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1 Introduction

Simple modelling of categorical data is not as simple as it seems. Stan-
dard formulas taught to generations of undergraduates are shown to be sub-
optimal, simple models are widely misunderstood, and high levels of contro-
versy surround the suitability and interpretation of relatively standard mod-
els such as logistic regression. In this research note I discuss a number of
these issues, using simple simulations in Stata and R to illuminate them.

2 Relative rates and odds ratios

A frequent theme in the medical statistics and epidemiological literature is
that odds ratios (ORs) as effect measures for binary outcomes are counter
intuitive and an impediment to understanding. Barros and Hirakata (2003),
for instance, refer to the relative rate as the “measure of choice” and com-
plain that the OR will “overestimate” the RR as the baseline probability rises.
Clearly, ORs are less intuitive than relative rates (RRs), but in this note I take
issue with the conclusion sometimes made, that models with relative-rate
interpretations should be used instead of logistic regression and other OR
models. This is because RRs are not measures of the size of the statistical as-
sociation between a variable and an outcome (since they also vary inversely
with the baseline probability), and because, under certain assumptions, ORs
and related measures are. That is, RRs may feel more real but they are likely
to be misleading.

While the argument is often cast in terms of rejecting logitistic in favour of
log-binomial regression and other alternatives, let’s look at some 2× 2 tables
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2. RELATIVE RATES AND ODDS RATIOS 2

and hand-calculated ORs and RRs. In the following two tabulations the OR
is constant at 2.5, but the baseline probability (in class==0) is respectively 2%
and 75%.1

. tab class outcome, matcell(n)

| outcome

class | No Yes | Total

-----------+----------------------+----------

Class 0 | 980 20 | 1,000

Class 1 | 951 49 | 1,000

-----------+----------------------+----------

Total | 1,931 69 | 2,000

. scalar RR = (n[2,2]/(n[2,1]+n[2,2]))/(n[1,2]/(n[1,1]+n[1,2]))

. scalar OR = (n[2,2]/n[2,1])/(n[1,2]/n[1,1])

. scalar D = n[2,2] - n[1,2]

. di "RR " %6.3f RR "; OR " %6.3f OR "; N extra outcomes" %5.0f D

RR 2.450; OR 2.525; N extra outcomes 29

Here the RR is 2.45, the OR 2.53 and the number of extra outcomes in class 1
is 29, or 2.9%.

| outcome

class | No Yes | Total

-----------+----------------------+----------

Class 0 | 270 730 | 1,000

Class 1 | 129 871 | 1,000

-----------+----------------------+----------

Total | 399 1,601 | 2,000

...

RR 1.193; OR 2.497; N extra outcomes 141

But when the baseline probability is high, the RR plummets (suggesting
a 19% increase instead of 145%), despite the approximate substantive mea-
sure giving 141 or 14.1% extra cases. In this simple case, it seems RRs track
substantive significance rather worse than ORs do.

But how do RRs and ORs compare in terms of estimating the size of
the underlying statistical or causal association? There are many underly-
ing causal structures possible, but let’s use Stata to simulate a simple one.2

Let the outcome of interest depend on an unobserved (and perhaps unob-
servable) interval variable. If this propensity is above a certain threshold,
the outcome occurs, but let the threshold (and thus the proportion having
the outcome) differ from time to time. Let the difference between the two

1Stata code at http://teaching.sociology.ul.ie/catdat/ortab.do.
2Stata code at http://teaching.sociology.ul.ie/catdat/orsim.do.



2. RELATIVE RATES AND ODDS RATIOS 3

groups be that they have different distributions of the underlying propensity
– normal, with the same variance but different means.3 Conceptually, this
inter-group difference is the source of effect we are trying to measure, while
variation in the threshold is not related to the causal effect.

We run the simulation with a sample size of 10,000 and an inter-group
difference of 0.2 standard deviations, and 2× 2 tables are created for outcome
probabilites. Here, for example, for 20% and 60% probabilities:

set obs 10000

gen class = _n <= 5000

gen propensity = invnorm(uniform()) + (class==1)*0.2

sort propensity

gen outcome20 = _n > (1 - 0.2)*_N

gen outcome60 = _n > (1 - 0.6)*_N

This yields the following:
| outcome20 | outcome60

class | 0 1 | Total class | 0 1 | Total

-----------+----------------------+---------- -----------+----------------------+----------

0 | 4,144 856 | 5,000 0 | 2,199 2,801 | 5,000

| 82.88 17.12 | 100.00 | 43.98 56.02 | 100.00

-----------+----------------------+---------- -----------+----------------------+----------

1 | 3,856 1,144 | 5,000 1 | 1,801 3,199 | 5,000

| 77.12 22.88 | 100.00 | 36.02 63.98 | 100.00

-----------+----------------------+---------- -----------+----------------------+----------

Total | 8,000 2,000 | 10,000 Total | 4,000 6,000 | 10,000

| 80.00 20.00 | 100.00 | 40.00 60.00 | 100.00

20% probability: RR: 1.34; OR: 1.44 60% probability: RR: 1.14; OR: 1.39

Between 20% and 60% outcome probability, the OR drops but the RR
drops rather more. Figure 1 show results for probabilities between 1% and
99%, replicated thirty times (lines for the average values, dots for the actual
values). As can be seen, the ORs vary in a shallow U, but the RRs drop pre-
cipitously to a zero effect for high baseline probabilities.

Figure 2 repeats this exercise with logistic rather than normal propensity
distributions, with the same variance (logistic distributions resemble normal
but have higher kurtosis). Here the average OR is rather more stable. In
fact, it can be shown mathematically that the OR is related directly to the
difference in means, and is completely independent of the threshold.

Clearly, this causal backstory is simplistic.4 The latent propensity may

3The attentive reader may recognise this as related to the latent variable justification of
the logistic regression model, but for the moment please consider its plausibility as a simple
causal model.

4It also suits only one-off outcomes – if the outcome is a result of exposure over time, the
OR is as misleading as the RR, and an estimate of the hazard-rate ratio is needed.



2. RELATIVE RATES AND ODDS RATIOS 4

Figure 1: RRs and ORs: the points are the individual estimates and the lines the average
across 30 replications, with a normal propensity distribution. The mean RR starts very close
to the mean OR but drops to no effect (RR=1) in an almost linear fashion.

have other distributions, and the inter-class difference may be other than
additive (though, note that log-normal distributions with a multiplicative
difference are equivalent in effect to normal with an additive difference).
If one class has greater variance, the causal effect will be non-linear (over-
represented at both high and low propensity). However, in so far as it is
approximately realistic, this story suggests that the odds ratio is a reasonably
stable measure of an effect, while the relative rate is superficially intuitive but
is not an effect measure.

While the OR and RR can be calculated by hand, the results from lo-
gistic (logit outcome class), poisson (poisson outcome class) and log-
binomial regression (glm outcome class, link(log) family(binomial)) are
exactly the same. The extension to probit regression is obvious. If the simu-
lated distribution is normal, the mean probit estimate (not shown) is as flat
as the OR is for the logistic distribution.5

When we are thinking in terms of models, rather than hand-calculated
statistics, we can view the propensity distributions as conditional on the

5If you multiply the probit estimate by π√
3

, it approximates the log of the odds ratio quite
closely.
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Figure 2: RRs and ORs with a logistic propensity distribution: the points are the individual
estimates and the lines the average across 30 replications. Here the OR is much more stable.

other variables. The effect of these variables is analogous to shifting the
threshold. In this case, the RR will be unreliable even if the average level
of the outcome is stable, if there are other variables with large effects on the
outcome. Thus, unless predicted probabilities in the data are all very low
(say, under 10%) it seems unwise to base interpretations on RR models.

If it is important for the audience to see effects on probabilities, use
-margins- to report marginal effects for different configurations of covari-
ates. The fact that marginal effects vary with the values of the covariates is
a feature, not a bug, reflecting the complexity of reality rather than being a
wrong-headed consequence of an awkward model.

3 Relative rates, odds ratios and the complementary
log-log model

In the previous section, I used Stata to simulate 2× 2 tables of a one-off out-
come. The simulation shows that odds ratios (ORs) are a much better es-
timate of the underlying causal effect or statistical association than relative
rates are, given certain assumptions. One key assumption is that it is a one-
off outcome, where it is reasonable to model the propensity for the event with
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Figure 3: Cumulative infection rates in one run of the simulation

a normal or logistic distribution. Where the outcome is the result of poten-
tially repeated exposure to a risk (such as being ever married or ever infected
with a particular pathogen) the resulting propensity is not likely to be nor-
mal. That is, if you are exposed to many opportunities to marry, saying yes
once means you become ever-married for ever after, and even if the propen-
sity to marry at a specific opportunity is normally distributed, the combined
distribution of propensity to be ever-married after an unknown number of
opportunities is likely not to be well-described as normal.

I simulate this in terms of a epidemic: a population is exposed to a new
pathogen, and I follow infection rates forward for a time. At each step of
the simulation 100 individuals are chosen at random to be exposed to the
pathogen, and they succumb at two separate rates: group 1 have a 0.25 prob-
ability, and group 2 a 0.50 probability. Once infected, you stay infected for
the purposes of the summary. Individuals are likely to be exposed more than
once (without consequence if they are already infected), though obviously
they can’t be exposed more than once in any single step. At each step, the
2× 2 table is constructed, and the OR and RR calculated, and a complemen-
tary log-log model of the outcome is fitted. The code for the simulation is at
http://teaching.sociology.ul.ie/catdat/infection.do.

Figure 3 shows the cumulative infection rates for the two groups, for one
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Figure 4: ORs, RRs and c-log-log estimates of the effect of smoking on ever
becoming infected, calculated at each step of the simulation.

run of the simulation, with 200 iterations in a population of 5000, half in each
group. Group 1 is much more susceptible, but is beginning to show signs of
saturation, as the pool of uninfected subjects gets smaller. At time 200, about
85% of group 1 and 65% of group 2 have been infected, and this varies little
across the multiple runs.

Figure 4 shows odds-ratios and relative rates (calculated arithmetically
from the 2× 2 table) and c-log-log regression parameters (exponentiated) for
ten replications. RRs show the same sort of behaviour as with one-off out-
comes: they begin at around the correct value (after a brief unstable period)
but they head steadily towards the floor of no effect (RR=1) as the infection
rate rises. ORs do the opposite, but to no better effect: they steadily deviate
upwards from the correct value as infection increases. Only the exponen-
tiated complementary-log-log estimate behaves well: it quickly settles very
close to the ratio of 2.0 inherent in the simulation.

The fact that the complementary-log-log model generates consisent esti-
mates of the effect suggest that it operates as a hazard model, since the ratio
of 0.5/0.25 programmed into the simulation not a ratio of simple probabili-
ties. That is, each probability is the probability of infection conditional on not
yet being infected, and is thus a discrete hazard rate, not a probability, and



4. THE BENEFIT OF NON-LINEAR MODELS FOR NON-LINEAR
PROBLEMS – A SIMULATION USING R 8

the ratio is a hazard rate ratio.
In passing I will note that these findings are in agreement with Pearce’s

robust defence of the OR versus the RR (2004), and in agreement with the
detailed arguments about using ORs, RRs and other measures to make causal
inferences, of Reichenheim and Coutinho (2010), while it runs counter to the
support of log-binomial and other models in preference to logistic regression,
of Barros and Hirakata (2003).

4 The benefit of non-linear models for non-linear
problems – a simulation using R

Let’s stay with logistic regression, but consider one aspect of the problem of
interactions and logistic regression.6

A correspondent of Andrew Gelman’s worries in passing about using An-
ova (i.e., linear regression) with binary dependent variables Gelman (2011).
In particular, s/he worries that if there’s a significant interaction in the Anova,
but not in the logistic model, using the logistic model might be “losing” an in-
teraction of substantive interest. However, it is more reasonable to think that
if the dependent variable is binary, the linear model is mis-specified and that
this mis-specification will cause problems with interactions. The intuition is
that one variable (X1) is high (and thereby leading to a greater propensity
to have the outcome) the effect of changes in another variable (X2) on the
predicted probability will necessarily be smaller, than if X1 is lower, even if
there is no substantive interaction. There is a natural non-linearity in the rela-
tionship of the probability to the independent variables, which is dealt with
by the log-odds transformation in logistic regression, but which can also be
mathematically approximated by interactions in a linear model (though that
might not be statistically defensible).

I present a simple simulation to demonstrate this. First, assume the out-
come is more common as a continuous variable, X1, rises, and more common
for one value of a binary explanatory variable, X2. This is simulated as a
latent variable:

y∗ ∼ N(β0 + β1X1 + β2X2, σ)

y = (y∗ > 0)

X1 and X2 are correlated: X1 has a higher mean for X2 = 1.
We fit four models on the resulting data, a linear model on the unob-

served scale variable y∗, a linear model on the observed binary y, and logit
6There’s a possibly more interesting argument about interaction terms in logistic regres-

sion, started by Ai and Norton (2003), who claim that interactions in logistic regression cannot
be interpreted directly. While their maths is impeccable, their claim rests on a definition of a
“true interaction effect” that is quite contentious (see also Norton and Wang, 2004). But that’s
an argument for a different day.
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and probit models on the binary. All models have the same linear predictor,
containing the X1 × X2 interaction.

The simulation counts the number of times each model return a t or z
absolute value in excess of 2.0. See Figure 5 for the simulation code7.

The first run sets the difference in the mean of X1 to 1 across the two
values of X2:

> r <- simlogit(hilodiff=1,inteff=0,ncases=500,niter=1000)

Latent: 50; LPM: 329; Logit: 42; Probit: 38

Agreement: LPM: 0.671; Logit: 0.932; Probit: 0.938

The linear model on the latent variable yields a significant interaction
about 5% of the time (the true null is rejected 5% of the time). The logit
and probit show significant effects even less often, but the linear probability
model (of the observed variable) estimates a significant interaction more that
30% of the time.

If we set hilodiff to a negative value (such that X1 and X2 have a nega-
tive correlation), significant interactions are found much more rarely. Where
both variables have a positive effect on the probability, a positive correlation
will cause the LPM to estimate spurious interactions, whereas the logit and
probit approaches find them no more often than chance would suggest.

However, that’s only one side of the issue. What about when there’s a
real interaction? How often will the LPM pick it up, while the logit fails to
spot it?

> r <- simlogit(hilodiff=0,inteff=0.1,ncases=500,niter=1000)

Latent: 199; LPM: 37; Logit: 104; Probit: 99

Agreement: LPM: 0.810; Logit: 0.839; Probit: 0.838

In this example, with a positive interaction (the effect of X1 is greater for
X2 high), the LPM performs poorly, finding about a fifth as many significant
effects as the latent variable model, and less than half the logit and probit
models. What if the interaction is negative?

> r <- simlogit(hilodiff=0,inteff=-0.1,ncases=500,niter=1000)

Latent: 186; LPM: 186; Logit: 110; Probit: 126

Agreement: LPM: 0.828; Logit: 0.832; Probit: 0.830

Oddly, in this case the LPM does very well. However, this is likely to be
due to the LPM having an excessive tendency to report interactions under
certain conditions, rather than a better ability to detect true interactions in
these conditions – note that it reports many more significant interactions than

7R code at http://teaching.sociology.ul.ie/catdat/g.R
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simlogit <- function(hilodiff = 0.5,

inteff = 0.0,

niter = 100,

ncases = 1000) {

results <- matrix(NA,niter,4)

for (iter in c(1:niter)) {

## Normally distributed x-var, differs by one SD in mean, male v high

high <- c(rep(1,ncases/2) , rep(0,ncases/2))

x1 <- rnorm(ncases,mean=0,sd=1) + hilodiff*high

## Dummy-var and x-var combine to create latent variable

ystar <- 0 + (0.5 + inteff*high)*x1 + 0.5*high + rnorm(ncases,mean=0,sd=1)

## Latent variable reduced to binary

y <- ystar>0

## Fit four models:

## linear on latent variable,

## linear on binary,

## logit on binary,

## probit on binary

model1 <- lm(ystar ~ as.factor(high)*x1)

model2 <- lm(y ~ as.factor(high)*x1)

model3 <- glm(y ~ as.factor(high)*x1, family=binomial(link="logit"))

model4 <- glm(y ~ as.factor(high)*x1, family=binomial(link="probit"))

## save the z-stats for the interaction term

results[iter,1] <- model1$coefficients[4] / sqrt(diag(vcov(model1)))[4]

results[iter,2] <- model2$coefficients[4] / sqrt(diag(vcov(model2)))[4]

results[iter,3] <- model3$coefficients[4] / sqrt(diag(vcov(model3)))[4]

results[iter,4] <- model4$coefficients[4] / sqrt(diag(vcov(model4)))[4]

}

x = abs(results) > 2

cat(sprintf("Latent: %d; LPM: %d; Logit: %d; Probit: %d\n",

sum(x[,1]),sum(x[,2]),sum(x[,3]),sum(x[,4])))

g12 <- table(x[,1],x[,2])

g13 <- table(x[,1],x[,3])

g14 <- table(x[,1],x[,4])

cat(sprintf("Agreement: LPM: %6.3f; Logit: %6.3f; Probit: %6.3f\n",

sum(diag(g12))/sum(g12), sum(diag(g13))/sum(g13),

sum(diag(g14))/sum(g14)))

return(results)

}

Figure 5: The simulation code
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the logit or probit models, but does not agree better with the latent model
than they do.

In general, what the simulations suggest clearly is that the LPM’s re-
sponse to mis-specification is to report interaction effects that are not present
in the latent model: with a non-linear problem, one should believe the non-
linear model over the linear approximation.

5 Agresti and Coull’s formula for the variance of a
proportion

Let’s retreat from the complexities of linear and non-linear models, and con-
sider one of the simplest of all categorical devices, the proportion. The for-
mula for the standard deviation of a proportion, p, that has been taught to
millions of undergraduates is: √

p(1− p)

It would seem that nothing could be simpler or better established, unless
one were to go beyond textbooks and look into the literature. For the naı̈ve
(such as myself) it is then a little startling to see this formula contested, as
for example by Agresti and Coull (1998). Rather than use the natural p = x

N
they propose a very odd p̃ = X+2

N+4 in σ =
√

p̃(1− p̃). They decribe this as the
“add two successess and two failures” approach, and recommend it strongly.
Rather than go into the theory I run a simple simulation, comparing 1,000
samples of 100 for true values of p between 0.95 and 1, and count how many
times the confidence interval around the observed rate contains the true rate,
for the conventional approach and the add-two approach. Figure 6 shows
how often add-two does worse (its interval doesn’t contain the true value but
the conventional interval does) and better (vice versa) than the conventional
approach. As can be seen, the the Agresti-Coull estimate always performs
better, dramatically so as p approaches 1.

6 Conclusion

These short notes have two things in common: a focus on relatively simple
issues in categorical data analysis, and the use of simulation to resolve puz-
zles that lie behind the surface simplicity. Categorical data analysis is at once
relatively transparent and dizzyingly complex. It is worth thinking carefully
about the simple issues, and I hope the examples show both the value of
simple simulations for helping one think, and the relative ease with which
simulations can be conducted in Stata and R.
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Figure 6: Add-two does better than the convention approach
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