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1. Motivation
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Deterministic Hamiltonian systems )]
Consider deterministic Hamiltonian problems of the form (Hamilton 1834):

, 0H . 0H
Pk——@(P»q)’ qk_a—pk(p,q), for k=1,...,d.

This system of differential equations describes the motion of a mechanical
system with coordinates ¢; and momenta py. Here p = p(t) = (p1,..., pa)".

Examples: Molecular dynamics, motion of planets, mechanical systems, etc.

Remark: The Hamiltonian

Hp,q) = %pr +V(g)

is the total energy of the problem (kinetic energy plus potential energy).



Deterministic Hamiltonian systems (II)
Recall: Hamiltonian systems:
: 0H . 0H
=——(p,q), =—(pq), for k=1,...,d
Pk aqk(P Q)  qr PR (p,q)

with given initial values p (%) = Pinit, 9 (t0) = Ginit-

Property: The total energy H(p, q) is an invariant:
d _ 0H . oH o
EH(P(I), q®) = E(P(I), q()p(t) + ﬁ(p(t),q(t))q(t) =0
= H(p(1),q(1)) = Constant = H(pinit, Ginit)

along the exact solution. O

Question: Design and analysis of energy-preserving numer. schemes for
ODEs?

Answers 1996—: Brugnano, Celledoni, C., Gonzalez, Hairer, Iavernaro,
McLachlan, McLaren, Miyatake, Owren, Quispel, Robidoux, Sato, Sun,
Trigiante, Wang, Wu, Zhang, etc.



Deterministic Hamiltonian systems (III)

Recall: Hamiltonian system:
. 0H . 0H
=———(p,q), =—(p,q), for k=1,...,d.
Pe==5 @ qe=5- (P

with given initial values p (%) = Pinit, 9 (t0) = Ginit-

Property: The flow ¢ (pinit, Ginit) := (P(Z, o, Pinit, Ginit), G (£, o, Pinit, Ginit)) of
the above problem is symplectic (Poincaré 1899):

O\ W Ip.y =] forall y=(pq),

-Id 0

Question: Design and analysis of symplectic numerical schemes?

where ] = ( 0 Id).

Answers 1956—: Bochev, de Vogelaere, Feng Kang, Hairer, Lasagni, Reich,
Ruth, Sanz-Serna, Scovel, Suris, etc.



Deterministic Hamiltonian systems av)

The mathematical pendulum has H(p, q) = % p2 —cos(qg) and the Hamiltonian

p=-sin(q), q=p.

@ Book: Hairer, Wanner, Lubich, Geometric Numerical Integration 2006



Symplectic integrators
For ODE y(1) = f(y(1)), y(0) = yp (the mathematical pendulum here):

Euler’s scheme: y,4+1 = yn+hf(yn) = y(tn+1) is not symplectic.

Ynt Yn+1
2
Important for long-term numerical simulations in molecular dynamics or

planetary motions (movie click). Keyword: Backward Error Analysis.

The midpoint rule: y,+1 =yn+hf ( ) = y(tp+1) is symplectic.

@ Book: Hairer, Wanner, Lubich, Geometric Numerical Integration 2006



Deterministic Poisson systems

Recall: Hamiltonian systems (setting y = (p, q)): y = J_'VH(y), with the

. . . 0 Id
skew-symmetric constant (symplectic) matrix J = 1d of

Given a Hamiltonian H and a matrix B(y) (satisfying some properties), the
ODE
y=B(y)VH(y)

is called a Poisson system. The matrix B is called the Poisson matrix.

Properties of the exact solution: The Hamiltonian is a conserved quantity.
The flow of this ODE is a Poisson map (generalisation of symplecticity). One
may have a Casimir function C (first integrals).

Question: Design and analysis of numerical schemes with such properties?

Answers 1988—: Channel, C., Ge, Hairer, Karas6zen, McLachlan, Marsden,
Reich, Scovel, etc.



Deterministic free rigid body
Recall: Poisson problem: y = B(y)VH(y).

The equations for a free rigid body reads

y(®) =B(y(t)VH(y(1),

where y = (y1, 2, y3) " represents the angular momentum in the body frame,
0 -y3 »
I = (1, I, I3) are the principal moments of inertia and B(y) = ( V3 0o - yl).
=y2 N 0
The Hamiltonian H(y) = % (y%/]l + y%/lg + _)/%/[3) and the Casimir C(y) = % (y% + y% + y%) are
conserved quantities.

Further examples: Lotka—Volterra equation from population dynamics, discretisations of

Euler’s equations in fluid dynamics, etc.

Goal of presentation: Analyse (explicit) splitting integrators for random perturbations of
Poisson systems.

A map C(y) is a Casimir for the Poisson ODE y = B(y)VH(y) if VC(y)B(y) =0 for
all y. Hence C(y) is also a first integral.
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Stochastic differential equations (settings)

ODE. Given f: R— R and an initial value x(0), we look for a solution to

dx(r)

x(t) := ar

t
= f(x(1) < x(t) — x(0) :f fx(s))ds.
0
SDE. Given f,g: R— R and a (non-random) initial value Xy, a stochastic
process X; := X () = {X; (@)} e, 11 = {X (£, w)}ref0,7) 1S a solution to the SDE
dX; = f(Xpdt + g(X;)dW;, with initial value Xy

if X; solves the integral equation

t t
Xt—XO:[O f(Xs)ds+f0 g(Xs)dW;.

Note: X; is a stochastic process: i.e. a random variable for each time ¢ (on
some probability space (Q,%,P)).

t
Note: Have to define W; and the stochastic integral f g(Xs)dWs.
0



Brownian motion (D

Definition. The stochastic process W; is a Brownian motion or standard
Wiener process over [0, T] if

e Wp=0a.s.
e Forany0<s<t=<T, W;—W;~N(0, t—s) (normally dist.).

ST g 2 20% g 1

 Independent increments: For 0 < s <t < u < v < T the increments
W; — W and W,, — W,, are independent.

e W; has a.s. cont. samples A\ nowhere diff.

= At any time t, W; is a random variable: W; = W;— W, ~ N(0, t) and so
E[W,] =0 and E[W?] = 1.



Brownian motion (II)

Numerical illustration: Discretised Brownian paths over [0, 1].

0 0.2 0.4 0.6 0.8 1
Time

— W; is continuous but nowhere differentiable!!



Stochastic differential equations

Recall SDE: Given f,g: R— R and a (non-random) initial value Xp, a
stochastic process X; is a solution to the SDE

dX; = f(X)dt + g(X)dW;

if X; solves the integral equation

t t
Xt—onf f(Xs)ds+f g(X,) dW,.
0 0

Note: W; not differentiable (not even finite variation) so that we have to be
careful with the definition of the above stochastic integral.



Stochastic integrals
For a deterministic function k: R — R and a partition £, = ndt with
0t=T/N, one defines:

Deterministic Riemann integrals

T N-1
h(t)dt= lim h(tp)(tpe1 -t
fo (0 EHZ (tn) (tn+1 = tn)
N2+t
_l hw)t t
6?4“»0”20 ( 2 (1 = In).

Stochastic It6 integrals for stochastic process h(t) (left endpoints)

N-1 random variables

——tN—

f h(t)th = llm Z h(t)) Wy, — Wy ).
-0 ,>0 —_—

"‘N(O Inv1— tn)

Stochastic Stratonovich integrals for stochastic process h(¢) (midpoint)

random variables

th+1 —

f h(t)odw, & 11m Zh( L ”*1)(th+1—wtn).
[ ——

NN(OytrHl_tn)



1. Drift-preserving schemes for problems with additive noise
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Stochastic Poisson problem
For an integer m > 0 and a nice potential V: R” — R, consider the separable
Hamiltonian

1& , v

Hmm—2;m+(m

Problem: Set X(t) = (p(t), q(#)) and consider Poisson system with additive

noise:
b
0) dW(r).

dX () =BX(t)VH(X(1)dt+

Here, B(X) € R??™ is a smooth skew-symmetric matrix, € R”*? and

W(t) € R%.

Examples:
Generalisation of stoch. Hamilton systems taking

-1
BX)=J'= ( 12 (7 m) constant matrix. Obs: odd dimension also ok!
m

Stochastic free rigid body (B(X) not constant), Lotka—Volterra systems, etc.



Stochastic Poisson problem )

Recall: Poisson system with additive noise:

dX(t) = BX())VH(X (1) dt+

z
0) dw(1).

Proposition (C., Vilmart 20*,21): Trace formula for the energy: Along the
exact solution to the above SDE, one has

E[HX(0)] =E[H(Xo)] + %Tr (2T2)¢ foralltime t>0.

The proof is done using Ito’s formula.

Question: What about numerical discretisation?



Drift-preserving scheme for stochastic Poisson problem

Recall: Poisson system with additive noise:

dX(t) =BX())VH(X (1) dt+

z
0) dw(1).

Based on a splitting idea, we propose a new drift-preserving scheme for
stochastic Poisson problem:

et ) i)
1-—A4An 0 n E n’l»
1
Yy Y1+hB(Y1+Y2)f VH(Y; +0(% - Y1) do,
0
> h
Xn+1=Yo + (0 (W(tnﬂ) -Wl(tn+ E))’

where h > 0 is the stepsize of the numerical scheme and ¢, = nh.

@



Drift-preserving scheme for stochastic Poisson problem (II)
Recall: The exact solution to the Poisson system with additive noise

dX(t) =BX())VH(X (1) dt+

ﬁ) dw (r).
has the trace formula for the energy
E[H(X(1)] = E[H(Xo)] + %Tr (2'2)¢ foralltime ¢>0.
Our splitting scheme satisfies:
Theorem (C., Vilmart 20*,21): Numerical trace formula for the energy
E[H(X,)] =E[H(Xy)] + %Tr (ZTZ) t, for all discrete times ¢, = nh,

where n € N.



Drift-preserving scheme for stochastic Poisson problem (I11)
To show: Drift-preserving scheme: E[H(X,,)] = E[H(Xp)] + %Tr (272) 1y
The first step of the drift-preserving scheme can be rewritten as

l’,,+g >
Yy =X, + f dW (s)
o \0
and an application of 1t6’s formula gives
h T
E(HY)] =E[HX,)] + ZTr (z'%).
Second step of the scheme is a deterministic energy-preserving scheme:

E[H(Y2)] =E[H(Y1)].

The last step of the numerical integrator gives
[ h_ .or
E[H(X,+1)] =E[H(Y2)] + ZTr(z T) =E[H(Y)]+ ZTr (z'%)
h
=ELH(Xp+ 3 Tr(27x).

A recursion now completes the proof.



Drift-preservation of Casimirs
If the original ODE has a quadratic Casimir C(X) = %X TAX, with a

BT i) with a, b, c € R™*™ then

symmetric constant matrix A = (

Theorem (C., Vilmart 20*,21):
Trace formula for the Casimir (exact solution)

E[C(X(1)]=E[C(Xp)]+ %Tr(ZT az)t foralltime ¢>0.

Numerical trace formula for the Casimir (numerical solution)
1
EIC(X,)] =E[C(Xp)] + > Tr(ZT ax)t, forall discrete times f, = nh,

where n e N.

A map C(X) is a Casimir for the Poisson ODE X = B(X)VH(X) if VC(X)B(X) =0
for all X. Hence C(X) is also a first integral.



Rates of convergence of the drift-preserving scheme

The proposed drift-preserving scheme has the following rates of convergence
under the standard setting.

Theorem (C., Vilmart 20%,21):
Mean-square order of convergence 1:

)1/2 Ch.

(ELIX (£2) — Xnl%)
Weak convergence of order 2:

[E[D(X (£n))] - E[®(X,,)]| < Ch?,

for all test functions ® € C5 (R*™, R), the space of C® functions with all
derivatives up to order 6 with at most polynomial growth.



Linear stochastic oscillator

Problem: dX (f) = B(X(¢))VH(X(#))dt +ZdW (¢), where X = (p, q),
H(p,q) = p*+3q* and with =1 and W scalars.
For this problem, the drift-preserving scheme is an explicit time integrator!

Mean-square error and trace formula for the energy:

100 60
AA
AADD
50 AAI>|>
10 AT
AADD
40 R N33
»
Error E AAI>I>
102 nery A
o
2 < oP
107 A symp
D> st
10 O spltEULER
* spitHEUN
04 — Exact

0 20 40 60 80 100
Time

Drift-preserving scheme (DP), the splitting methods with the symplectic
Euler method (SYMP), the Stormer—Verlet method (ST), the explicit Euler
method (splitEULER), or the Heun method (splitHEUN).

Parameters: (p(0), q(0)) = (0,1), time interval [0, 100] with 27 step sizes,
M =10° samples.



Stochastic rigid body

Problem: dX(t) = B(X())VH(X(t))dt+ XdW (¢t), where Hamiltonian
H(X) =% (X?/1 + X3/ I, + X3/13), and quadratic Casimir

C(X) = 3 (X?+ X2 + X2), with X and W scalars (acting on first component).
Here, X = (X;, X2, X3) " and moments of inertia I = (I}, I, I3).

Trace formula for the energy and the Casimir:

2.1 T T T 1 T T T
o op o O op o
2 O EM 4 O EM
* BEM 0.9 %* BEM
1.9 —— Exact 4 —— Exact
o
1.8 o g 08 f
1.7 b - o
Energy ° Ca5|51_|; L
b o
0.6 - o
*
*
05¢ * * *
. . - - 0.4
0 1 2 3 4 0 1 2 3 4
Time Time

Parameters: X(0) = (0.8,0.6,0) and I = (0.345,0.653, 1), stepsizes h = 4/25,
time interval [0,4]. M. =2-10° samples.



IV. Splitting schemes for stochastic Poisson systems
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Stochastic Lie—Poisson problems

Consider stochastic Poisson systems of the form

m
dy(1) = Biy())VH(y(1) di+ Y B(y(0)VH(y(1) o dWi (1),
k=1

y(0) = yo,
with Hamiltonian functions H, Hl, e, Flm: RY — R, with structure matrix
B: R? — R?*4 and with independent standard real-valued Wiener processes
Wy,..., W,.
m Skew-symmetry: for every y € R? and for all i, j € {1,...,d}, one has

B;ij(y) =—=Bji(y).

m Jacobi identity: for every y € R4 and for all i, j,kefl,...,d}, one has

d (0B;i(y) 0Bix(y) 0By (y)
> iR Bor(y) + / Bei(y) + ki)
/=1 0ye

Brj(3)| =0.

m Lie—Poisson systems: B depends linearly on y.



Main results

m

Recall: SDE dy(t) = B(y(£))VH(y()dt+ ) B(y(£))VH(y(1) o dWi(2).
k=1

Under technical assumptions, we:

m Prove that the flow of this SDE is a Poisson map:
One has a.s., for all y, that ¢,(») B())¢,(») " = Blo:(y).

m Derive and analyse explicit splitting Poisson integrators for particular
stochastic Lie—Poisson systems.

m Prove strong and weak convergence of such integrators, even when the
coefficients of the problem are not globally Lipschitz continuous.

m Study asymptotic preserving schemes in the diffusion approximation
regime.

Bréhier, C., Jahnke 2021%,2023.



The Poisson map property #skip*
Recall: SDE dy(1) = B(y() VH(y(£))dt + X7 B(y(£)VHy(y(£)) o dWi(1).

Definition: Let D), denote the Jacobian operator. Let U < R be an open set.
A transformation ¢: U — R is called a Poisson map for the above SDE, if
one has, almost surely, for all y € RY,

Dytp(y)B(y)qu)(y)T = B(p(y).
Remark: Observe that a composition of Poisson maps is a Poisson map.

Theorem: Introduce the flow (z, y) — ¢:(y) of the above SDE with
coefficients of class €°. Assume that the flow is globally well defined and of
class €' with respect to the variable y. Then, for all =0, ¢, is a Poisson
map: almost surely, for all y € R, one has

Dy (NB) Dy (0 =Bl ().

Remark: Hong, Ruan, Sun, Wang 21: Proof needs Darboux-Lie theorem and
to rewrite SDE. Their Poisson integrators in turn need transformations and are
usually implicit.



Stoch. Poisson integrators based on splitting schemes

Recall: SDE dy() = B(y()) VH(y()dt + £, B(y(0)V Hi(y(1)) o AWy (0).
Assumption: The Hamiltonian H can be split as follows: H = Z’Zzl Hj. for
some p = 1.

Let i > 0 be the time step size. A numerical scheme is defined as
y[n] = (Dh(y[n_l]»AnWb .. -;AnWm),

with Wiener increments A, Wy = Wi(nh) - Wi((n—1h), k=1,...,m.
Provides numerical approximations: y!"" = y(nh).

Splitting schemes:
Qp() =Pp(,AWL,...,AWp) =exp(hYy,) cexp(hYpy, ) o...cexp(hYp,)
oexp(AWy, Yﬁm) ocexp(AWy,—1 Yﬁm—l) o...oexp(AW; Yj:ll)’

where Yy, = BV H, resp. Yp, = BV Hy, denote the vector fields of the
corresponding differential equations.



Convergence of the Lie—Poisson splitting schemes

Recall: SDE dy(1) = B(y() VH(y(£))dt + X7 B(y(£)VHy(y(£)) o dWi(1).
Splitting scheme: @y () = exp(hYp,)o...cexp(AW,, Y )o...oexp(AW1 Yy ).

Theorem: Assume SDE admits a Casimir function with compact level sets.
Strong convergence. Assume B € 62, H,...,H, € €%, and H,,..., H,, € €°.
Then the splitting scheme has strong order of convergence equal to 1/2: for all
T € (0,00) and all yo € R?, there exists a real number c(T, o) € (0,00) such that

sup (E[lly (nh) -y 12])"" < (T, yo) 2,
0<n<N

with time step size h = T/N, and y[O] =y =y(0).

Weak convergence. Assume B € 6°, H,...,H, € 6°, and H,,..., H,, € €°.
Then the splitting scheme has weak order of convergence equal to 1: for all
T € (0,00) and all yp € R?, and any test function ¢p: R? — R of class €¢* with
bounded derivatives, there exists a real number c(7, yy, ¢) € (0,00) such that

up [E[¢ (v (nh)] —E [ (y"™)]| = c(T, yo,p) .




*skip*

Main steps for the proofs
Recall: SDE dy(1) = B(y() VH(y(£))dt + X7 B(y(£)VHy(y(£)) o dWi(1).
Splitting scheme: @y () = exp(hYp,)o...cexp(AW,, Y )o...oexp(AW1 Yy ).

Strong order 1/2, weak order 1.

H Show a.s bounds for the exact and numerical solutions:

sup |yt <R(y), sup sup [y"™|<R(y),
N=1 0sn<N

te(0,T]

where R(yo) = maxepa,c(y)=c(y,) 171, and R(yo) < oo.
Use: Splitting scheme is a Poisson integrator hence preserve Casimir C.

Show strong and weak convergence for the auxiliary problem

p m
dz(0) = ) frlz() dt+ ) fr(z(1) o dWi(2),
k=1 k=1

with smooth globally Lipschitz continuous functions fj and fk
Use: Fundamental theorem by Milstein and the Talay-Tubaro argument.

Conclude to show the convergence results for the above Poisson systems

Use: Combine above two steps.



Stochastic Maxwell-Bloch equations

Problem: Let d = 3. The deterministic Maxwell-Bloch equations from
laser-matter dynamics read

n=ye
V2=01Ys3
V3=-y1)2.

This system is a deterministic Lie—Poisson system with Poisson matrix,
Hamiltonian and Casimir functions given by

0 -y3 ¥ 1 1

Bp=|ys 0 0|, H»==y?+ys, CO)==02+)2),

2 2
-2 0 0

respectively, for all y = (y1, 2, y3) € R3.
Consider the following stochastic version of the Maxwell-Bloch system:

dy = B(y) (VH(y) dt+01VH (y) o dW () + 03V H3(y) o dW3(),

where H, (y) = % y: and Hs(y) = y3, 01,03 = 0, driven by two independent
Wiener processes W) and Ws.

ey



Stochastic Maxwell-Bloch equations II)

Recall: dy = B(y) (VH(y) dt+01VH (y) o dW;(8) + 03V H3(y) o dW5s(1)),
where H(y) = 3y + y3 with Hy(y) = Hi(y) = 3y% and Hs(y) = H3(y) = y3.

The Hamiltonian H is split as H = H; + Hs.
The two associated deterministic subsystems can be solved exactly as follows:
The deterministic subsystem corresponding with the vector field Yy, = BVH;
is given by

71=0

V2 =y3n

Y3 =—Y2)1-

Observe that y; is constant and thus (y», y3) is solution to the standard
harmonic oscillator: the exact solution of the first subsystem is thus given by

1 0 0
exp(tYy,)y(0) =10 cos(y1(0)r) sin(y1(0)#) | ¥(0)
0 -—sin(y1(0)f) cos(y1(0)1)

for all € R and y(0) € R3. Obs. Yy, = BV Hz and stoch. parts ok!



Stochastic Maxwell-Bloch equations (IIT)
Recall: dy = B(y) (VH(y) dt+01VH (y)o dW;(£) + 03V Hz(y) o dWs(1)).
The splitting integrator then reads

@y =exp(hYpy,) oexp(hYy,) cexp(o3AWs Yﬁ3) oexp(og1AW; Yﬁl)’

where for all y € R® one has

1 0 0
exp(o1AWy Ygl)y: (0 cos(y101AWy) sin(ylalAWI))y
0 -sin(y301AW;) cos(y101AWs)

and
1 o3AW3 0
exp(agAW3Yﬁ3)y: 0 1 0y
0 0 1

Remark: This explicit splitting scheme is a stochastic Poisson integrator: the
numerical map is a Poisson map and it preserves all Casimirs of the SDE.



Free rigid body with random inertia tensor )]
3 42

Problem: Let H(y) = Z JI/_ Hk(y) = JC for k=1,2,3, and consider
k

»
d (yg) = B(y) (VH(y)dt+ VH, (y) o AW (£) + V Ha(y) 0 dWa (1)
Y3

+ VH;z(y) o dWs(1)).
Casimir: The above SDE has a conserved quantity, the Casimir:

Cy)=yi+¥5+Ys5.

-G-Mdp int

Po isson

Casimir

Time



Free rigid body with random inertia tensor Q)

3 42

R 2
Problem: Let H(y) = Z ?, Hi(y) = %, for k=1,2,3, and consider
n=11n k

N
d (yz) = B(y) (VH(y)dt + VH;(y) o dWy (£) + VH(y) o dWa(2)
V3

+ VH;(y) o dW3(2)).

Strong and weak convergence:




Stoch. Poisson integrators for the stochastic sine—Euler syst.

The sine—Euler equations consist of a finite-dimensional truncation of the
two-dimensional Euler equations in fluid dynamics (Zeitlin 1991).

We consider random perturbations of such systems (horrible equations).

2 Casimirs (quadratic and cubic), ms order 1 (one noise), ms order 1/2 (3
noises):

06 100
» —— Casimir 1

—o—Casimir 2

0.4

Casimirs
o
N

o

o
N

0.2 0.4 0.6 0.8 0° S R s
Time 10 10 0 w0t 1



Thanks for your attention!!

David Cohen, Gilles Vilmart: Drift-preserving numerical integrators for stochastic Poisson systems,
2020%, Int. J. Comput. Math, 2021

Charles-Edouard Bréhier, David Cohen, Tobias Jahnke: Splitting integrators for stochastic Lie—Poisson
systems, 2021, to appear Math. Comp 2023
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Strang version

SDE

dy(1) = Biy/(0))VH(y(£)dt+ Y B(y(e)VH(y() o dW (1)
k=1

with H(y) = X.7_, Hy.
Strang version

@p() =exp(hYpy,)o...oexp(hYp,)
o exp(AW/ZYﬁl) o.. .exp(AWng) o...0 exp(AW/ZYﬁl)

Order: 1/2 in mean-square sense and 2 in the weak sense.



