} \log \left(\frac{X_{\text{zero}} - \theta}{X_n - \theta} \right)$$

Then turn noise back on. Local error is preserved. Then turn noise back on.

Extension of scheme outside Feller's region

When
$$X_n < X_{\text{zero}}$$
, use splitting scheme with $\Delta t_{n+1} = \min\left\{0.95 \frac{X_n}{2|\alpha|}, \Delta t_{\max}\right\}.$

(

2 When $X_n < X_{\text{zero}}$ switch off noise: $u'(t) = \kappa(\theta - u(t))$ has solution

$$u(t) = e^{-\kappa(t-t_n)}u(t_n) + \theta\left(1-e^{-\kappa(t-t_n)}\right), \quad t \geq t_n.$$

(3) Set
$$X_{\text{zero}} := \frac{1}{2}u(t_n + \Delta t_{\max})|_{u(t_n)=0}$$
, so
 $X_{\text{zero}} := \theta(1 - e^{-\kappa\Delta t_{\max}})/2.$

As $\Delta t_{\text{max}} \rightarrow 0$, $X_{\text{zero}} \rightarrow 0$.

4 When $X_n < X_{zero}$ we use the timestep

$$\Delta t_{n+1} = -\frac{1}{\kappa} \log \left(\frac{X_{\text{zero}} - \theta}{X_n - \theta} \right)$$

so that $X_{n+1} = X_{zero}$.

5 Then turn noise back on. Local error is preserved.

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

A numerical comparison of methods

We compare the numerical performance of the adaptive splitting method to

- Truncated Milstein
- Fully truncated
- Drift-implicit square-root Euler
- Projected square-root Euler

outside of the limits of our strong convergence theorem.

Truncated Milstein known to converge strongly across all parameter values: will be used as the reference solution.

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Key σ values when $\kappa = 2, \theta = 0.02$

Description	σ	Value
Projected Euler limit rate 1/2		
Limit of theory for	$\sigma = \sqrt{2\kappa\theta/3}$	pprox 0.1633
Truncated Euler (rate $1/2$)		
Limit of theory for:		
- Splitting (rate 1/4, $p = 1, 2$)		0.2
- Drift Implicit (rate 1, $p < 2$)	$o = \sqrt{\kappa \sigma}$	0.2
- Projected Euler (rate $1/6$, $p = 1$)		
Feller boundary	$\sigma = \sqrt{2\kappa\theta}$	pprox 0.2828
$\alpha \leq 0.$		
Adaptivity/Soft-Zero	$\sigma \geq 2\sqrt{\kappa heta}$	0.4
required for splitting method		

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Sample paths and adaptive steps: fine mesh

 $\kappa = 2, \, \theta = 0.02, \, \sigma = 0.8, \, \Delta t_{max} = 10^{-5}$

(a) Sample paths

(b) Adaptive timesteps

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Sample paths and adaptive steps: coarse mesh

 $\kappa = 2, \theta = 0.02, \sigma = 0.8, \Delta t_{max} = 10^{-2}$

(a) Sample paths

(b) Adaptive timesteps

・ロット (雪) (日) (日) (日)

SAC

0.8

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Decay in rates of convergence as σ increases $\kappa = 2, \theta = 0.02, \sigma \in [0, 1]$. 20 groups of M = 50 samples. Feller ends at $\sigma \approx 0.28$. $\alpha < 0$ when $\sigma > 0.4$.

(a) L_1 error

The Cox-Ingersoll-Ross process

A splitting method

Numerical examples

Final remarks

Convergence plots for L_1 and L_2 strong error

 $\kappa = 2, \theta = 0.02, \sigma = 0.3, M = 1000.$

(a) L_1 error

(b) L₂ error

900

	The Cox-Ingersoll-Ross process	A splitting method	Numerical examples	Final remarks
0000000 00				•

CK and G. J. Lord, *An adaptive splitting method for the Cox-Ingersoll-Ross process*, Applied Numerical Mathematics **186** (2023), pp. 252–273.

- We propose a numerical method for CIR based upon
 - a square-root transformation;
 - variation of constants solution of the linear drift part;
 - exact solution of the nonlinear drift part.
- Strong *L*_{1,2}-convergence can be shown for small noise;
- Error constants can be reduced by use of an adaptive mesh.
- Large noise case: extend by use of a (different) adaptive mesh and the introduction of a "soft zero" region to capture deterministic dynamics close to zero.
- Numerical results competitive in large noise case, theoretical results needed.