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I. Motivation
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Deterministic Hamiltonian systems (I)

Consider deterministic Hamiltonian problems of the form (Hamilton 1834):

ṗk =− ∂H

∂qk
(p, q), q̇k = ∂H

∂pk
(p, q), for k = 1, . . . ,d .

This system of differential equations describes the motion of a mechanical
system with coordinates qk and momenta pk . Here p = p(t ) = (p1, . . . , pd )T .

Examples: Molecular dynamics, motion of planets, mechanical systems, etc.

Remark: The Hamiltonian

H(p, q) = 1

2
pT p +V (q)

is the total energy of the problem (kinetic energy plus potential energy).



Deterministic Hamiltonian systems (II)
Recall: Hamiltonian systems:

ṗk =− ∂H

∂qk
(p, q), q̇k = ∂H

∂pk
(p, q), for k = 1, . . . ,d

with given initial values p(t0) = pinit, q(t0) = qinit.

Property: The total energy H(p, q) is an invariant:
d
dt

H(p(t ), q(t )) = ∂H

∂p
(p(t ), q(t ))ṗ(t )+ ∂H

∂q
(p(t ), q(t ))q̇(t ) = 0

⇒ H(p(t ), q(t )) =Constant= H(pinit, qinit)

along the exact solution.

Question: Design and analysis of energy-preserving numer. schemes for
ODEs?

Answers 1996−: Brugnano, Celledoni, C., Gonzalez, Hairer, Iavernaro,
McLachlan, McLaren, Miyatake, Owren, Quispel, Robidoux, Sato, Sun,
Trigiante, Wang, Wu, Zhang, etc.



Deterministic Hamiltonian systems (III)
Recall: Hamiltonian system:

ṗk =− ∂H

∂qk
(p, q), q̇k = ∂H

∂pk
(p, q), for k = 1, . . . ,d .

with given initial values p(t0) = pinit, q(t0) = qinit.

Property: The flow φt (pinit, qinit) := (p(t , t0, pinit, qinit), q(t , t0, pinit, qinit)) of
the above problem is symplectic (Poincaré 1899):

φ′
t(y)T Jφ′

t(y) = J for all y = (p,q),

where J =
(

0 Id
−Id 0

)
.

Question: Design and analysis of symplectic numerical schemes?

Answers 1956−: Bochev, de Vogelaere, Feng Kang, Hairer, Lasagni, Reich,
Ruth, Sanz-Serna, Scovel, Suris, etc.



Deterministic Hamiltonian systems (IV)
The mathematical pendulum has H(p, q) = 1

2
p2 −cos(q) and the Hamiltonian

ṗ =−sin(q), q̇ = p.

The flow is symplectic (here area preserving), phase space (q, p):

@ Book: Hairer, Wanner, Lubich, Geometric Numerical Integration 2006



Symplectic integrators
For ODE ẏ(t ) = f (y(t )), y(0) = y0 (the mathematical pendulum here):

Euler’s scheme: yn+1 = yn +h f (yn) ≈ y(tn+1) is not symplectic.

The midpoint rule: yn+1 = yn +h f
(

yn + yn+1

2

)
≈ y(tn+1) is symplectic.

Important for long-term numerical simulations in molecular dynamics or
planetary motions (movie click). Keyword: Backward Error Analysis.

@ Book: Hairer, Wanner, Lubich, Geometric Numerical Integration 2006



Deterministic Poisson systems

Recall: Hamiltonian systems (setting y = (p, q)): ẏ = J−1∇H(y), with the

skew-symmetric constant (symplectic) matrix J =
(

0 Id
−Id 0

)
.

Given a Hamiltonian H and a matrix B(y) (satisfying some properties), the
ODE

ẏ = B(y)∇H(y)

is called a Poisson system. The matrix B is called the Poisson matrix.

Properties of the exact solution: The Hamiltonian is a conserved quantity.
The flow of this ODE is a Poisson map (generalisation of symplecticity). One
may have a Casimir function C (first integrals).

Question: Design and analysis of numerical schemes with such properties?

Answers 1988−: Channel, C., Ge, Hairer, Karasözen, McLachlan, Marsden,
Reich, Scovel, etc.



Deterministic free rigid body
Recall: Poisson problem: ẏ = B(y)∇H(y).

The equations for a free rigid body reads

ẏ(t ) = B(y(t ))∇H(y(t )),

where y = (y1, y2, y3)> represents the angular momentum in the body frame,

I = (I1, I2, I3) are the principal moments of inertia and B(y) =
 0 −y3 y2

y3 0 −y1
−y2 y1 0

.

The Hamiltonian H(y) = 1
2

(
y2

1 /I1 + y2
2 /I2 + y2

3 /I3
)

and the Casimir C (y) = 1
2

(
y2

1 + y2
2 + y2

3

)
are

conserved quantities.

Further examples: Lotka–Volterra equation from population dynamics, discretisations of
Euler’s equations in fluid dynamics, etc.

Goal of presentation: Analyse (explicit) splitting integrators for random perturbations of
Poisson systems.

A map C (y) is a Casimir for the Poisson ODE ẏ = B(y)∇H(y) if ∇C (y)B(y) = 0 for
all y . Hence C (y) is also a first integral.



II. Background material on SDEs
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Stochastic differential equations (settings)
ODE. Given f : R→R and an initial value x(0), we look for a solution to

ẋ(t ) := dx(t )

dt
= f (x(t )) ⇐⇒ x(t )−x(0) =

∫t

0
f (x(s))ds.

SDE. Given f , g : R→R and a (non-random) initial value X0, a stochastic
process X t := X (t ) = {X t (ω)}t∈[0,T ] = {X (t ,ω)}t∈[0,T ] is a solution to the SDE

dX t = f (X t )dt + g (X t )dWt , with initial value X0

if X t solves the integral equation

X t −X0 =
∫t

0
f (Xs)ds +

∫t

0
g (Xs)dWs .

Note: X t is a stochastic process: i. e. a random variable for each time t (on
some probability space (Ω,F ,P)).

Note: Have to define Wt and the stochastic integral
∫t

0
g (Xs)dWs .



Brownian motion (I)

Definition. The stochastic process Wt is a Brownian motion or standard
Wiener process over [0,T ] if

• W0 = 0 a.s.

• For any 0 ≤ s < t ≤ T , Wt −Ws ∼ N (0, t − s) (normally dist.).

• Independent increments: For 0 ≤ s ≤ t ≤ u ≤ v ≤ T the increments
Wt −Ws and Wv −Wu are independent.

• Wt has a.s. cont. samples "nowhere diff.

=⇒ At any time t , Wt is a random variable: Wt =Wt −W0 ∼ N (0, t ) and so
E[Wt ] = 0 and E[W 2

t ] = t .



Brownian motion (II)

Numerical illustration: Discretised Brownian paths over [0,1].
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Stochastic differential equations

Recall SDE: Given f , g : R→R and a (non-random) initial value X0, a
stochastic process X t is a solution to the SDE

dX t = f (X t )dt + g (X t )dWt

if X t solves the integral equation

X t −X0 =
∫t

0
f (Xs)ds +

∫t

0
g (Xs)dWs .

Note: Ws not differentiable (not even finite variation) so that we have to be
careful with the definition of the above stochastic integral.



Stochastic integrals
For a deterministic function h : R→R and a partition tn = nδt with
δt = T /N , one defines:

Deterministic Riemann integrals∫T

0
h(t )dt = lim

δt→0

N−1∑
n=0

h(tn )(tn+1 − tn )

= lim
δt→0

N−1∑
n=0

h

(
tn + tn+1

2

)
(tn+1 − tn ).

Stochastic Itô integrals for stochastic process h(t ) (left endpoints)

∫T

0
h(t )dWt

L2

= lim
δt→0

N−1∑
n=0

h(tn)

random variables︷ ︸︸ ︷
(Wtn+1 −Wtn )︸ ︷︷ ︸
∼N (0,tn+1−tn )

.

Stochastic Stratonovich integrals for stochastic process h(t ) (midpoint)∫T

0
h(t )◦ dWt

L2

= lim
δt→0

N−1∑
n=0

h

(
tn + tn+1

2

) random variables︷ ︸︸ ︷
(Wtn+1 −Wtn )︸ ︷︷ ︸
∼N (0,tn+1−tn )

.



III. Drift-preserving schemes for problems with additive noise
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Stochastic Poisson problem (I)

For an integer m > 0 and a nice potential V : Rm →R, consider the separable
Hamiltonian

H(p, q) = 1

2

m∑
j=1

p2
j +V (q).

Problem: Set X (t ) = (p(t ), q(t )) and consider Poisson system with additive
noise:

dX (t ) = B(X (t ))∇H(X (t ))dt +
(
Σ

0

)
dW (t ).

Here, B(X ) ∈R2m×2m is a smooth skew-symmetric matrix, Σ ∈Rm×d and
W (t ) ∈Rd .

Examples:
Generalisation of stoch. Hamilton systems taking

B(X ) = J−1 =
(

0 −I dm

I dm 0

)
constant matrix. Obs: odd dimension also ok!

Stochastic free rigid body (B(X ) not constant), Lotka–Volterra systems, etc.



Stochastic Poisson problem (II)

Recall: Poisson system with additive noise:

dX (t ) = B(X (t ))∇H(X (t ))dt +
(
Σ

0

)
dW (t ).

Proposition (C., Vilmart 20∗,21): Trace formula for the energy: Along the
exact solution to the above SDE, one has

E [H(X (t ))] = E [H(X0)]+ 1

2
Tr

(
Σ>Σ

)
t for all time t > 0.

The proof is done using Ito’s formula.

Question: What about numerical discretisation?



Drift-preserving scheme for stochastic Poisson problem (I)

Recall: Poisson system with additive noise:

dX (t ) = B(X (t ))∇H(X (t ))dt +
(
Σ

0

)
dW (t ).

Based on a splitting idea, we propose a new drift-preserving scheme for
stochastic Poisson problem:

Y1 := Xn +
(
Σ

0

)(
W (tn + h

2
)−W (tn)

)
,

Y2 := Y1 +hB

(
Y1 +Y2

2

)∫1

0
∇H(Y1 +θ(Y2 −Y1))dθ,

Xn+1 = Y2 +
(
Σ

0

)(
W (tn+1)−W (tn + h

2
)

)
,

where h > 0 is the stepsize of the numerical scheme and tn = nh.



Drift-preserving scheme for stochastic Poisson problem (II)

Recall: The exact solution to the Poisson system with additive noise

dX (t ) = B(X (t ))∇H(X (t ))dt +
(
Σ

0

)
dW (t ).

has the trace formula for the energy

E [H(X (t ))] = E [H(X0)]+ 1

2
Tr

(
Σ>Σ

)
t for all time t > 0.

Our splitting scheme satisfies:
Theorem (C., Vilmart 20∗,21): Numerical trace formula for the energy

E [H(Xn)] = E [H(X0)]+ 1

2
Tr

(
Σ>Σ

)
tn for all discrete times tn = nh,

where n ∈N.



Drift-preserving scheme for stochastic Poisson problem (III)
To show: Drift-preserving scheme: E [H(Xn)] = E [H(X0)]+ 1

2 Tr
(
Σ>Σ

)
tn .

The first step of the drift-preserving scheme can be rewritten as

Y1 = Xn +
∫tn+ h

2

tn

(
Σ

0

)
dW (s)

and an application of Itô’s formula gives

E [H(Y1)] = E [H(Xn)]+ h

4
Tr

(
Σ>Σ

)
.

Second step of the scheme is a deterministic energy-preserving scheme:

E [H(Y2)] = E [H(Y1)] .

The last step of the numerical integrator gives

E [H(Xn+1)] = E [H(Y2)]+ h

4
Tr

(
Σ>Σ

)= E [H(Y1)]+ h

4
Tr

(
Σ>Σ

)
= E [H(Xn)]+ h

2
Tr

(
Σ>Σ

)
.

A recursion now completes the proof.



Drift-preservation of Casimirs
If the original ODE has a quadratic Casimir C (X ) = 1

2 X >AX , with a

symmetric constant matrix A =
(

a b
b> c

)
with a,b,c ∈Rm×m , then

Theorem (C., Vilmart 20∗,21):
Trace formula for the Casimir (exact solution)

E [C (X (t ))] = E [C (X0)]+ 1

2
Tr

(
Σ>aΣ

)
t for all time t > 0.

Numerical trace formula for the Casimir (numerical solution)

E [C (Xn)] = E [C (X0)]+ 1

2
Tr

(
Σ>aΣ

)
tn for all discrete times tn = nh,

where n ∈N.

A map C (X ) is a Casimir for the Poisson ODE Ẋ = B(X )∇H(X ) if ∇C (X )B(X ) = 0

for all X . Hence C (X ) is also a first integral.



Rates of convergence of the drift-preserving scheme

The proposed drift-preserving scheme has the following rates of convergence
under the standard setting.

Theorem (C., Vilmart 20∗,21):
Mean-square order of convergence 1:(

E[‖X (tn)−Xn‖2]
)1/2 ≤C h.

Weak convergence of order 2:

|E[Φ(X (tn))]−E[Φ(Xn)]| ≤C h2,

for all test functions Φ ∈C 6
P (R2m ,R), the space of C 6 functions with all

derivatives up to order 6 with at most polynomial growth.



Linear stochastic oscillator
Problem: dX (t ) = B(X (t ))∇H(X (t ))dt +ΣdW (t ), where X = (p, q),
H(p, q) = 1

2 p2 + 1
2 q2 and with Σ= 1 and W scalars.

For this problem, the drift-preserving scheme is an explicit time integrator!
Mean-square error and trace formula for the energy:
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Stochastic rigid body
Problem: dX (t ) = B(X (t ))∇H(X (t ))dt +ΣdW (t ), where Hamiltonian
H(X ) = 1

2

(
X 2

1 /I1 +X 2
2 /I2 +X 2

3 /I3
)
, and quadratic Casimir

C (X ) = 1
2

(
X 2

1 +X 2
2 +X 2

3

)
, with Σ and W scalars (acting on first component).

Here, X = (X1, X2, X3)> and moments of inertia I = (I1, I2, I3).

Trace formula for the energy and the Casimir:
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time interval [0,4], Ms = 2 ·106 samples.



IV. Splitting schemes for stochastic Poisson systems
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Stochastic Lie–Poisson problems
Consider stochastic Poisson systems of the formdy(t ) = B(y(t ))∇H(y(t )) dt +

m∑
k=1

B(y(t ))∇Ĥk (y(t ))◦ dWk (t ),

y(0) = y0,

with Hamiltonian functions H , Ĥ1, . . . , Ĥm : Rd →R, with structure matrix
B : Rd →Rd×d , and with independent standard real-valued Wiener processes
W1, . . . ,Wm .

Skew-symmetry: for every y ∈Rd and for all i , j ∈ {1, . . . ,d}, one has

Bi j (y) =−B j i (y).

Jacobi identity: for every y ∈Rd and for all i , j ,k ∈ {1, . . . ,d}, one has
d∑

ℓ=1

(
∂Bi j (y)

∂yℓ
Bℓk (y)+ ∂B j k (y)

∂yℓ
Bℓi (y)+ ∂Bki (y)

∂yℓ
Bℓ j (y)

)
= 0.

Lie–Poisson systems: B depends linearly on y .



Main results

Recall: SDE dy(t ) = B(y(t ))∇H(y(t ))dt +
m∑

k=1
B(y(t ))∇Ĥk (y(t ))◦ dWk (t ).

Under technical assumptions, we:

Prove that the flow of this SDE is a Poisson map:
One has a.s., for all y , that φ′

t (y)B(y)φ′
t (y)> = B(φt (y)).

Derive and analyse explicit splitting Poisson integrators for particular
stochastic Lie–Poisson systems.

Prove strong and weak convergence of such integrators, even when the
coefficients of the problem are not globally Lipschitz continuous.

Study asymptotic preserving schemes in the diffusion approximation
regime.

Bréhier, C., Jahnke 2021∗,2023.



The Poisson map property *skip*
Recall: SDE dy(t ) = B(y(t ))∇H(y(t ))dt +∑m

k=1 B(y(t ))∇Ĥk (y(t ))◦ dWk (t ).

Definition: Let D y denote the Jacobian operator. Let U ⊂Rd be an open set.
A transformation φ : U →Rd is called a Poisson map for the above SDE, if
one has, almost surely, for all y ∈Rd ,

D yφ(y)B(y)D yφ(y)T = B(φ(y)).

Remark: Observe that a composition of Poisson maps is a Poisson map.

Theorem: Introduce the flow (t , y) 7→φt (y) of the above SDE with
coefficients of class C 3. Assume that the flow is globally well defined and of
class C 1 with respect to the variable y . Then, for all t ≥ 0, φt is a Poisson
map: almost surely, for all y ∈Rd , one has

D yφt (y)B(y)D yφt (y)T = B(φt (y)).

Remark: Hong, Ruan, Sun, Wang 21: Proof needs Darboux–Lie theorem and
to rewrite SDE. Their Poisson integrators in turn need transformations and are
usually implicit.



Stoch. Poisson integrators based on splitting schemes
Recall: SDE dy(t ) = B(y(t ))∇H(y(t ))dt +∑m

k=1 B(y(t ))∇Ĥk (y(t ))◦ dWk (t ).
Assumption: The Hamiltonian H can be split as follows: H =∑p

k=1 Hk for
some p ≥ 1.

Let h > 0 be the time step size. A numerical scheme is defined as

y [n] =Φh(y [n−1],∆nW1, . . . ,∆nWm),

with Wiener increments ∆nWk =Wk (nh)−Wk ((n −1)h), k = 1, . . . ,m.
Provides numerical approximations: y [n] ≈ y(nh).

Splitting schemes:

Φh(·) =Φh(·,∆W1, . . . ,∆Wm) = exp(hYHp )◦exp(hYHp−1 )◦ . . .◦exp(hYH1 )

◦exp(∆WmYĤm
)◦exp(∆Wm−1YĤm−1

)◦ . . .◦exp(∆W1YĤ1
),

where YHk = B∇Hk , resp. YĤk
= B∇Ĥk , denote the vector fields of the

corresponding differential equations.



Convergence of the Lie–Poisson splitting schemes
Recall: SDE dy(t ) = B(y(t ))∇H(y(t ))dt +∑m

k=1 B(y(t ))∇Ĥk (y(t ))◦ dWk (t ).
Splitting scheme: Φh(·) = exp(hYHp )◦ . . .◦exp(∆WmYĤm

)◦ . . .◦exp(∆W1YĤ1
).

Theorem: Assume SDE admits a Casimir function with compact level sets.
Strong convergence. Assume B ∈C 2, H1, . . . , Hp ∈C 2, and Ĥ1, . . . , Ĥm ∈C 3.
Then the splitting scheme has strong order of convergence equal to 1/2: for all
T ∈ (0,∞) and all y0 ∈Rd , there exists a real number c(T, y0) ∈ (0,∞) such that

sup
0≤n≤N

(
E
[‖y (nh)− y [n]‖2])1/2 ≤ c(T, y0)h

1
2 ,

with time step size h = T /N , and y [0] = y0 = y(0).

Weak convergence. Assume B ∈C 5, H1, . . . , Hp ∈C 5, and Ĥ1, . . . , Ĥm ∈C 6.
Then the splitting scheme has weak order of convergence equal to 1: for all
T ∈ (0,∞) and all y0 ∈Rd , and any test function ϕ : Rd →R of class C 4 with
bounded derivatives, there exists a real number c(T, y0,ϕ) ∈ (0,∞) such that

sup
0≤n≤N

∣∣E[
ϕ

(
y (nh)

)]−E
[
ϕ

(
y [n])]∣∣≤ c(T, y0,ϕ)h.



Main steps for the proofs *skip*
Recall: SDE dy(t ) = B(y(t ))∇H(y(t ))dt +∑m

k=1 B(y(t ))∇Ĥk (y(t ))◦ dWk (t ).
Splitting scheme: Φh(·) = exp(hYHp )◦ . . .◦exp(∆WmYĤm

)◦ . . .◦exp(∆W1YĤ1
).

Strong order 1/2, weak order 1.

1 Show a.s bounds for the exact and numerical solutions:

sup
t∈[0,T ]

‖y(t )‖ ≤ R(y0), sup
N≥1

sup
0≤n≤N

‖y [n]‖ ≤ R(y0),

where R(y0) = maxy∈Rd ,C (y)=C (y0) ‖y‖, and R(y0) <∞.
Use: Splitting scheme is a Poisson integrator hence preserve Casimir C .

2 Show strong and weak convergence for the auxiliary problem

dz(t ) =
p∑

k=1
fk (z(t )) dt +

m∑
k=1

f̂k (z(t ))◦ dWk (t ),

with smooth globally Lipschitz continuous functions fk and f̂k .
Use: Fundamental theorem by Milstein and the Talay–Tubaro argument.

3 Conclude to show the convergence results for the above Poisson systems.
Use: Combine above two steps.



Stochastic Maxwell–Bloch equations (I)
Problem: Let d = 3. The deterministic Maxwell–Bloch equations from
laser-matter dynamics read 

ẏ1 = y2

ẏ2 = y1 y3

ẏ3 =−y1 y2.

This system is a deterministic Lie–Poisson system with Poisson matrix,
Hamiltonian and Casimir functions given by

B(y) =
 0 −y3 y2

y3 0 0
−y2 0 0

 , H(y) = 1

2
y2

1 + y3, C (y) = 1

2
(y2

2 + y2
3),

respectively, for all y = (y1, y2, y3) ∈R3.
Consider the following stochastic version of the Maxwell-Bloch system:

dy = B(y)
(∇H(y) dt +σ1∇Ĥ1(y)◦ dW1(t )+σ3∇Ĥ3(y)◦ dW3(t )

)
,

where Ĥ1(y) = 1
2 y2

1 and Ĥ3(y) = y3, σ1,σ3 ≥ 0, driven by two independent
Wiener processes W1 and W3.



Stochastic Maxwell–Bloch equations (II)
Recall: dy = B(y)

(∇H(y) dt +σ1∇Ĥ1(y)◦ dW1(t )+σ3∇Ĥ3(y)◦ dW3(t )
)
,

where H(y) = 1
2 y2

1 + y3 with H1(y) = Ĥ1(y) = 1
2 y2

1 and H3(y) = Ĥ3(y) = y3.

The Hamiltonian H is split as H = H1 +H3.
The two associated deterministic subsystems can be solved exactly as follows:
The deterministic subsystem corresponding with the vector field YH1 = B∇H1

is given by 
ẏ1 = 0

ẏ2 = y3 y1

ẏ3 =−y2 y1.

Observe that y1 is constant and thus (y2, y3) is solution to the standard
harmonic oscillator: the exact solution of the first subsystem is thus given by

exp(tYH1 )y(0) =
1 0 0

0 cos(y1(0)t ) sin(y1(0)t )
0 −sin(y1(0)t ) cos(y1(0)t )

 y(0)

for all t ∈R and y(0) ∈R3. Obs. YH3 = B∇H3 and stoch. parts ok!



Stochastic Maxwell–Bloch equations (III)
Recall: dy = B(y)

(∇H(y) dt +σ1∇Ĥ1(y)◦ dW1(t )+σ3∇Ĥ3(y)◦ dW3(t )
)
.

The splitting integrator then reads

Φh = exp(hYH3 )◦exp(hYH1 )◦exp(σ3∆W3YĤ3
)◦exp(σ1∆W1YĤ1

),

where for all y ∈R3 one has

exp(σ1∆W1YĤ1
)y =

1 0 0
0 cos(y1σ1∆W1) sin(y1σ1∆W1)
0 −sin(y1σ1∆W1) cos(y1σ1∆W1)

 y

and

exp(σ3∆W3YĤ3
)y =

1 σ3∆W3 0
0 1 0
0 0 1

 y.

Remark: This explicit splitting scheme is a stochastic Poisson integrator: the
numerical map is a Poisson map and it preserves all Casimirs of the SDE.



Free rigid body with random inertia tensor (I)

Problem: Let H(y) =
3∑

k=1

y2
k

Ik
, Ĥk (y) = y2

k

Îk
, for k = 1,2,3, and consider

d

y1

y2

y3

= B(y)
(∇H(y)dt +∇Ĥ1(y)◦ dW1(t )+∇Ĥ2(y)◦ dW2(t )

+ ∇Ĥ3(y)◦ dW3(t )
)

.

Casimir: The above SDE has a conserved quantity, the Casimir:

C (y) = y2
1 + y2

2 + y2
3 .
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Free rigid body with random inertia tensor (II)

Problem: Let H(y) =
3∑

n=1

y2
n

In
, Ĥk (y) = y2

k

Îk
, for k = 1,2,3, and consider

d

y1

y2

y3

= B(y)
(∇H(y)dt +∇Ĥ1(y)◦ dW1(t )+∇Ĥ2(y)◦ dW2(t )

+ ∇Ĥ3(y)◦ dW3(t )
)

.

Strong and weak convergence:
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Stoch. Poisson integrators for the stochastic sine–Euler syst.

The sine–Euler equations consist of a finite-dimensional truncation of the
two-dimensional Euler equations in fluid dynamics (Zeitlin 1991).

We consider random perturbations of such systems (horrible equations).

2 Casimirs (quadratic and cubic), ms order 1 (one noise), ms order 1/2 (3
noises):
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Thanks for your attention!!

David Cohen, Gilles Vilmart: Drift-preserving numerical integrators for stochastic Poisson systems,

2020∗, Int. J. Comput. Math, 2021

Charles-Edouard Bréhier, David Cohen, Tobias Jahnke: Splitting integrators for stochastic Lie–Poisson

systems, 2021∗, to appear Math. Comp 2023

Thanks to www.images.google.com and Konstantinos Dareiotis



Strang version

SDE

dy(t ) = B(y(t ))∇H(y(t ))dt +
m∑

k=1
B(y(t ))∇Ĥk (y(t ))◦ dW (t )

with H(y) =∑p
k=1 Hk .

Strang version

Φh(·) = exp(hYHp )◦ . . .◦exp(hYH1 )

◦exp(∆W /2YĤ1
)◦ . . .exp(∆W YĤm

)◦ . . .◦exp(∆W /2YĤ1
)

Order: 1/2 in mean-square sense and 2 in the weak sense.


