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Ireland — second homeland for me
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SOME OPENING THOUGHTS

TECHNOLOGY
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A few years ago........

...l was thinking:

. Is numerical mathematics nearly finished?

. Do we see any new research directions, or is all research just an
“epsilon improvement” of existing theories?

. Of course, much research was still carried out on interesting topics

. We worked on model order reduction, the solution of
indefinite linear systems and mimetic methods, with some
new ideas; nice research, but not revolutionary (probably
more evolutionary)

. Also, new application areas required adaptation of existing
methods, and sometimes entirely new techniques

. Computational Science and Engineering meant working in
interdisciplinary teams for mathematicians, adding a new
dimension
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But then.......

1. High Performance Computing started
(again) to become important, and in fact
inevitable due to the ending of Moore’s Law

e Numerical methods needed to be made
parallelizable
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* ICCG, for example, shows a very bad
performance on current supercomputers
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But then.......

1. High Performance Computing started
(again) to become important, and in fact
inevitable due to the ending of Moore’s Law

e Numerical methods needed to be made
parallelizable

* ICCG, for example, shows a very bad
performance on current supercomputers

* Hence, for the solution of sparse linear systems,
entirely new methods need to be developed

REVOLUTIONARY NEW IDEAS NEEDED!
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Mathematical method development for HPC

Mathematical method development
must be distinguished from
software and hardware

Mathware researchers must
engage in discussions with
software and hardware colleagues
to achieve optimal results

Hardware Example: ease transformations
between 16, 32 and 64 bit
representations (using FPGA?)
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But then.......

1. High Performance Computing started
(again) to become important, and in fact
inevitable due to the ending of Moore’s Law

2. Data Science emerged as a discipline, and mathematics
quickly became part of the curriculum at
universities
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exploration (locating the data),
extraction (how to get it),

transform (clean and filter data)
storage (Big Data)

transport (getting it to the right person)
usage (analysis, actions, etc.)
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But then.......

1. High Performance Computing started
(again) to become important, and in fact
inevitable due to the ending of Moore’s Law

2. Data Science emerged as a discipline, and
quickly became part of the curriculum at
universities

* Itis an emerging discipline on the crossroads of
multiple existing disciplines

e David Donohue (Stanford): “50 years of Data
Science”

REVOLUTIONARY NEW IDEAS NEEDED!

mathematics
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But then.......

1. High Performance Computing started
(again) to become important, and in fact
inevitable due to the ending of Moore’s Law

2. Data Science emerged as a discipline, and
quickly became part of the curriculum at
universities

3. Artificial Intelligence became extremely
popular, with techniques for deep learning,
in combination with big data

MANY NEW CHALLENGES AHEAD!
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Quoting Karen Willcox (Oden,
Texas)

“It is such an exciting time to be a
computational scientist. The field is in
the midst of a tremendous convergence
of technologies that generate
unprecedented system data and enable
automation, algorithms that let users
process massive amounts of data and
run predictive simulations that drive key
decisions, and the computing power that
makes these algorithms feasible at scale
for complex systems and in real-time or
in situ settings.”
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We will concentrate on the third
topic:

Combining methods from the fields
of Computational Science and
Engineering (CSE) and Artificial
Intelligence (Al)
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ARTIFICIAL INTELLIGENCE, MACHINE LEARNING AND
NEURAL NETWORKS
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Artificial Intelligence (Al)

* The origins of Al can be traced
back to the desire to build thinking
machines, or electronic brains.

* In 1958, Frank Rosenblatt created
the first artificial neuron that could
learn by iteratively strengthening
the weights of the most relevant
inputs and decreasing others to
achieve a desired output.
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Brain-inspired Al

20

Computation in brains and the creation of intelligent 4 v\
systems have been studied in a symbiotic fashion for .9

many decades. ﬁ‘I‘P’ﬁ
Europe has become a hotspot of brain-inspired \". ‘:/
computing research, the progress being accelerated

by the FET flagship “Human Brain Project”. Human Brain Project

In technology roadmaps, brain-inspired computing is commonly seen as a
future key enabler for Al on the edge.

Researchers at INRIA have presented an interdisciplinary approach towards
transferring neuroscientific findings to new models of Al. Quoting them:
“Major algorithms from artificial intelligence (Al) lack higher cognitive
functions such as problem solving and reasoning.”

Mathematics: key enabling technology for scientific machine learning TU/e



Machine Learning (ML)

21

The discipline of machine learning is often conflated
with the general field of Al, but machine learning
specifically is concerned with the question of how to
develop algorithms and program computers to
automatically recognise complex patterns and make
intelligent decisions based on data.

It involves probability theory, logic, combinatorial
optimization, statistics, reinforcement learning and
control theory.

Applications are ubiquitous, ranging from vision to
language processing, forecasting, pattern recognition,
games, data mining, expert systems and robotics.

Mathematics: key enabling technology for scientific machine learning
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History of Machine Learning

* Arthur Samuels popularized the term
“machine learning” in 1959; he built a
checkers-playing program alongside
efforts to understand the
computational principles underlying
human learning, in the developing field
of neural networks.

* Inthe ‘90s, statistical Al emerged,
formulating machine learning problems
in terms of probability measures.

* Since then, the emphasis has vacillated
between statistical and probabilistic
learning and progressively more
competitive neural network
approaches.
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Breakthrough in Machine Learning

23

The breakthrough work by Krizhevsky, Sutskever &
Hinton in 2012 has been a catalyst for Al research.
They used a deep neural network trained
exhaustively on GPUs.

Similar advances were then quickly reported for
speech recognition and later for machine
translation and natural language processing.
Companies like Google, Microsoft and Baidu
established large machine learning groups.

Since then, with the combination of big data and
big computers, rapid advances have been
reported, including the use of machine learning for
self-driving cars, and consumer-grade real-time
speech-to-speech translation.

Mathematics: key enabling technology for scientific machine learning
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MACHINE LEARNING
TRANSFORMING OUR WORLD

:2 Google Al Blog

The latest news from Google Al

Tackling Climate Change with Machine Learning

David Rolnick!”,
Kris Sankaran®7,
Anna Waldman-Brown'?
S. Karthik Mukkavilli®

Priya L. Donti?, Lynn H. Kaack®, Kelly Kochanski?, Alexandre Lucuxle .

Anerw Slavin Ross”, Nikola Milojevic-Dupont’” i . Natasha Jaqu
Alexandra Luccioni®?, Tegan Maharaj®®, Evan D. Sherwin?,
. Konrad P. Kording', Carla Gomes'?, Andrew Y. Ng'*,

Using Machine Learning to “Nowcast” Precipitation in High

h Demis Hassabis'?, John C. Platt'®, Felix Creutzig'®'!, Jennifer Chayes'”, Yoshua Bengio®” Resolution
pommy ! University of Pennsylv: ?Camegie Mellon University, *ETH Ziirich, *University of Colorado Boulder, Monday, January 13, 2020
~ Element Al ®Mila, "Université de Montréal, *Ecole Polytechnique de éal, “Harvard University, . i -
= '9Mercator Research Institute on Global Commons and Climate Change, **Technische Universitiit Berlin, Posted by Jason Hickey, Senior Software Enginet on
o '?Massachusetts Institute of Technology. '*Comell University, ' *Stanford University.
57 15DeepMind, *“Google AL '"Microsoft Rescarch The weather can affect a person’s daily routine in both mundane and serious ways, and the
v precision of forecasting can strongly influence how they deal with it. Weather predictions can
inform people about whether they should take a different route to work, if they should reschedule
Sy the picnic planned for the weekend, or even if they need to evacuate their homes due to an
: Abstract approaching storm. But making accurate weather predictions can be particularly challenging for
=y Climate change is one of the g hall facing ity, and we, as machine learning ex- localized storms or events that evolve on hourly timescales, such as thunderstorms
2, perts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in
reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids In “Machine Learning for Precipitation Nowcasting from Radar Images,” we are presenting new
Lo to ster management. we identify high impact problems Whﬂt existing gaps can be filled by m-lchmc research into the development of machine learning models for precipitation forecasting that
= learning, in collaboration with other fields. Our 2 h ques- addresses this challenge by making highly localized “physics-free” predictions that apply to the
P tions a8 well a5 ¢ by We call on the machine | Ic"mmg CanEnuEily S0 Jn immediate future. A significant advantage of machine learning is that inference is computationally
—t the global effort .Q..nn\l climate Lh.\nl.c
S cheap given an already-trained model, allowing forecasts that are nearly instantaneous and in the
) native high resolution of the input data. This precipitation nowcasting, which focuses on 0-6 hour
-~ forecasts, can generate forecasts that have a 1km resolution with a total latency of just 5-10
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Criticism is growing...

 The much-glorified deep learning approaches all rely on the availability
of massive amounts of data, often needing millions of correctly labelled
examples.

 Many domains, however, including some important areas such as
health care, will never have such massive labelled datasets.

e Similarly, robots cannot be trained for millions of trials, simply because
they wear out long before.

* The question is thus how to learn more with less. Here, statistics and
prior knowledge will likely play a big role.
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Criticism is growing...

There are serious limitations to current methods, as
well as to our understanding of the success of machine
learning techniques such as deep neural networks.

Professor Robbert Dijkgraaf* compares machine
learning with 16t century alchemy, based on an
accumulation of tricks topped with a good shot of
credulity rather than on a systematic analysis.

He also quotes Ali Rahimi, a well-known researcher at

GOOgle, who last year accused the su bJECt artificial  *: rormer president of Dutch Royal Academy of Sciences,
intelligence Of magical thinking former director of Princeton Institute of Advanced Studies,

since a few months our new minister for Science and Education
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Criticism is growing...

The New York Times [12] goes even further, claiming that today’s Al needs to do
something completely different:

* “We need to stop building computer systems that merely get better and better at
detecting statistical patterns in data sets — often using an approach as deep
learning — and start building computer systems that from the moment of their
assembly innately grasp three basic concepts: time, space and causality. Today’s
Al systems know surprisingly little about any of these concepts..... Few people

working in Al are even trying to build such background assumptions into their
machines.”
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Criticism is growing...

KEYWORDS: CHRISTOPHER MIMS

Some experts in Al think its name fuels confusion and hype of the sort that led to past ‘Al
winters’ of disappointment

By
il
N =
E ‘EIEI-:\ EQEQ h 2E f IE-EII :\

July 31,202112:00 am ET

A funny thing happens among engineers and researchers who build artificial intelligence
once they attain a deep level of expertise in their field. Some of them=—especially those

who understand what actual, biological intelligences are capable of—conclude that
there’s nothing “intelligent” about Al at all.

Wall Street Journal, August 4, 2021
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Deep Neural Nets are shortsighted

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4%  Indian elephant 71.1%  tabby cat 63.9%  Indian elephant
10.3% indri 17.3% grey fox 26.4% indri

8.2% black swan 3.3% Siamese cat 9.6% black swan

ImageNet-trained CNNs are biased towards texture; increasing
shape bias improves accuracy and robustness, Geirhos et al. 2019




Deep Neural Nets are shortsighted

+.007 x
. sign(Val(0,2,9))  ign(v,1(0,2,9))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Explaining and Harnessing Adversarial Examples, Goodfellow et al. 2014

Deep Nets are too sensitive to local information.
Why? Because convolution is a local operation.

=> Use Topology to capture global characteristic

32



They look similar locally,

but apparently different if we zoom out
c.f. Manifolds are locally all Euclidean space and homology distinguishes the global topology of them.




Human is good at DL is good at

Rough estimation Precise observation
Panoramic view <:>

Discovering rules/invariance

Memorising/imitating examples

Processing huge data

from a small number of * Accurate operation
examples Deep Learning
* Explaining the reason )

Topologlcal Data Analysis } Data-driven
(TDA)

Maths-based
global

local

Background

* DL achieves high performance but has some weakness

* TDA has succeeded in capturing data features that
conventional techniques have missed



Conclusion on Al and machine learning

There is a lot of work ahead for mathematicians in the areas of artificial intelligence,
machine learning and artificial neural networks (ANN)

Understanding why methods work or do not work
Understand the actions of the neurons (new ones?)

Understanding on what grounds Al systems take decisions

How

In image recognition, use is made of the pixels; mathematics can provide much better methods

to select a good set of training data

Using less data and prior knowledge

Reducing the size and density of neural networks

Predicting the topology of ANN

35

Mathematics: key enabling technology for scientific machine learning

TU/e



HYBRID METHODS: COMBINING CSE AND Al
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Using Al within CSE

Electro-

In recent years, researchers in the magnetic
field of Computational Science and
Engineering realized that they could
benefit from Al methods.

Much more accurate models and
simulations, needed for example in
the creation of Digital Twins, require
much more detailed models and
coupled simulations.

Neural networks can be used for
accurate models of parameters

37  Mathematics: key enabling technology for scientific machine learning




Going back in time: semiconductor device simulation

e Every year new models are
constructed for mobility (and
recombination), based upon many
simulations and measurements,

J_Tf' - then using physical insight and

Jp = curve-fitting

on - * Engineers and phycisists
ot provided their neural networks
Op Why not use artificial neural

ot networks, based upon the

abundantly available measurement
and simulation data?
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Problem in this context

39

Mathematicians derived conditions that mobility models must satisfy
Peter Markowich proved that a monotonicity condition, with respect to
the quasi-Fermilevel gradients, must hold

Once the engineers at Philips presented a model that did not satisfy
this condition; simulations failed at some point. They then corrected
the model, satisfying the mathematical constraint

Obviously, models generated with neural networks should also satisfy
the constraint

How can we achieve this???

Mathematics: key enabling technology for scientific machine learning TU/e
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“The future needs
Computational Science
and Engineering,
blending data driven and
physics-based
perspectives”

Karen Willcox, director Oden
Institute for Computational

Fneineering and Sciences
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Physics Informed Neural Networks (PINNs)

Partial Differential Equation

-

Neural Network - " | am not sure that

- —————

loss functions are the
way to go, it leads to
many problems

| prefer methods
where physical
properties are hard-

Neumann bc equilibrium K coded into the
- i//' ----------------------- -7 network

‘. Dirichlet bc
N~ 0

(George Karniadakis, Brown University, USA)
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Combining physics based and data-based science

and engineering

Combining the best out of two worlds

Physical Models Data Driven Models

Data Reliance

i
2 | e
RAISE

Fidelity & Limited to data and model
Robustness complexity

Physics agnostics
surrogate

Interpretability

Yolume of Relevant Dala
I
I
I
I
I
I
I
I
-
I
I
|
I
I
I
|
|

‘%ﬁ"' -

Knowledge -bazed | Simulation Model Adaptability & B el

LRI consuming setup

- —
Physical / Knowledge Base - i c
Tools & Data g;ta is USP; software is
Figure 3: The two “orthogi oaches of Modelling and Simulation and Machine Learning methods

based on Data-Driven moaers complement each other. MSODE targets the interface of the two.
Courtesy Dirk Hartmann, Siemens
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“People who wish to
analyse nature
without using
mathematics must
settle for a reduced
understanding."
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USA is front runner

SCIENCE

BASIC RESEARCH NEEDS FOR RICK STEVENS
Scientific Machine Learning

Core Technologies for Artificial Intelligence

4 KATHERINE YELICK
DAVID BROWN
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Workshop Lorentz Center (Leiden), November 1-5, 2021

* “Computational mathematics and machine
learning”’

* Keynote speakers:
* George Karniadakis
e WeinankE
e Petros Koumoutsakos
e (Carola Schonlieb
e Stéphanie Allasonniere
 Karen Willcox
e Stephan Wojtowytsch
* Paris Perdikaris
* Erik Bekkers
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Booklet presented during Lorentz workshop

https://platformwiskunde.nl/wp-
content/uploads/2021/11/Math KET SciML.pdf

MATHEMATICS:

KEY ENABLING TECHNOLOGY
FOR SCIENTIFIC MACHINE
LEARNING
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JEURAL NETWORKS

A
:
el

UNRAVELLING-N

with structure-preserving computing
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Combining physics based and data-based science
and engineering

* We aim at using so-called
mimetic methods, i.e.

sclencs & Bierg methods that preserve
properties of the
underlying system

* How to develop mimetic
neural networks or mimetic

machine learning methods

Siscs & Eogread iR At sanei is an open challenge

*  Such methods may need
(much) less data, i.e. also
work in case of “little data”
rather than “big data”
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PREDICTION

BEYOND
TRAINING DATA

STRUCTURE-PRESERVING
NEURAL NETWORKS

REQUIRE STABLE

LESS DATA AND ROBUST

PAGE
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ANALYSIS

dynamic constrained
DESIGN neural networks neural networks

machine learning machine learning
for complex fluid flow for N-body simulation

APPLICATIONS

ZQGE Mathematics: key enabling technology for scientific machine learning TU/e



EXAMPLE 1: DYNAMIC NEURAL NETWORKS
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Neural networks are often static, and use the following neuron
activation functions

- sigmoid - RelLU

R(z2) =max(0, z).

10 -10 -5 0o 5 10



For dynamic
situations (ODE,
PDE, DAE), often

recurrent neural
networks are
suggested

input layer

Recurrent network

hidden layers

output layer



Input to neuron 7 in layer k:

_ —Ni_1 dy; k-1
sik = Y27 (wz'jk’yj,k—l + Vi

Solve in neuron:

d?y;. dyj. \
Tk + 17 + i = F(sips O

At Philips
Research,
we
developed
truly
dynamic
neural
networks



Dynamic neural networks

* We were able to show that there is a 1-1 relation to state space

models of the form
dx(t)

dt
y(t) = Cx(t) + Du(t).

= Ax(t) + Bu(t),

 Using this relation, the topology of the network can be defined (using
the MOESP algorithm):

Number of hidden layers related to multiplicity of eigenvalues of A

Number of neurons related to number of complex eigenvalues

Real eigenvalue = neuron with 15t order ODE

Complex eigenvalue(s) = neuron with 2" order ODE

Methodology involves SVD, QR, Bartels-Stewart _algorithm, solving Sylvester equations

Mathematics: key enabling technology for scientific machine
learning
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Dynamic neural network idea

Input to neuron ¢ in layer k:

. Nk—l dy jk—1
sik = 0 (wz‘jkyj,k—l + i ) — O

Solve in neuron:

d
Y dtz Tk oy TRy = F (i Oin)

Input Layer Layer

layer no. 1 no. 2
Mimetic numerical methods % 3i?$éi§?:n
Lecture 22 2 WUPPERTAL




The action of the first (hidden) layer in the network can be summarized
as

Toa"'(t) + Tya'(t) + x(t) = Wu(t) + V' (t) - 0,
where 717, 15 are diagonal matrices.
The MOESP algorithm results in a system of the form
'(t) = Ax(t) + Bu(t),

y(t) = Ca(t) + Du(?).

Hence, we need to find Z such that Z-1.42Z = 7 is block diagonal (I1x1
and 2 x 2).

— _ o BERGISCHE
Imetic numerical metnods UNIVERSITAT
Lecture 22 WUPPERTAL




For the construction of Z, consider the real Schur decomposition of A:

ol A0 =R,
where
Ri1 Riz2 -+ Rig
R — Roo R.2q
Rqq

The matrices R;; are either 1 x 1 or 2 x 2 blocks, depending on whether
or not the corresponding eigenvalue is complex.
The Bartels-Stewart algorithm can be used to find Y such that

y_lRy =7 =diag (R11,R22, ...,qu) .
Hence, we find the desired result:

ylo-laoy=T.

M' t' . | th d BERGISCHE
imetic numerical methods UNIVERSITAT
Lecture 22

WUPPERTAL



Having found Z such that Z-1.4Z = 7 is block diagonal, we can translate
the MOESP linear system into a neural network.

' (t) = Az(t) + Bu(t)
On multiplying by £2-1:
27 () = 27 Az (t) + 271 Bu(t).
Transform to new variable z = 2~ 1z

() = Tzt) + 2 1Bu(t).
e 1 x 1 block: 1 neuron, first order ODE

e 2 x 2 block: 1 neuron, second order ODE

g q g BERGISCHE
Mimetic numerical methods % AT
Lecture 22 “= WUPPERTAL




2nd order linear system. Dimension parameter i’ was set to 10

The dimension parameter '’ was set to 175

Mimetic numerical methods
Lecture 22
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Potential of dynamic neural networks
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We were able to predict the topology of dynamic neural networks (#
hidden layers, # neurons per layer) by establishing a 1-1
correspondence with state space models

This correspondence also opens up the way to methods for model
order reduction of neural networks, translating MOR concepts for state
space models

We are currently also investigating “pruning of neural networks”, which
is related to model order reduction

Neuron action in these dynamic neural networks can be viewed as so-
called high pass or low pass filters in electronics, implying that we are
using electronic concepts for the construction of the networks
mimicking true behaviour
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Equivariant Deep Learning via PDEs

Remco Duits (joint work with Bart Smets & Erik Bekkers & Jim Portegies)
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Current image analysis methods fall short

Costly user-input to correct
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Original Problem

PDE-based geometric learning
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New Dimensions

(&(), y(t))

Mathematics: key enabling technology for scientific machine learning




Merge geometry and machine learning

Geometric Image Analysis Deep Learning

Limited performance High performance

Limited scope Wide scope

Hand-crafting Automatic

Geometric Interpretation by PDEs No geometric interpretation
Low computational load High computational load
Few parameters Too many parameters

Little training-data Huge training-data

s
s
.
+
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Geometric PDE-Based neural networks

Reduce neural network by Learn geometry by PDEs to
employing symmetry improve classification
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Equivariant Deep Learning via PDEs

* An exciting area of research, improving the performance of
convolutional neural networks (CNN) with geometric concepts, leading
to the so-called G-CNN networks

 Remco Duits has obtained a very prestigious NWO Vici grant (2.5
MEuro) to carry out this research

* For more information: https://www.win.tue.nl/~rduits/
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Conclusion
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These are exciting times for researchers in the mathematical sciences,
with the advent of high-performance computing, data science and
artificial intelligence

Combining “traditional” methods in Computational Science and
Engineering with methods from Artificial Intelligence, Machine Learning
and Neural Networks is the way forward to increase accuracy of
models, as required by e.g. Digital Twinning

Using prior knowledge will be key to improve the performance of

neural networks
* Increased accuracy, less data, more robustness
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Conclusion

* Expertise from numerical linear algebra and model order reduction can
be used to “prune’” neural networks: reducing them in size, and
improving the sparsity

 Mathematics may aid in predicting the topology of neural networks,
avoiding the currently employed guesswork

 The mathematical sciences are indispensable in the new
multidisciplinary field of scientific machine learning, combining model-
and data-based methods

Real intelligence is needed to (you may quote

me on this)

make artificial intelligence work
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