Numerical analysis of stochastic Poisson systems

David Cohen

Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg

Based on a joint work with Gilles Vilmart (Geneva) and on a joint work with Charles-Edouard Bréhier (Pau) and Tobias Jahnke (Karlsruhe)

Swedish Research Council (VR) project nr. 2018-04443

Irish Numerical Analysis Forum, Zoom, 16.03.2023

Outline

- I. Motivation
- II. Background material on SDEs
- III. Drift-preserving schemes for problems with additive noise
- IV. Splitting schemes for stochastic Poisson systems

I. Motivation

MOTIVATION

Thanks to www.images.google.com

Consider deterministic Hamiltonian problems of the form (Hamilton 1834):

$$\dot{p}_k = -\frac{\partial H}{\partial q_k}(p,q), \quad \dot{q}_k = \frac{\partial H}{\partial p_k}(p,q), \text{ for } k = 1, \dots, d.$$

This system of differential equations describes the motion of a mechanical system with coordinates q_k and momenta p_k . Here $p = p(t) = (p_1, ..., p_d)^T$.

Examples: Molecular dynamics, motion of planets, mechanical systems, etc.

Remark: The Hamiltonian

$$H(p,q) = \frac{1}{2}p^T p + V(q)$$

is the total energy of the problem (kinetic energy plus potential energy).

Recall: Hamiltonian systems:

$$\dot{p}_k = -\frac{\partial H}{\partial q_k}(p,q), \quad \dot{q}_k = \frac{\partial H}{\partial p_k}(p,q), \text{ for } k = 1, \dots, d$$

with given initial values $p(t_0) = p_{\text{init}}, q(t_0) = q_{\text{init}}$.

Property: The total energy H(p, q) is an invariant:

$$\frac{\mathrm{d}}{\mathrm{d}t}H(p(t),q(t)) = \frac{\partial H}{\partial p}(p(t),q(t))\dot{p}(t) + \frac{\partial H}{\partial q}(p(t),q(t))\dot{q}(t) = 0$$

$$\Rightarrow H(p(t),q(t)) = \mathrm{Constant} = H(p_{\mathrm{init}},q_{\mathrm{init}})$$

along the exact solution.

Question: Design and analysis of energy-preserving numer. schemes for ODEs?

Answers 1996–: Brugnano, Celledoni, C., Gonzalez, Hairer, Iavernaro, McLachlan, McLaren, Miyatake, Owren, Quispel, Robidoux, Sato, Sun, Trigiante, Wang, Wu, Zhang, etc.

Recall: Hamiltonian system:

$$\dot{p}_k = -\frac{\partial H}{\partial q_k}(p,q), \quad \dot{q}_k = \frac{\partial H}{\partial p_k}(p,q), \quad \text{for} \quad k = 1, \dots, d.$$

with given initial values $p(t_0) = p_{\text{init}}, q(t_0) = q_{\text{init}}$.

Property: The flow $\varphi_t(p_{\text{init}}, q_{\text{init}}) := (p(t, t_0, p_{\text{init}}, q_{\text{init}}), q(t, t_0, p_{\text{init}}, q_{\text{init}}))$ of the above problem is symplectic (*Poincaré* 1899):

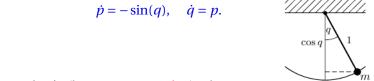
$$\varphi'_t(y)^T J \varphi'_t(y) = J$$
 for all $y = (p, q)$,

where $J = \begin{pmatrix} 0 & \text{Id} \\ -\text{Id} & 0 \end{pmatrix}$.

Question: Design and analysis of symplectic numerical schemes?

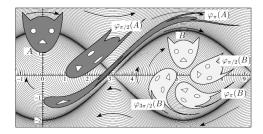
Answers 1956–: Bochev, de Vogelaere, Feng Kang, Hairer, Lasagni, Reich, Ruth, Sanz-Serna, Scovel, Suris, etc.

The mathematical pendulum has $H(p,q) = \frac{1}{2}p^2 - \cos(q)$ and the Hamiltonian



(IV)

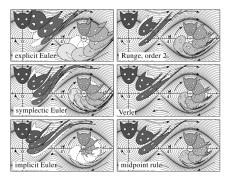
The flow is symplectic (here area preserving), phase space (q, p):



@ Book: Hairer, Wanner, Lubich, Geometric Numerical Integration 2006

Symplectic integrators

For ODE $\dot{y}(t) = f(y(t)), y(0) = y_0$ (the mathematical pendulum here):



Euler's scheme: $y_{n+1} = y_n + hf(y_n) \approx y(t_{n+1})$ is not symplectic. The midpoint rule: $y_{n+1} = y_n + hf\left(\frac{y_n + y_{n+1}}{2}\right) \approx y(t_{n+1})$ is symplectic. Important for long-term numerical simulations in molecular dynamics or planetary motions (movie click). Keyword: Backward Error Analysis.

@ Book: Hairer, Wanner, Lubich, Geometric Numerical Integration 2006

Deterministic Poisson systems

Recall: Hamiltonian systems (setting y = (p, q)): $\dot{y} = J^{-1}\nabla H(y)$, with the skew-symmetric constant (symplectic) matrix $J = \begin{pmatrix} 0 & Id \\ -Id & 0 \end{pmatrix}$.

Given a Hamiltonian H and a matrix B(y) (satisfying some properties), the ODE

 $\dot{y} = B(y)\nabla H(y)$

is called a Poisson system. The matrix *B* is called the Poisson matrix.

Properties of the exact solution: The Hamiltonian is a conserved quantity. The flow of this ODE is a Poisson map (generalisation of symplecticity). One may have a Casimir function C (first integrals).

Question: Design and analysis of numerical schemes with such properties?

Answers 1988–: Channel, C., Ge, Hairer, Karasözen, McLachlan, Marsden, Reich, Scovel, etc.

Deterministic free rigid body

Recall: Poisson problem: $\dot{y} = B(y)\nabla H(y)$.

The equations for a free rigid body reads

 $\dot{y}(t)=B(y(t))\nabla H(y(t)),$

where $y = (y_1, y_2, y_3)^{\top}$ represents the angular momentum in the body frame, $I = (I_1, I_2, I_3)$ are the principal moments of inertia and $B(y) = \begin{pmatrix} 0 & -y_3 & y_2 \\ y_3 & 0 & -y_1 \\ -y_2 & y_1 & 0 \end{pmatrix}$. The Hamiltonian $H(y) = \frac{1}{2} (y_1^2/I_1 + y_2^2/I_2 + y_3^2/I_3)$ and the Casimir $C(y) = \frac{1}{2} (y_1^2 + y_2^2 + y_3^2)$ are conserved quantities.

Further examples: Lotka–Volterra equation from population dynamics, discretisations of Euler's equations in fluid dynamics, etc.

Goal of presentation: Analyse (explicit) splitting integrators for random perturbations of Poisson systems.

A map C(y) is a Casimir for the Poisson ODE $\dot{y} = B(y)\nabla H(y)$ if $\nabla C(y)B(y) = 0$ for all y. Hence C(y) is also a first integral.

II. Background material on SDEs

Thanks to www.images.google.com

Stochastic differential equations (settings)

ODE. Given $f : \mathbb{R} \to \mathbb{R}$ and an initial value x(0), we look for a solution to

$$\dot{x}(t) := \frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t)) \Longleftrightarrow x(t) - x(0) = \int_0^t f(x(s)) \,\mathrm{d}s.$$

SDE. Given $f, g: \mathbb{R} \to \mathbb{R}$ and a (non-random) initial value X_0 , a stochastic process $X_t := X(t) = \{X_t(\omega)\}_{t \in [0,T]} = \{X(t,\omega)\}_{t \in [0,T]}$ is a solution to the SDE

 $dX_t = f(X_t)dt + g(X_t)dW_t$, with initial value X_0

if X_t solves the integral equation

$$X_t - X_0 = \int_0^t f(X_s) \, \mathrm{d}s + \int_0^t g(X_s) \, \mathrm{d}W_s.$$

Note: X_t is a stochastic process: i. e. a random variable for each time t (on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$).

Note: Have to define W_t and the stochastic integral $\int_0^t g(X_s) dW_s$.

Brownian motion

Definition. The stochastic process W_t is a Brownian motion or standard Wiener process over [0, T] if

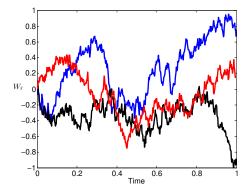
- $W_0 = 0$ a.s.
- For any $0 \le s < t \le T$, $W_t W_s \sim N(0, t s)$ (normally dist.).

- Independent increments: For $0 \le s \le t \le u \le v \le T$ the increments $W_t W_s$ and $W_v W_u$ are independent.
- W_t has a.s. cont. samples \wedge nowhere diff.

 \implies At any time t, W_t is a random variable: $W_t = W_t - W_0 \sim N(0, t)$ and so $\mathbb{E}[W_t] = 0$ and $\mathbb{E}[W_t^2] = t$.

Brownian motion

Numerical illustration: Discretised Brownian paths over [0, 1].



 \implies W_t is continuous but nowhere differentiable!!

Stochastic differential equations

Recall SDE: Given $f, g: \mathbb{R} \to \mathbb{R}$ and a (non-random) initial value X_0 , a stochastic process X_t is a solution to the SDE

 $\mathrm{d}X_t = f(X_t)\mathrm{d}t + g(X_t)\mathrm{d}W_t$

if X_t solves the integral equation

$$X_t - X_0 = \int_0^t f(X_s) \, \mathrm{d}s + \int_0^t g(X_s) \, \mathrm{d}W_s.$$

Note: W_s not differentiable (not even finite variation) so that we have to be careful with the definition of the above stochastic integral.

Stochastic integrals

For a deterministic function $h: \mathbb{R} \to \mathbb{R}$ and a partition $t_n = n\delta t$ with $\delta t = T/N$, one defines:

Deterministic Riemann integrals

$$\int_{0}^{T} h(t) dt = \lim_{\delta t \to 0} \sum_{n=0}^{N-1} h(t_n)(t_{n+1} - t_n)$$
$$= \lim_{\delta t \to 0} \sum_{n=0}^{N-1} h\left(\frac{t_n + t_{n+1}}{2}\right)(t_{n+1} - t_n)$$

Stochastic Itô integrals for stochastic process h(t) (left endpoints)

$$\int_0^T h(t) \, \mathrm{d}W_t \stackrel{L^2}{=} \lim_{\delta t \to 0} \sum_{n=0}^{N-1} h(t_n) \underbrace{(W_{t_{n+1}} - W_{t_n})}_{\sim N(0, t_{n+1} - t_n)}.$$

Stochastic Stratonovich integrals for stochastic process h(t) (midpoint)

$$\int_0^T h(t) \circ dW_t \stackrel{L^2}{=} \lim_{\delta t \to 0} \sum_{n=0}^{N-1} h\left(\frac{t_n + t_{n+1}}{2}\right) \underbrace{(W_{t_{n+1}} - W_{t_n})}_{\sim N(0, t_{n+1} - t_n)}.$$

III. Drift-preserving schemes for problems with additive noise

Thanks to www.images.google.com

Stochastic Poisson problem

For an integer m > 0 and a nice potential $V : \mathbb{R}^m \to \mathbb{R}$, consider the separable Hamiltonian

$$H(p,q) = \frac{1}{2} \sum_{j=1}^{m} p_j^2 + V(q).$$

Problem: Set X(t) = (p(t), q(t)) and consider Poisson system with additive noise:

$$\mathrm{d}X(t) = B(X(t))\nabla H(X(t))\,\mathrm{d}t + \begin{pmatrix} \Sigma \\ 0 \end{pmatrix} \mathrm{d}W(t).$$

Here, $B(X) \in \mathbb{R}^{2m \times 2m}$ is a smooth skew-symmetric matrix, $\Sigma \in \mathbb{R}^{m \times d}$ and $W(t) \in \mathbb{R}^{d}$.

Examples:

Generalisation of stoch. Hamilton systems taking

 $B(X) = J^{-1} = \begin{pmatrix} 0 & -Id_m \\ Id_m & 0 \end{pmatrix}$ constant matrix. Obs: odd dimension also ok! Stochastic free rigid body (*B*(*X*) not constant), Lotka–Volterra systems, etc.

Stochastic Poisson problem

(II)

Recall: Poisson system with additive noise:

```
\mathrm{d}X(t) = B(X(t))\nabla H(X(t))\,\mathrm{d}t + \begin{pmatrix} \Sigma \\ 0 \end{pmatrix} \mathrm{d}W(t).
```

Proposition (C., Vilmart 20^{*},21): Trace formula for the energy: Along the exact solution to the above SDE, one has

$$\mathbb{E}[H(X(t))] = \mathbb{E}[H(X_0)] + \frac{1}{2}\operatorname{Tr}(\Sigma^{\top}\Sigma)t \quad \text{for all time} \quad t > 0.$$

The proof is done using Ito's formula.

Question: What about numerical discretisation?

Drift-preserving scheme for stochastic Poisson problem (I)

Recall: Poisson system with additive noise:

$$\mathrm{d}X(t) = B(X(t))\nabla H(X(t))\,\mathrm{d}t + \begin{pmatrix} \Sigma \\ 0 \end{pmatrix} \mathrm{d}W(t).$$

Based on a splitting idea, we propose a new drift-preserving scheme for stochastic Poisson problem:

$$Y_{1} := X_{n} + {\binom{\Sigma}{0}} \left(W(t_{n} + \frac{h}{2}) - W(t_{n}) \right),$$

$$Y_{2} := Y_{1} + hB \left(\frac{Y_{1} + Y_{2}}{2} \right) \int_{0}^{1} \nabla H(Y_{1} + \theta(Y_{2} - Y_{1})) d\theta,$$

$$X_{n+1} = Y_{2} + {\binom{\Sigma}{0}} \left(W(t_{n+1}) - W(t_{n} + \frac{h}{2}) \right),$$

where h > 0 is the stepsize of the numerical scheme and $t_n = nh$.

Drift-preserving scheme for stochastic Poisson problem (II)

Recall: The exact solution to the Poisson system with additive noise

$$\mathrm{d}X(t) = B(X(t))\nabla H(X(t))\,\mathrm{d}t + \begin{pmatrix} \Sigma \\ 0 \end{pmatrix} \mathrm{d}W(t).$$

has the trace formula for the energy

$$\mathbb{E}[H(X(t))] = \mathbb{E}[H(X_0)] + \frac{1}{2}\operatorname{Tr}(\Sigma^{\top}\Sigma)t \quad \text{for all time} \quad t > 0.$$

Our splitting scheme satisfies:

Theorem (C., Vilmart 20^{*}, 21): Numerical trace formula for the energy

$$\mathbb{E}[H(X_n)] = \mathbb{E}[H(X_0)] + \frac{1}{2} \operatorname{Tr}(\Sigma^{\top} \Sigma) t_n \quad \text{for all discrete times} \quad t_n = nh,$$

where $n \in \mathbb{N}$.

Drift-preserving scheme for stochastic Poisson problem (III)

To show: Drift-preserving scheme: $\mathbb{E}[H(X_n)] = \mathbb{E}[H(X_0)] + \frac{1}{2} \operatorname{Tr}(\Sigma^{\top} \Sigma) t_n$. The first step of the drift-preserving scheme can be rewritten as

$$Y_1 = X_n + \int_{t_n}^{t_n + \frac{h}{2}} {\binom{\Sigma}{0}} dW(s)$$

and an application of Itô's formula gives

$$\mathbb{E}[H(Y_1)] = \mathbb{E}[H(X_n)] + \frac{h}{4}\operatorname{Tr}(\Sigma^{\top}\Sigma).$$

Second step of the scheme is a deterministic energy-preserving scheme:

 $\mathbb{E}[H(Y_2)] = \mathbb{E}[H(Y_1)].$

The last step of the numerical integrator gives

$$\mathbb{E}[H(X_{n+1})] = \mathbb{E}[H(Y_2)] + \frac{h}{4}\operatorname{Tr}(\Sigma^{\top}\Sigma) = \mathbb{E}[H(Y_1)] + \frac{h}{4}\operatorname{Tr}(\Sigma^{\top}\Sigma)$$
$$= \mathbb{E}[H(X_n)] + \frac{h}{2}\operatorname{Tr}(\Sigma^{\top}\Sigma).$$

A recursion now completes the proof.

Drift-preservation of Casimirs

If the original ODE has a quadratic Casimir $C(X) = \frac{1}{2}X^{\top}AX$, with a symmetric constant matrix $A = \begin{pmatrix} a & b \\ b^{\top} & c \end{pmatrix}$ with $a, b, c \in \mathbb{R}^{m \times m}$, then

Theorem (C., Vilmart 20^{*},21): Trace formula for the Casimir (exact solution)

$$\mathbb{E}[C(X(t))] = \mathbb{E}[C(X_0)] + \frac{1}{2}\operatorname{Tr}(\Sigma^{\top} a\Sigma) t \text{ for all time } t > 0.$$

Numerical trace formula for the Casimir (numerical solution)

 $\mathbb{E}[C(X_n)] = \mathbb{E}[C(X_0)] + \frac{1}{2} \operatorname{Tr}(\Sigma^{\top} a \Sigma) t_n \quad \text{for all discrete times} \quad t_n = nh,$ where $n \in \mathbb{N}$.

A map C(X) is a Casimir for the Poisson ODE $\dot{X} = B(X)\nabla H(X)$ if $\nabla C(X)B(X) = 0$ for all X. Hence C(X) is also a first integral.

Rates of convergence of the drift-preserving scheme

The proposed drift-preserving scheme has the following rates of convergence under the standard setting.

Theorem (C., Vilmart 20^{*},21): Mean-square order of convergence 1:

$$\left(\mathbb{E}[\|X(t_n) - X_n\|^2]\right)^{1/2} \le Ch.$$

Weak convergence of order 2:

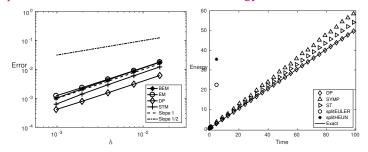
 $|\mathbb{E}[\Phi(X(t_n))] - \mathbb{E}[\Phi(X_n)]| \le Ch^2,$

for all test functions $\Phi \in C_p^6(\mathbb{R}^{2m},\mathbb{R})$, the space of C^6 functions with all derivatives up to order 6 with at most polynomial growth.

Linear stochastic oscillator

Problem: $dX(t) = B(X(t))\nabla H(X(t)) dt + \Sigma dW(t)$, where X = (p, q), $H(p, q) = \frac{1}{2}p^2 + \frac{1}{2}q^2$ and with $\Sigma = 1$ and W scalars. For this problem, the drift-preserving scheme is an explicit time integrator!

Mean-square error and trace formula for the energy:



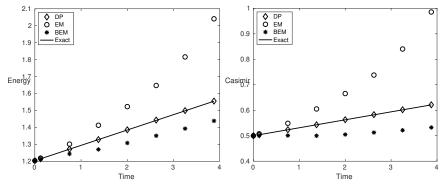
Drift-preserving scheme (DP), the splitting methods with the symplectic Euler method (SYMP), the Störmer–Verlet method (ST), the explicit Euler method (splitEULER), or the Heun method (splitHEUN).

Parameters: (p(0), q(0)) = (0, 1), time interval [0, 100] with 2⁷ step sizes, $M_s = 10^6$ samples.

Stochastic rigid body

Problem: $dX(t) = B(X(t))\nabla H(X(t)) dt + \Sigma dW(t)$, where Hamiltonian $H(X) = \frac{1}{2} (X_1^2/I_1 + X_2^2/I_2 + X_3^2/I_3)$, and quadratic Casimir $C(X) = \frac{1}{2} (X_1^2 + X_2^2 + X_3^2)$, with Σ and W scalars (acting on first component). Here, $X = (X_1, X_2, X_3)^{\top}$ and moments of inertia $I = (I_1, I_2, I_3)$.

Trace formula for the energy and the Casimir:



Parameters: X(0) = (0.8, 0.6, 0) and I = (0.345, 0.653, 1), stepsizes $h = 4/2^5$, time interval [0,4], $M_s = 2 \cdot 10^6$ samples.

IV. Splitting schemes for stochastic Poisson systems

Thanks to www.images.google.com

Stochastic Lie–Poisson problems

Consider stochastic Poisson systems of the form

$$\begin{cases} dy(t) = B(y(t))\nabla H(y(t)) dt + \sum_{k=1}^{m} B(y(t))\nabla \widehat{H}_{k}(y(t)) \circ dW_{k}(t), \\ y(0) = y_{0}, \end{cases}$$

with Hamiltonian functions $H, \hat{H}_1, \ldots, \hat{H}_m \colon \mathbb{R}^d \to \mathbb{R}$, with structure matrix $B \colon \mathbb{R}^d \to \mathbb{R}^{d \times d}$, and with independent standard real-valued Wiener processes W_1, \ldots, W_m .

Skew-symmetry: for every $y \in \mathbb{R}^d$ and for all $i, j \in \{1, ..., d\}$, one has

 $B_{ij}(y) = -B_{ji}(y).$

■ Jacobi identity: for every $y \in \mathbb{R}^d$ and for all $i, j, k \in \{1, ..., d\}$, one has

$$\sum_{\ell=1}^{d} \left(\frac{\partial B_{ij}(y)}{\partial y_{\ell}} B_{\ell k}(y) + \frac{\partial B_{jk}(y)}{\partial y_{\ell}} B_{\ell i}(y) + \frac{\partial B_{ki}(y)}{\partial y_{\ell}} B_{\ell j}(y) \right) = 0.$$

■ Lie–Poisson systems: *B* depends linearly on *y*.

Main results

Recall: SDE $dy(t) = B(y(t))\nabla H(y(t)) dt + \sum_{k=1}^{m} B(y(t))\nabla \widehat{H}_k(y(t)) \circ dW_k(t).$

Under technical assumptions, we:

- Prove that the flow of this SDE is a Poisson map: One has a.s., for all y, that $\varphi'_t(y)B(y)\varphi'_t(y)^{\top} = B(\varphi_t(y))$.
- Derive and analyse explicit splitting Poisson integrators for particular stochastic Lie–Poisson systems.
- Prove strong and weak convergence of such integrators, even when the coefficients of the problem are not globally Lipschitz continuous.
- Study asymptotic preserving schemes in the diffusion approximation regime.

Bréhier, C., Jahnke 2021*, 2023.

The Poisson map property

Recall: SDE $dy(t) = B(y(t))\nabla H(y(t)) dt + \sum_{k=1}^{m} B(y(t))\nabla \widehat{H}_k(y(t)) \circ dW_k(t).$

skip

Definition: Let D_y denote the Jacobian operator. Let $U \subset \mathbb{R}^d$ be an open set. A transformation $\varphi: U \to \mathbb{R}^d$ is called a *Poisson map* for the above SDE, if one has, almost surely, for all $y \in \mathbb{R}^d$,

 $D_y \varphi(y) B(y) D_y \varphi(y)^T = B(\varphi(y)).$

Remark: Observe that a composition of Poisson maps is a Poisson map.

Theorem: Introduce the flow $(t, y) \rightarrow \varphi_t(y)$ of the above SDE with coefficients of class \mathscr{C}^3 . Assume that the flow is globally well defined and of class \mathscr{C}^1 with respect to the variable *y*. Then, for all $t \ge 0$, φ_t is a Poisson map: almost surely, for all $y \in \mathbb{R}^d$, one has

 $D_y \varphi_t(y) B(y) D_y \varphi_t(y)^T = B(\varphi_t(y)).$

Remark: *Hong, Ruan, Sun, Wang* 21: Proof needs Darboux–Lie theorem and to rewrite SDE. Their Poisson integrators in turn need transformations and are usually implicit.

Stoch. Poisson integrators based on splitting schemes Recall: SDE $dy(t) = B(y(t))\nabla H(y(t)) dt + \sum_{k=1}^{m} B(y(t))\nabla \hat{H}_k(y(t)) \circ dW_k(t)$. Assumption: The Hamiltonian *H* can be split as follows: $H = \sum_{k=1}^{p} H_k$ for some $p \ge 1$.

Let h > 0 be the time step size. A numerical scheme is defined as

$$y^{[n]} = \Phi_h(y^{[n-1]}, \Delta_n W_1, \dots, \Delta_n W_m),$$

with Wiener increments $\Delta_n W_k = W_k(nh) - W_k((n-1)h)$, k = 1, ..., m. Provides numerical approximations: $y^{[n]} \approx y(nh)$.

Splitting schemes:

 $\Phi_{h}(\cdot) = \Phi_{h}(\cdot, \Delta W_{1}, \dots, \Delta W_{m}) = \exp(hY_{H_{p}}) \circ \exp(hY_{H_{p-1}}) \circ \dots \circ \exp(hY_{H_{1}})$ $\circ \exp(\Delta W_{m}Y_{\widehat{H}_{m}}) \circ \exp(\Delta W_{m-1}Y_{\widehat{H}_{m-1}}) \circ \dots \circ \exp(\Delta W_{1}Y_{\widehat{H}_{1}}),$

where $Y_{H_k} = B\nabla H_k$, resp. $Y_{\widehat{H}_k} = B\nabla \widehat{H}_k$, denote the vector fields of the corresponding differential equations.

Convergence of the Lie–Poisson splitting schemes

Recall: SDE $dy(t) = B(y(t))\nabla H(y(t)) dt + \sum_{k=1}^{m} B(y(t))\nabla \widehat{H}_{k}(y(t)) \circ dW_{k}(t)$. Splitting scheme: $\Phi_{h}(\cdot) = \exp(hY_{H_{p}}) \circ \ldots \circ \exp(\Delta W_{m}Y_{\widehat{H}_{m}}) \circ \ldots \circ \exp(\Delta W_{1}Y_{\widehat{H}_{1}})$.

Theorem: Assume SDE admits a Casimir function with compact level sets. Strong convergence. Assume $B \in \mathscr{C}^2$, $H_1, \ldots, H_p \in \mathscr{C}^2$, and $\hat{H}_1, \ldots, \hat{H}_m \in \mathscr{C}^3$. Then the splitting scheme has strong order of convergence equal to 1/2: for all $T \in (0, \infty)$ and all $y_0 \in \mathbb{R}^d$, there exists a real number $c(T, y_0) \in (0, \infty)$ such that

$$\sup_{0 \le n \le N} \left(\mathbb{E} \left[\| y(nh) - y^{[n]} \|^2 \right] \right)^{1/2} \le c(T, y_0) h^{\frac{1}{2}}$$

with time step size h = T/N, and $y^{[0]} = y_0 = y(0)$.

Weak convergence. Assume $B \in \mathscr{C}^5$, $H_1, \ldots, H_p \in \mathscr{C}^5$, and $\hat{H}_1, \ldots, \hat{H}_m \in \mathscr{C}^6$. Then the splitting scheme has weak order of convergence equal to 1: for all $T \in (0, \infty)$ and all $y_0 \in \mathbb{R}^d$, and any test function $\phi \colon \mathbb{R}^d \to \mathbb{R}$ of class \mathscr{C}^4 with bounded derivatives, there exists a real number $c(T, y_0, \phi) \in (0, \infty)$ such that

 $\sup_{0 \le n \le N} \left| \mathbb{E} \left[\phi \left(y(nh) \right) \right] - \mathbb{E} \left[\phi \left(y^{[n]} \right) \right] \right| \le c(T, y_0, \phi) h.$

Main steps for the proofs

Recall: SDE $dy(t) = B(y(t))\nabla H(y(t)) dt + \sum_{k=1}^{m} B(y(t))\nabla \hat{H}_{k}(y(t)) \circ dW_{k}(t)$. Splitting scheme: $\Phi_{h}(\cdot) = \exp(hY_{H_{p}}) \circ \ldots \circ \exp(\Delta W_{m}Y_{\hat{H}_{m}}) \circ \ldots \circ \exp(\Delta W_{1}Y_{\hat{H}_{1}})$. Strong order 1/2, weak order 1.

1 Show a.s bounds for the exact and numerical solutions:

 $\sup_{t \in [0,T]} \|y(t)\| \le R(y_0), \quad \sup_{N \ge 1} \sup_{0 \le n \le N} \|y^{[n]}\| \le R(y_0),$

skip

where R(y₀) = max<sub>y∈ℝ^d,C(y)=C(y₀) ||y||, and R(y₀) < ∞.
Use: Splitting scheme is a Poisson integrator hence preserve Casimir C.
2 Show strong and weak convergence for the auxiliary problem
</sub>

$$dz(t) = \sum_{k=1}^{p} f_k(z(t)) dt + \sum_{k=1}^{m} \widehat{f}_k(z(t)) \circ dW_k(t),$$

with smooth globally Lipschitz continuous functions f_k and f_k.
Use: Fundamental theorem by Milstein and the Talay–Tubaro argument.
Conclude to show the convergence results for the above Poisson systems.
Use: Combine above two steps.

Stochastic Maxwell–Bloch equations

Problem: Let d = 3. The deterministic Maxwell–Bloch equations from laser-matter dynamics read

 $\begin{cases} \dot{y}_1 = y_2 \\ \dot{y}_2 = y_1 y_3 \\ \dot{y}_3 = -y_1 y_2. \end{cases}$

This system is a deterministic Lie–Poisson system with Poisson matrix, Hamiltonian and Casimir functions given by

$$B(y) = \begin{pmatrix} 0 & -y_3 & y_2 \\ y_3 & 0 & 0 \\ -y_2 & 0 & 0 \end{pmatrix}, \quad H(y) = \frac{1}{2}y_1^2 + y_3, \quad C(y) = \frac{1}{2}(y_2^2 + y_3^2),$$

respectively, for all $y = (y_1, y_2, y_3) \in \mathbb{R}^3$.

Consider the following stochastic version of the Maxwell-Bloch system:

 $dy = B(y) \left(\nabla H(y) dt + \sigma_1 \nabla \hat{H}_1(y) \circ dW_1(t) + \sigma_3 \nabla \hat{H}_3(y) \circ dW_3(t) \right),$ where $\hat{H}_1(y) = \frac{1}{2}y_1^2$ and $\hat{H}_3(y) = y_3, \sigma_1, \sigma_3 \ge 0$, driven by two independent Wiener processes W_1 and W_3 .

Stochastic Maxwell–Bloch equations

(II)

Recall: $dy = B(y) (\nabla H(y) dt + \sigma_1 \nabla \hat{H}_1(y) \circ dW_1(t) + \sigma_3 \nabla \hat{H}_3(y) \circ dW_3(t)),$ where $H(y) = \frac{1}{2}y_1^2 + y_3$ with $H_1(y) = \hat{H}_1(y) = \frac{1}{2}y_1^2$ and $H_3(y) = \hat{H}_3(y) = y_3.$

The Hamiltonian *H* is split as $H = H_1 + H_3$.

The two associated deterministic subsystems can be solved exactly as follows: The deterministic subsystem corresponding with the vector field $Y_{H_1} = B\nabla H_1$ is given by

$$\dot{y}_1 = 0$$

 $\dot{y}_2 = y_3 y_1$
 $\dot{y}_3 = -y_2 y_1.$

Observe that y_1 is constant and thus (y_2, y_3) is solution to the standard harmonic oscillator: the exact solution of the first subsystem is thus given by

$$\exp(tY_{H_1})y(0) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos(y_1(0)t) & \sin(y_1(0)t)\\ 0 & -\sin(y_1(0)t) & \cos(y_1(0)t) \end{pmatrix} y(0)$$

for all $t \in \mathbb{R}$ and $y(0) \in \mathbb{R}^3$. Obs. $Y_{H_3} = B\nabla H_3$ and stoch. parts ok!

Stochastic Maxwell–Bloch equations

Recall: $dy = B(y) \left(\nabla H(y) dt + \sigma_1 \nabla \widehat{H}_1(y) \circ dW_1(t) + \sigma_3 \nabla \widehat{H}_3(y) \circ dW_3(t) \right).$ The splitting integrator then reads

 $\Phi_h = \exp(hY_{H_3}) \circ \exp(hY_{H_1}) \circ \exp(\sigma_3 \Delta W_3 Y_{\hat{H}_3}) \circ \exp(\sigma_1 \Delta W_1 Y_{\hat{H}_1}),$

where for all $y \in \mathbb{R}^3$ one has

and

$$\exp(\sigma_{1}\Delta W_{1}Y_{\widehat{H}_{1}})y = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(y_{1}\sigma_{1}\Delta W_{1}) & \sin(y_{1}\sigma_{1}\Delta W_{1}) \\ 0 & -\sin(y_{1}\sigma_{1}\Delta W_{1}) & \cos(y_{1}\sigma_{1}\Delta W_{1}) \end{pmatrix} y$$
$$\exp(\sigma_{3}\Delta W_{3}Y_{\widehat{H}_{3}})y = \begin{pmatrix} 1 & \sigma_{3}\Delta W_{3} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} y.$$

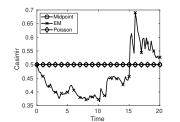
Remark: This explicit splitting scheme is a stochastic Poisson integrator: the numerical map is a Poisson map and it preserves all Casimirs of the SDE.

Free rigid body with random inertia tensor

Problem: Let
$$H(y) = \sum_{k=1}^{3} \frac{y_k^2}{I_k}$$
, $\hat{H}_k(y) = \frac{y_k^2}{\hat{I}_k}$, for $k = 1, 2, 3$, and consider

$$d\begin{pmatrix} y_1\\y_2\\y_3 \end{pmatrix} = B(y) \left(\nabla H(y) dt + \nabla \widehat{H}_1(y) \circ dW_1(t) + \nabla \widehat{H}_2(y) \circ dW_2(t) \right)$$
$$+ \nabla \widehat{H}_3(y) \circ dW_3(t) \right).$$

Casimir: The above SDE has a conserved quantity, the Casimir: $C(y) = y_1^2 + y_2^2 + y_3^2.$



 (\mathbf{I})

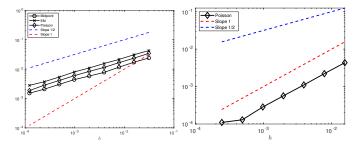
Free rigid body with random inertia tensor

Problem: Let
$$H(y) = \sum_{n=1}^{3} \frac{y_n^2}{I_n}$$
, $\widehat{H}_k(y) = \frac{y_k^2}{\widehat{I}_k}$, for $k = 1, 2, 3$, and consider

$$d\begin{pmatrix} y_1\\y_2\\y_3 \end{pmatrix} = B(y) \left(\nabla H(y) \, \mathrm{d}t + \nabla \widehat{H}_1(y) \circ \mathrm{d}W_1(t) + \nabla \widehat{H}_2(y) \circ \mathrm{d}W_2(t) \right)$$
$$+ \nabla \widehat{H}_3(y) \circ \mathrm{d}W_3(t) \right).$$

(II)

Strong and weak convergence:

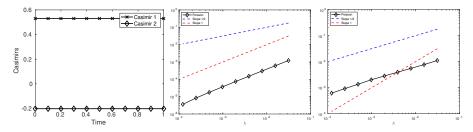


Stoch. Poisson integrators for the stochastic sine–Euler syst.

The sine–Euler equations consist of a finite-dimensional truncation of the two-dimensional Euler equations in fluid dynamics (Zeitlin 1991).

We consider random perturbations of such systems (horrible equations).

2 Casimirs (quadratic and cubic), ms order 1 (one noise), ms order 1/2 (3 noises):



Thanks for your attention!!

David Cohen, Gilles Vilmart: *Drift-preserving numerical integrators for stochastic Poisson systems*, 2020*, Int. J. Comput. Math, 2021 Charles-Edouard Bréhier, David Cohen, Tobias Jahnke: *Splitting integrators for stochastic Lie–Poisson systems*, 2021*, to appear Math. Comp 2023

Thanks to www.images.google.com and Konstantinos Dareiotis

Strang version

SDE

$$dy(t) = B(y(t))\nabla H(y(t)) dt + \sum_{k=1}^{m} B(y(t))\nabla \widehat{H}_{k}(y(t)) \circ dW(t)$$

with
$$H(y) = \sum_{k=1}^{p} H_k$$
.
Strang version

 $\Phi_{h}(\cdot) = \exp(hY_{H_{p}}) \circ \dots \circ \exp(hY_{H_{1}})$ $\circ \exp(\Delta W/2Y_{\widehat{H}_{1}}) \circ \dots \exp(\Delta WY_{\widehat{H}_{w}}) \circ \dots \circ \exp(\Delta W/2Y_{\widehat{H}_{1}})$

Order: 1/2 in mean-square sense and 2 in the weak sense.