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Executive summary

Limerick Wave Ltd. has developed an innovative wave energy converter (WEC) technology. They
use a recently-patented flywheel technology to use the power from the movement of the waves (via the
movement of a cylindrical floatation device) to generate electricity. The use of flywheel technology in
this area is novel in that its rotation is unidirectional despite the bi-directional natural oscillation of the
floatation device.

In this report a mathematical description (model) of the WEC device’s operations is presented.
Limerick Wave’s current experimental prototype is a 1:20 model; this model serves as a way to check
the performance of a scaled-up rig. The model allows Limerick Wave to fine-tune their device’s design
in order to maximise, say, the energy extracted from the ocean waves.

By applying standard physical laws (conservation of angular momentum etc.) to the device’s opera-
tion, we show that such a device will demonstrate periodic behaviour regardless of its initial orientation.
A crucial finding of the report concerns the power take-off mechanism. We identify two qualitatively
different operational states: the first (second) state corresponds to extracting a small (large) amount of
energy per cycle. Each operational state has its own benefits and shortcomings – these are examined in
detail in the report.

We perform a preliminary run of device-tuning; we take data from the observation buoys in Galway
Bay to compute an optimum arm length for the device for harnessing power from the ocean. The data
contains a strong seasonal variance and this is incorporated into the optimisation.

∗Please send any correspondences to this author.
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1 Introduction

The world’s energy consumption is estimated to rise considerably over the next decades and, in light of the
constant reminders of the environmental impact of some of the traditional methods of energy production,
governments have seen the urgent need for pollution-free power generation [2]. One of the renewable energies
being investigated is wave power and the development of efficient wave energy converters (WECs).

The idea of wave energy extraction is not new, in fact it is at least two centuries old. The possibility that
wave energy could be converted into usable energy has inspired numerous inventors and resulted in countless
inventions. The earliest such invention to be patented was made in France in 1799 and by 1980 more than
one thousand such patents had been registered [3]. With increased funding being put into research and
development projects worldwide, and particularly in the EU, this number is ever increasing.

The global power potential represented by waves that hit all coasts worldwide has been estimated to be
in the order of one terawatt (∼ 1012 W) [4]. If wave energy is harvested on the open ocean, energy that
is otherwise lost in friction and wave breaking may be utilised and the previous estimate increases by one
order of magnitude (∼ 1013 W). This figure is comparable with the present world power consumption. An
important feature of sea waves is that they have the highest energy density among the renewable energies
[2]. Wave energy is derived from winds which blow across the oceans. As wind energy is converted to wave

energy the average power flow intensity increases from ∼ 0.5 kW/m
2

to ∼ 3 kW/m
2

[4]. Certain geographical
areas also have higher wave power levels than others. Averaged over years, offshore wave power levels of
30−100 kW/m are found at latitudes 40◦−50◦ and less power further north and south [4]. In terms of wave
energy generation potential, this is very encouraging from an Irish and European prospective. In particular,
power levels1 of up to 75 kW/m have been assigned to areas off Ireland and Scotland.

Despite all the recent investment in wave power, the worldwide installed capacity of wave power remains
stubbornly low. Thus it is important to ask why. Clément et al. [2] identifies three key difficulties facing
wave power development:

1. Irregularity in wave amplitude, phase, and direction: it is difficult to obtain maximum efficiency of a
device over the entire range of excitation frequencies.

2. The structural loading in the event of extreme weather conditions, such as hurricanes, may be as high
as 100 times the average loading.

3. The coupling of the irregular, slow motion (frequency ∼ 0.1 Hz) of a wave to electrical generators
requiring typically ∼ 500 times greater frequency.

The power take-off mechanism (PTO) should allow the production of usable energy [4, 3]. However, the
barrier to this goal is that the wave power varies on several scales: wave periods, hours, days, weeks, seasons,
and years.

Currently there is a wide variety of wave energy technologies and recent reviews have identified about
one hundred projects at various stages of development. Falcão [3] contains descriptions of some of these
technologies. The WEC system developed by Limerick Wave has a number of distinguishing and innovative
features. Unlike many other WEC devices, the device of Limerick Wave incorporates a mechanical power
take off, rather than a hydraulic power take off. The oscillatory motion of a cylindrical floatation device,
connected to a gear box by a rigid arm, is used to drive a gearbox. Inside the gear box the low frequency
oscillations are ramped up to high frequencies by specifying the gear ratio. The bi-directional natural
oscillations of the floatation device are also rectified by a mechanical diode within the gearing. The rectified
output then drives the flywheel. This patented flywheel system can be used as a capacitor to store and
smooth the energy supplied to the generator. For example when the energy input to the system is large
the flywheel can be used to store energy and then when energy input is low, the flywheel can supply energy
to the generator. The system also features a 360◦ driving arc making it robust to storm conditions, which
present a problem to some other WECs. An illustration of the WEC device is shown in Figure 1. The main
cylindrical unit of the device, which consists of a generator connected to the gearing system to generate
energy from mechanical advantage of the flywheel, is mounted on a frame which is moored to the seabed.

1This quantity is the amount of power per unit of wave-crest length [5]; hence, the quantity 75 kW/m means there are 75
kilowatts of power potential per meter of wave crest.
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Figure 1: Illustration of WEC device moored to seabed.

All the necessary controls are housed within the sealed cylindrical unit. The WEC device can be placed
beneath or sitting on the water while the cylindrical floats rests in the water. Limerick Wave claim their
device offers five key advantages over existing designs:

1. Energy is fed to the flywheel within the sealed cylindrical unit by the forward and reverse rotating
cylinder due to the reciprocating motion of the water surface. The rotation of the flywheel is unidi-
rectional despite the rotation of the cylinder being bi-directional. This design can have more than one
generator within the sealed unit, enabling it to deal with changing energy input levels.

2. The main body of the unit can be below sea level, protecting it from the harshness of the environment.

3. The wave energy conversion device houses the primary converter; the PTO system and the energy is
converted to electrical energy within the sealed unit. This sealed unit provides a protected environment
for the control and optimisation of the energy from the flywheel. The main or expensive components
are housed within the sealed unit. The use of a flywheel is an efficient way of storing energy and
smoothing out the input.

4. Supercapacitor lifetime issues seriously limit the application of wave energy power smoothing, and to
fulfil power smoothing requirements it is necessary to use kinetic energy storage of high speed inertia.
The flywheel used in the PTO system addresses this concern.

5. This is a power take-off unit, which is missing within the industry. In proving this concept a major
deficiency in the industry will be addressed.

In general the development of such a concept to the commercial stage has been found to be difficult, slow,
and expensive [3]. Thus the use of mathematical and numerical modelling can be very useful to determine,
first of all the viability of a system, and then the optimal combination of system parameters to achieve
the best results. Such results are extremely valuable before investing in designing and building large scale
models. In the Limerick Wave case, three main challenges have been presented to the Study Group:

1. Develop a hydrodynamic model for an incoming regular wave.

2. Provide a model of the power take-off mechanism.
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Figure 2: Left: scaled version of Limerick Wave’s WEC device. Right: miniature working model of Limerick
Wave’s floating WEC device with mechanical diode

3. Examine how the hydrodynamic model and mechanical model can be combined; in particular whether
they can be combined in a linear way, or whether a non-linear approach is required.

While this report focuses mainly on the second challenge, it deals with aspects of all three.

2 Model formulation

We model Limerick Waves’s WEC device as a generator, which is mounted on a frame moored to the seabed,
connected through a gearing system to a flywheel. The flywheel is driven by a rigid arm with a floatation
device connected to its end that, in turn, follows the ocean’s waves. The arm is free to move in a full 360◦

rotation about its pivot point in the frame. Due to the presence a mechanical rectifier in the gearing, the
rotation of the flywheel is unidirectional despite the rotation of the arm being bi-directional.

Let the quiescent height of the sea be located a distance Y above the centre of the flywheel/gearbox
as shown in Figure 3. Attached to the flywheel is an arm of length L which is, in turn, connected to a
floating device – in this case a cubic box of side length H. The angle θ(t) is the angle that the arm makes
with the horizontal, which will be a function of time. The wave is assumed to be a sinusoidal displacement,
h(t) = ` sin Ωt, of the sea surface from its quiescent height, where ` is the wave amplitude and Ω is the wave
frequency. We assume here that the motion of the float and the flywheel do not affect the wave train. The
movement of the arm causes rotation of the flywheel through a gearbox in the device – the angular velocity
of the flywheel is ω(t).

The acceleration of the float (density ρf ) is determined by a balance of buoyancy (water density ρw)
and weight as shown in Figure 3. The buoyancy takes a maximum value when the float becomes totally
submerged and tends to zero as the float exits the water. For simplicity the float is assumed to be rectangular,
rather than the cylindrical shape envisaged by Limerick Wave. At the current level of analysis this choice
makes no difference to the dynamics. However, for future deployment, careful consideration should be given
to the float shape: particularly to reduce impact pressures if the float leaves and re-enters the water [6]. As
the float moves according to this force balance it generates a torque on the arm of the device which, in turn,
spins the flywheel as shown in Figure 4.

2.1 Conservation of angular momentum

By the conservation of angular momentum, the sum of the torques about a point should be proportional to
the angular acceleration

Ia =
∑

τ. (1)
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Figure 3: Top: model definitions and WEC schematic. Bottom: buoyancy force on float due to partially
submerged volume.

Consider the float’s angular momentum about its mount point, which comprises the torque due to the
buoyancy of the float and the torque due to the gearing

Iarmθ̈ = τfloat − sign
(
θ̇
)
τgear, (2)

where a dot above a variable indicates differentiation with respect to time. The flywheel’s angular momentum
comprises the torque due to the gearing and the torque due to the generator

Iflyω̇ = τgear + τgen, (3)

where Iarm is the moment of inertia of the arm and Ifly is the moment of inertia of the flywheel (incorporating
the gear ratio).

The torque due to the float is given by the equation

τfloat =

[
min

(
max

(
H

2
+ Y − L sin θ + h(t), 0

)
, H

)
Aρwg − ρfgHA

]
L cos θ, (4)

where A is the area of the bottom surface of the float and g is the acceleration due to gravity. Here the
minimum and maximum functions account for the fact that the vertical height of the submerged float varies
between 0 (when the float is out of the water) and H (when the float is completely submerged).

The torque extracted by the generator is taken to be proportional to the angular velocity ω of the flywheel

τgen = −kω, (5)

for a constant resistive load. The torque transmitted through the gears is

τgear =
1

β
H
(
|θ̇| − ω

)(
|θ̇| − ω

)
, (6)

where β is related to the elasticity of the gear teeth and H(s) is the Heaviside step function2. Consider (6)
in the small-β limit and consider the two cases separately: when the gears are engaged and when they are
not engaged.

2 The |θ̇| appearing in (6) is due to the device’s mechanical rectifier.
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Figure 4: Torque generation by wave transmitted through flywheel to the electrical generator.

When the gears engage, the angular velocity of the flywheel is equal to the rectified angular velocity of
the arm: ω = m|θ̇| from (6). Once the gears are engaged, then, τgear may be removed from equations (2)
and (3). The equations (2) and (3) may then be added, giving the equation

(Ifly + Iarm) θ̈ = τfloat + τgen. (7)

If the gears are not engaged, then |θ̇| < ω, and from (6) no torque gets transmitted through the gears:
τgear = 0. In this case (2) and (3) decouple into

Iarmθ̈ = τfloat, (8)

for the float, and
Iflyω̇ = τgen, (9)

for the flywheel.

2.2 Non-dimensionalisation

Let T be the characteristic timescale for the problem; we scale the time variable to t = Tt∗ and we scale
the angular velocity to ω = 1

T ω
∗. As in Subsection 2.1, we treat separately the cases of engaged gears and

disengaged gears.
If we drop the asterisks (which indicate dimensionless variables), then in the engaged case where ω = |θ̇|,

we have

Ifly

T 2

(
1 +

Iarm

Ifly

)
θ̈ = AρwgLH

[
min

(
max

(
1

2
+
Y

H
− L

H
sin θ +

` sin(ΩTt)

H
, 0

)
, 1

)
− ρf
ρw

]
cos θ − mk

T
ω,

(10)

while in the disengaged case where |θ̇| < ω,

Iarm

T 2
θ̈ = AρwgLH

[
min

(
max

(
1

2
+
Y

H
− L

H
sin θ +

` sin(ΩTt)

H
, 0

)
, 1

)
− ρf
ρw

]
cos θ, (11a)

Ifly

T 2
ω̇ = − k

T
ω. (11b)

Taking as the timescale

T =

√
Ifly

AρwgL2
, (12)

and defining a non-dimensional wave frequency

Ωw = ΩT, (13)
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we get:

(
1 + Iarm

Ifly

)
θ̈ = H

L

[
min

(
max

(
1
2 + Y

H −
L
H sin θ + ` sin(Ωwt)

H , 0
)
, 1
)
− ρf

ρw

]
cos θ − k√

AIflyρwgL2
ω if ω = |θ̇|,

Iarm
Ifly

θ̈ = H
L

[
min

(
max

(
1
2 + Y

H −
L
H sin θ + ` sin(Ωwt)

H , 0
)
, 1
)
− ρf

ρw

]
cos θ; ω̇ = − k√

AIflyρwgL2
ω if |θ̇| < ω.

(14)
Defining the ratio of the moments of inertia

δ =
Iarm

Ifly
,

a PTO coefficient

α =
k√

AIflyρwgL2
,

non-dimensional length ratios

ε =
H

L
, γ =

Y

H
, η =

`

H
, (15)

and the ratio of float density to liquid density

r =
ρf
ρw
,

gives 
(1 + δ) θ̈ = ε

[
min

(
max

(
1
2 + γ − 1

ε sin θ + η sin(Ωwt) , 0
)
, 1
)
− r
]

cos θ − αω if ω = |θ̇|,

δθ̈ = ε
[
min

(
max

(
1
2 + γ − 1

ε sin θ + η sin(Ωwt) , 0
)
, 1
)
− r
]

cos θ; ω̇ = −αω if |θ̇| < ω.

(16)

In this non-dimensionalisation the quantity min
(
max

(
1
2 + γ − 1

ε sin θ + η sin(Ωwt) , 0
)
, 1
)

has the physical
interpretation of being the vertical proportion of the float that is submerged at a given time. This is bounded
below by zero (for a float entirely above the water surface), and above by one (for a fully submerged float).

For Limerick Wave’s particular WEC device, one might expect the moment of inertia of the float to
be much greater than the moment of inertia of the flywheel, which would give rise to a value of δ � 1.
However, encapsulated within Ifly is the gearing ratio and with this included, it is instead expected that δ is
a comparatively small parameter within these equations.

In the case where the float remains strictly partially submerged throughout its evolution, the equations
of motion can be simplified to give

(1 + δ) θ̈ = ε
[

1
2 + γ − 1

ε sin θ + η sin(Ωwt)− r
]

cos θ − αω if ω = |θ̇|,

δθ̈ = ε
[

1
2 + γ − 1

ε sin θ + η sin(Ωwt)− r
]

cos θ; ω̇ = −αω if |θ̇| < ω.

(17)

2.3 Numerical scheme

In both the coupled and uncoupled cases, an angular velocity for the float, φ, is defined, which allows the
second order ordinary differential equation for the angular acceleration to be expressed as a pair of first order
ordinary differential equations. In the coupled (ω = |θ̇|) case this system is{

(1 + δ) φ̇ = ε
[
min

(
max

(
1
2 + γ − 1

ε sin θ + η sin(Ωwt) , 0
)
, 1
)
− r
]

cos θ − αω,
θ̇ = φ,

(18)
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while in the uncoupled (ω < |θ̇|) case (1 + δ) φ̇ = ε
[
min

(
max

(
1
2 + γ − 1

ε sin θ + η sin(Ωwt) , 0
)
, 1
)
− r
]

cos θ,

θ̇ = φ,
ω̇ = −αω.

(19)

If the WEC was restricted to purely coupled or uncoupled dynamics, then these equations could be readily
solved using standard ordinary differential equation solving techniques. However, the switching between
coupled and uncoupled dynamics complicates the numerical solution procedure.

To illustrate how the switching mechanism is implemented, the numerical procedure is now described:

1. At the beginning of each time step the motion of the float and flywheel are first calculated using the
system (19) for uncoupled motion, which generates a first possible solution.

2. This possible solution is then tested:

• If |θ̇| < ω, then this is a valid solution, which is accepted as the updated system position and we
return to step 1 to calculate the next time step.

• However, if |θ̇| > ω, then the solution generated by step 1 is rejected as being unphysical, as the
float has moved faster than the gearing system allows. In this case the gearing must have engaged
and the coupled dynamics are appropriate.

3. We now return to the system position at the beginning of the time step and advance the system based
on the coupled dynamics (18).

A second order Runge-Kutta scheme with fixed time step is used to perform the integration of both the
coupled and uncoupled systems. Results for this numerical system are presented in Section 3.

2.4 Alternative formulation

An alternative formulation of the problem discussed above will be given in detail in this section. In particular
we aim to solve the ODE system in its entire form without having to switch between two ODEs depending
on the sign of ω − |θ̇|. We summarise the system of equations as follows

(1 + δ)θ̈ = ε(B − r) cos θ − sign(θ̇)τgear, (20)

ω̇ = τgear − αω, (21)

with

τgear =
1

β
H
(
|θ̇| − ω

)(
|θ̇| − ω

)
, (22)

B = min

(
max

(
1

2
+ γ − 1

ε
sin θ + η sin(Ωwt) , 0

)
, 1

)
, (23)

where, as in (6), H is the Heaviside function and β is a small positive number. The above equations are then
recast as a first order system

θ̇ = φ, (24a)

(1 + δ)φ̇ = ε(B − r) cos θ − sign(φ) τgear, (24b)

ω̇ = τgear − αω, (24c)

where again φ is the angular velocity of the the float.
Unlike the scheme in Subsection 2.3, this scheme does not require “solver-switching” to take place.

Instead, the Heaviside term in (6) determines whether or not the gears are engaged. In effect, by checking
the sign of ω − |θ̇|, the Heaviside function outputs zero for the uncoupled case (19); otherwise it gives the
coupled equations (18).

The system of equations (24a)-(24c) is an ode system in (θ, φ, ω) which is integrated using MATLAB’s
integrated ode solver3 and, since MATLAB includes a built-in Heaviside function, this scheme is implemented
very easily.

3Due to the small values of β, the equations are stiff and MATLAB’s ODE solver ode15s is used to integrate in time.
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3 Numerical results

In this section, numerical results are presented based on the model of Section 2.3. The first set of results
(shown in Figure 5), illustrates a typical example model case with δ = 0.0427, ε = 0.04, γ = 0, η = 1.25,
r = 0.1, α = 0.00066, and Ωw = 0.0062. This case shows the motion of the float and flywheel when released
from rest with ω(0) = 0, θ(0) = 0, and φ(0) = 0. Evidently, the angular velocity of the flywheel (shown on
the top left subfigure), initially includes rapid transient behaviour. However, after roughly one wave period
(shown on the bottom right figure), these initial transients have decayed and the angular velocity of the
flywheel becomes periodic.

Figure 5: Initial transients as the angular velocity of the flywheel (top left) and angle of the float (top right)
are released from rest.

The behaviour in this initial transient regime is dependent of the choice of initial conditions. However,
regardless of the choice of initial conditions, the float and flywheel start to demonstrate periodic behaviour
after little more than one wave period. The fact that (as in this case), the motion of the float and flywheel
become periodic after the float is released from rest with a stationary flywheel is also encouraging: this
implies the device is self starting and given the onset of an incoming wave train, the float will start to move,
and the flywheel will start to spin regardless of their initial configuration.

3.1 Flywheel evolution and PTO

The evolution of the float and the flywheel are now examined in the periodic regime for a range of different
PTO coefficients, α. A case with α = 0.00066 is shown in Figure (6). The top left subfigure shows both
the angular velocity of the flywheel, ω, and the rectified angular velocity of the float, |θ̇|. When these
two quantities are equal, the gearing system is engaged and the wave motion is transferring energy to the
flywheel. The parts of the cycle for which |θ̇| < ω are also shown. For these times the gears are disengaged,
so energy is not transferred to the flywheel. When the gears disengage, the angular velocity of the flywheel
decays exponentially, as determined by the ω̇ equation in (19).

The value of the PTO coefficient has a significant effect upon the rate of the decay of the angular
velocity of the flywheel. Figure 7 shows the same periodic behaviour for the float and flywheel evolution for
α = 0.0066 (left) and α = 0.066 (right). When compared to Figure 6 (which has α = 0.00066), we note that
increasing the PTO coefficient, α, hastens the decay in the angular velocity of the flywheel.
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Figure 6: Float and flywheel angular motion for α = 0.00066. Showing the angular velocity of the flywheel
and the rectified angular velocity of the float (top left), the angle of the float (top right), the angular velocity
of the float (bottom left), and the wave height (bottom right).

For the low values of α, shown in Figure 6, the angular velocity of the flywheel retains roughly a constant
value of 1× 10−3 throughout the motion, with only small increases in the angular velocity when the gearing
is engaged, and little decay in angular velocity upon disengagement. However, as the PTO coefficient, α, is
increased, the rate of decay of the angular velocity of the flywheel increases resulting in a more stop-start
angular velocity profile. For the largest value of α = 0.066, the flywheel angular velocity decays so rapidly
that it follows the rectified angular velocity of the float to such an extent that it is nearly brought to rest at
the end of every half wave period, when the vertical motion of the wave changes direction.

The PTO coefficient, α, also has a significant effect on the actual power the device is able to generate.
The power P is related to the angular velocity of the flywheel and the PTO coefficient through

Ṗ = αω2. (25)

Thus having determined ω, this expression can be integrated to determine the power output. For the three
cases presented the power output equals 3.2 × 10−6 when α = 0.00066, 2.7 × 10−5 when α = 0.0066, and
1.3 × 10−4 when α = 0.066. More generally the power output from the device increases with α, which
indicates the power generation is greatest when the flywheel is subject to rapid angular accelerations and
decelerations rather than roughly constant angular velocity.

3.2 Numerical validation

In Subsection 2.4, an alternative formulation of the problem was outlined. This allows us to compare two
different numerical schemes; the results from the original formulation and the alternative formulation are
shown in Figure 8. Such good agreement serves as validation of the numerical methods.

4 Ocean-wave power

It is essential to be able to obtain a quantification of the maximum power that can be extracted from the
generator for a given wave. The generator is versatile with regards to the varying wave types that it may
experience. However, due to certain practicalities and planning restrictions, the analysis presented here is
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Figure 7: As Figure 6, but showing float and flywheel motion for α = 0.0066 (left) and α = 0.066 (right).

Figure 8: A comparison of the results generated by the numerical method described in Section 2.3 (top),
and the alternative numerical scheme described in Section 2.4 (bottom).

based on the generator situated 150 - 200 metres off Galway Bay with a seabed depth of 20 metres. In
addition, the wavelength and amplitude of the waves in the sea varies significantly across the seasons. It is
therefore necessary to have a generator design that is optimal for all four seasons.
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Figure 9: Optimisation of the arm length according to ocean wave data. Placing two points on the sea
surface half a wavelength apart will maximise the relative motion.

4.1 Shallow-water model

To carry out the optimisation, we must compute the power delivered by the ocean waves using real wave
data. We therefore require an appropriate wave model from which we may compute the corresponding wave
power; one such model is the shallow-water equations. These equations rely on the Boussinesq approximation,
which, in turn, is valid for the wave data used in this report.

In the shallow-water model, the frequency Ω of a water wave is given by the dispersion relation

Ω2 = gk tanh (kh0), (26)

where k = 2π/λ is the wave number, h0 is the mean depth of the sea, and g is the gravity constant. It can
be shown that the power P delivered to the arm from the wave profile is given by

P ∝ `2Ω2 sin2

(
πL

λ

)
, (27)

where ` is the amplitude of the wave, λ is its wavelength, and L is the arm length of the device.

4.2 Galway Bay data

To perform the optimisation actual site data was used. The observation buoy at the Galway Bay test site
[1] supplies data for the wave height and period, from which one can easily obtain Ω and ` (see Figure 10).
Data sets for each season were used in the analysis in order to examine both the variation in the different
components and to find an arm size optimal for each season. To obtain values for wavelengths λ, MATLAB
was used to solve (26) numerically for λ (with depth h0 = 20 m), which was then used in (27) to solve for
the relationship between the Power P and the arm length L. This approach allowed for the optimal L to be
found. The outcome of the analysis is presented for the wave height, frequency, and length in Figure 11.

From Figure 11, one can see that the wave properties, and therefore the generated power, vary significantly
over a year. This needs to be taken into consideration when designing the device shape and scale. The device
is more likely to generate maximal output in the winter due to the greater wave amplitude. However, the
arm length that is optimal for the maximum energy generation in the winter is not entirely optimal for the
other seasons. One solution would be to have an arm length which could be varied throughout the year.
However, this may not be practical from a financial viewpoint. The most feasible alternative is to choose an
arm length which is a “best-fit” for all four seasons. From Figure 12, we conclude that at a length L ≈ 14 m
maximum power will be extracted for the given season. This length is also very reasonable from a structural
viewpoint.

5 Conclusions

In this report we have presented a simple mathematical model for Limerick Wave’s WEC device. At present,
Limerick Wave has a working, 1:20 scaled device; testing larger rigs is costly so this model will play a
crucial role in the design of the scaled-up version. In particular, the model enables tuning of the device
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Figure 10: Sample data lookup at [1].
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Figure 11: Sample wave height, frequency, and length for the different seasons. Data for the dates: 3-
4/03/2012, 3-4/06/2012, 3-4/09/2012, 3-4/12/2012.

to optimise the energy extracted from waves of different frequencies and amplitudes. For further work we
suggest studying the real data in greater detail since it is crucial for the efficiency of the device.

The model comprises two coupled ordinary differential equations which, in turn, represent conservation
of angular momentum during the operation of the device. The model also incorporates the interaction
(buoyancy, weight, and inertia) between the floatation device and the incoming water waves.

We investigated, in detail, two operating states: when a large proportion of the energy is extracted per
cycle (large PTO) and when a small portion of the energy is extracted (small PTO). In the latter case,
the flywheel could be kept spinning at an almost constant angular velocity and hence an almost constant
current can be extracted. In the former case, the flywheel follows the arm’s (and hence the original wave’s)
movement. The trade-off to requiring a large PTO is the high variability of the output current.

A separate analysis was carried out for the optimisation of the device’s arm length. We considered wave
data from Galway Bay and used the shallow-water dispersion relation to approximate the wave frequency
which in turn determines the power delivered to the device. For the sake of simplicity, in this part of the
analysis we assumed that the device is untethered. We find that the maximum amount of power is extracted
when the device’s arm is one half the wavelength of the incoming waves. The wave data has a strong seasonal
variation so a best-fit of the four seasons is computed giving an optimal arm length of 14 metres across the
seasons.

The mathematical model contains a number of dimensionless parameters; some of these were small or
are operational parameters which should be tweaked. Although it was not carried out here, some of these
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Figure 12: Maximum power generated by waves for the different seasons. Data for the dates: 3-4/03/2012,
3-4/06/2012, 3-4/09/2012, 3-4/12/2012.

parameters may be determined through the Galway Bay power-optimisation analysis. Other future work
should include an analysis of the full hydrodynamic model and a tethered power analysis.
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