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Abstract

As holistic analysis of life-course sequences becomes more common, using
optimal matching (OM) and other approaches the problem of missing data
becomes more serious. Longitudinal data is prone to missingness in ways
that cross-sectional is not. Existing solutions (e.g., coding for gaps) are not
satisfactory, and deletion of gappy sequences causes bias. Multiple im-
putation seems promising, but standard implementations are not adapted
for sequence data. I propose and demonstrate a Stata implementation of a
chained multiple imputation procedure that “heals” gaps from both ends,
taking account of the longitudinal nature of the measured information, and
also constraining the imputations to respect this longitudinality. Using the
sequence data alone, without auxiliary individual-level information, sta-
ble imputations with good characteristics are generated. Using additional
information about the structure of data collection (which relates to mecha-
nisms of missingness) gives better prediction models, but imputations that
differ only subtly.

Many sequence analysts proceed by cluster analysis of the matrix of
pairwise OM distances between sequences. As a non-inferential proce-
dure, this does not benefit from “Rubin’s Rules” for multiple imputation in
averaging across estimations. I explore ways of clustering with multiply-
imputed sequences that allow us to assess the variability due to imputa-
tion. I compare the results with an existing approach that codes gaps with
a special missing value that is maximally different from all other states, and
show that imputation performs better.

In an example data set drawn from BHPS work-life histories, imputa-
tion of short internal gaps (≤ 12 months) increases the available sample
size by approximately 25 percent. Moreover, the gappy sequences have
a distinctly different distribution, with higher numbers of transitions, so
deletion of gappy sequences distorts the sample badly. For typical longi-
tudinal data sets, we can expect missingness to be related to the amount
of instability in the career, and to proceed without imputation will cause
serious bias.

∗Thanks to Rebecca Lacey whose query about MI for sequence data prompted this research, and
to participants at conferences and seminars in Lausanne, Leeds and Imperial College for helpful
comments. shortptex.tex,v 1.4 2012/09/28 13:41:30 brendan Exp
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1 The problem and a proposed solution

This paper proposes an implementation of multiple imputation (MI) for miss-
ing values in life-course data, in the context of sequence analysis. Ever-increasing
amounts of longitudinal data are available, and a growing set of tools (among
which is sequence analysis) exists to handle it. However, longitudinal data
is susceptible to missingness at least as much as cross-sectional. Indeed, re-
peated collection of data on continuous processes raises a whole set of difficul-
ties. Life-course histories are thus prone to gaps and other forms of missing
information (Halpin, 1998).

I present this work in the context of sequence analysis, which is to say the
analysis of life-course trajectories as whole units, typically by analysis of pair-
wise distances between trajectories as measured by algorithms such as opti-
mal matching (e.g., Abbott and Forrest, 1986; Halpin and Chan, 1998; Blair-
Loy, 1999; Pollock, 2007; de Saint Pol, 2007; Martin et al., 2008; Aisenbrey and
Fasang, 2010). As an approach it has advantages and disadvantages, but it
is particularly vulnerable to missing data. While there are methods that deal
with gaps (and I discuss one below) they have shortcomings, and the usual
strategy is to discard incomplete records. Since certain sorts of trajectories are
more prone to missingness (particularly those with higher instability) this is a
serious distortion, as well as a potentially important loss of sample size.

There are two main issues with the use of multiple imputation in this frame-
work. First is the longitudinality of the data: the imputation needs to be struc-
tured to take account of this, but the longitudinality also means we have very
good information from which to impute. Second is that insofar as sequence
analysis generally proceeds by non-inferential methods such as cluster analy-
sis and multi-dimensional scaling, it does not benefit directly from MI’s cal-
culation of the combined variance across imputations, as per “Rubin’s Rules”
(Rubin, 1987). I investigate a number of ways of taking account of the variabil-
ity of the imputations in a cluster analysis context.1

1The concept of discrepancy (as a partitionable measure of the variability inherent in a pairwise
distance matrix) offers the potential of using inferential methods with the distances derived from
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2 Standard MI inappropriate for longitudinal data

Multiple imputation is emerging as one of the best ways of dealing with data
sets containing missing values. Unless the missing data is “missing completely
at random” (in Rubin’s terminology; abbreviated MCAR), the standard prac-
tice of analysing only complete cases will introduce bias. Similarly, discarding
variables with any missing value will often throw away essential information.
If the missing data is “missing at random” (MAR; that is, random given the
observed variables) then imputation of the missing values using the observed
data will give good estimates of the distribution of the missing data. Multiple
imputation makes several draws from the predicted distribution. If for each
imputation the end analysis is carried out once, we can average the results and
arrive at unbiased estimates of the parameters of interest and their variability,
by averaging across the analyses. This is not to create artificial data, but rather
to extract the full information from the non-missing data we do have. Rubin’s
contribution is to point out how to do this, and that we can approximate the
distribution of the unobserved data with relatively small numbers of imputa-
tions.

Where multiple variables have missing values, chained imputation is con-
ventionally used (Royston, 2004). Typically one begins by imputing the values
for the variable with the least missing using the observed data, then proceeds to
the next-least-missing variable and imputes that using observed and already-
imputed data, and so on. It is essential to predict using observed and already-
imputed data to ensure that the case as a whole “makes sense” (though it is
probably best that the predictive model is estimated on observed data only).

Longitudinal data such as lifecourse sequences present problems for mul-
tiple imputation. First, the time-series of state observations will have much
higher levels of collinearity than most cross-sectional data, and if we treat the
repeated observations as separate variables, very high numbers of candidate
predictors. Secondly, missingness will also be serially correlated: there are
“gaps” rather than single missing values. The former problem means that
standard approaches to chained multiple imputation will be inefficient and un-
wieldy. The latter means that imputations that do not take account of the linear
structure, and that gaps rather than single missing values must be imputed,
will produce unrealistic imputations with spurious transitions. For instance,
AAA....BBBB may be imputed as AAABABABBBB whereas a single transition

such as AAAAABBBBBB is more realistic.

2.1 Longitudinally-appropriate recursive MI algorithm

The novelty of this paper is to propose an implementation of multiple imputa-
tion that is appropriate for life-course sequences, or more generally of discrete
time series of discrete states. This involves treating the multiple variables as
time-specific observations of a single state, and recognising that the gap to be
imputed is composed of a related string of observations. The key requirement
is thus to control the order of the chaining to respect the longitudinal struc-
ture, closing the gap from its edges, since the most important predictor by far
is the immediately adjacent state. We can consider any available information

the imputed data (Studer et al., 2011).
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(such as individual fixed characteristics) in the imputation model, but the best
information for prediction is other observations in the same time series (and
summaries thereof). It is an empirical question whether individual-level infor-
mation will improve the imputation but in my experience, the information in
any sufficiently long sequence is likely to make it redundant, or at least of only
secondary benefit. Other information that may be valuable is that related to
the time (calendar time, such as, say, employment rate, or developmental time,
such as age).

The imputation technique here is motivated by sequence analysis, and I go
on to consider how to exploit the multiple imputations in the context of cluster
analysis of the pairwise OM distances. However, the imputed sequences are
likely to be useful for other analytic approaches as well, such as hazard rate
models or other models of transition rates. Hazard rate modelling may raise
issues of exact timing of imputed transitions, and of what exactly constitutes
the unit that is multiply imputed, but should be capable of being accommo-
dated in the framework.

In imputing a missing value in a sequence, the best predictors are those
closest to it in time. This leads us to beginning with the edge of a gap: predict
the first (or last) element in the gap using the immediately adjacent value and
the one at the other end of the gap (and perhaps other variables, but at least
these). If the gap is five units long and we are predicting the first element,
the imputation model predicts state at t using (at least) state at t − 1 and t +
5. Then the last (or first) element of the gap (now 1 unit shorter) is the next
best estimated, predicting t by t + 1 and t− 4, noting that the state at t− 4 is
imputed. While the prediction model should be estimated only on observed
data, the prediction must be based on already-imputed values where relevant,
in order to generate a series of imputations that makes longitudinal sense.

Filling from the edges means that the longitudinal nature of the state history
is respected, and that we begin the imputation with the easiest states to pre-
dict. We can implement this switching strategy by starting with the length of
the longest gap to be imputed (either the longest gap in the data, or the longest
gap the analyst chooses to impute, discarding cases with longer gaps) and im-
plementing an even-first (or odd-first) rule which is followed throughout the
data set. In the unlikely event that the even/odd character of gap-length is
informative, and not MCAR, then it would be sufficient to assign each gap at
random to even-first or odd-first. This would mean, however, estimating twice
as many models: in the simple case we estimate

for i = 0→ g− 1 : ŝt =

{
f (st−1, st−(g−i)), g− i if odd
f (st−(g−i), st+1), g− i if even

i.e., one predictive model per gap length, whereas if gaps are assigned even-
first or odd-first at random, both models will have to be fitted for each gap
length.

2.2 Sketching gap closure

Figure 1 outlines the procedure visually, considering a five-unit and a three-
unit simulation. It assumes an even-first order, and the simplest possible impu-
tation model, so in the first pass the last element of the five-unit gap is imputed,
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Five unit gap Three unit gap
0. XXX.....YYY XXX...YYYYY

1. XXX....iYYY XXX...YYYYY

2. XXXi...IYYY XXX...YYYYY

3. XXXI..iIYYY XXX..iYYYYY

4. XXXIi.IIYYY XXXi.IYYYYY

5. XXXIIiIIYYY XXXIiIYYYYY

Figure 1: Sketching the process of gap closure. The left column represents a se-
quence with a five-unit gap, the right one with a three-unit gap (line 1). The first pass
imputes the last element of the five-unit gap (even-first) but does not touch the three-
unit. The second pass imputes the first of the now four-unit gap, and it is only at the
third pass that the three-unit gap is touched. The procedure continues until both gaps
are filled simultaneously.

using the t− 5 and t+ 1 observations. Nothing is imputed in the three-unit gap
because t− 5 and t + 1 are not the best available predictors for any element of
this gap. In the second pass, the five-unit gap has been reduced to four units,
so the first is predicted, using observed t− 1 and already imputed t + 4. In the
third pass, both gaps now have the same length, so both are treated equiva-
lently, except the originally-five unit gap is predicted by observations both of
which have already been imputed. The procedure continues until all gaps are
filled simultaneously.

2.3 Minimal model

The minimal model used above uses the immediate before and after informa-
tion, in a multinomial logistic regression of the following form:

log
P(st = j)
P(st = J)

= αj +
k=J−1

∑
k=1

β1jk(st−δ1 = k) +
k=J−1

∑
k=1

β2jk(st+δ2 = k)

where one of δ1 and δ2 is 1, the other the (reducing) gap length. Forms other
than multinomial logit may be appropriate in certain circumstances, but in se-
quence analysis the state space is almost always nominal. Note that the depen-
dent and predictive variables have the same categories, so the indicator pa-
rameters for the explanatory variables have the same index as the dependent
variable.

In Stata terms the looks like this, assuming the data in “long” format:

by id: gen last = state[_n-`delta1']

by id: gen next = state[_n+`delta2']

mlogit state i.last i.next

with local variables delta1 and delta2 assigned appropriately.
The lagging and leading states are essential to the procedure, and on their

own they make for apparently good imputations. However, the model is im-
perfect and I consider improvements in the next section.

Note also that since these are purely predictive models, concerned not with
causal relationships but with modelling joint distributions, it is as appropriate
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to think about states after the gap affecting it (in a statistical sense) as states
before: in this sense what happens after the gap is “history” just as much as
what precedes it.

The imputed value is derived by assigning to the states at random, with
probability predicted by the multinomial logistic regression. Inspection sug-
gests that in most cases the predicted probabilities are very unevenly distributed
(one close to 1.0 and the others low, or two large). That is, the predictions usu-
ally strongly reflect the prior and subsequent states.

2.4 Improving the predictive model

The baseline predictive model takes account only of immediately prior and
subsequent state. This implies a uniform time-constant Markov process un-
derlying the sequences, which is clearly not realistic. There are many ways to
enhance the predictive model. Taking account of more sequence information
(such as summaries of the prior or subsequent histories) is one (not Markov).
Taking account of fixed individual characteristics such as gender, education
or class of origin, is another (not uniform). We can allow the transition rates
to change with time by including an interaction between time and the effects
of the predictors, so that a gap early in the sequence will be filled differently
from one late in the sequence (not time-constant). We can further take account
of time by including external time-series, such as the rate of unemployment.
We can model the effect of prior and subsequent state in a more detailed way
by including their interaction into the model. However, immediately prior
and subsequent states are the foundation of the prediction. Moreover, since
the predictive model will be fitted many times in the process of the imputa-
tion, it is important that it is stable, and can be fitted across the sequences:
more complex models may occasionally fail to converge.2 In practice, taking
account of simple summaries of prior and subsequent experience works very
well to supplement immediately prior and subsequent state, and individual
fixed characteristics make little difference, since they are already encoded in
the observed part of the sequence. In section 7, I will return to this issue, to
show that information about the structure of data collection can have an im-
pact on the modelling.

3 A worked example

In this section I apply the model to a real data set, consisting of six years of
labour market data for women with a birth at end of year 2. This is derived
from British Household Panel Survey data, relating to the status at interview,
and in the inter-wave period. The data consist of 872 full sequences, coded into
four states: full-time employed, part-time employed, unemployed and non-
employed, recorded monthly over six years. There are an additional 207 se-
quence with internal gaps up to 12 months in length. Relatively few sequences
have longer gaps, but substantial numbers of cases with initial or terminal
missings are ignored. There is no overriding reason to ignore in ital or ter-
minal gaps, though one may wish to limit them to shorter spans as they have

2The Stata implementation has a fallback procedure, such that if a complex model fails to con-
verge, a less complex one can automatically be estimated instead.
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only half the relevant information. I exclude them here primarily because they
need to be modelled slightly differently, as they miss either prior or subsequent
information.

3.1 Predictive models

The predictive model chosen for the imputation needs to be substantively mean-
ingful, and stable. In work not reported in detail here, I have examined the
performance of a range of models for a variety of gap lengths, in terms of their
overall fit (particularly in terms of the likelihood ratio test on adding terms to
the model, but also in terms of the pattern of agreement of predicted probabil-
ities).

The simplest model used just takes immediately prior and subsequent states
into account: mlogit state i.last i.next. It seems attractive to include the
interaction between these states: mlogit state i.last##i.next. However,
some combinations are rare, and in general this model was very unstable.

It was also evident that average transition rates changed strongly with time:
in the nature of this data set, transition rates peak around the period of the
birth. This can be modelled by interacting quadratic time with the prior and
subsequent states.

Given that the sequences do not arise from Markov processes it is important
to include information on history and future. This is done by calculating the
proportion of time in each of the categories before and after the gap.

While there is a strong conceptual case for including individual fixed char-
acteristics (e.g., class of origin, age at t0), in practice these seemed to have rela-
tively little effect. This is probably because their effect on the states in gap is the
same as their effect on the observed states, and this is already incorporated. It
was considered going further in this direction by fitting a random-effects multi-
nomial logit, to account for all individual heterogeneity; this is however too
computationally demanding, and would require computing time measured in
days, as well as being prone to convergence problems.

The working model took the following form, as a Stata expression:
mlogit state i.next##c.t##c.t i.last##c.t##c.t ///

before1 before2 before3 ///

after1 after2 after3, iterate(40)
Note the iterate(40) option: not all models converged within 40 iterations, so
the code included a test for convergence with an automated fallback to a sim-
pler model, in order that the chained imputation sequence completed. In terms
of the sorts of imputations made, there was relatively little difference apparent
when comparing this model to simpler ones, at least to superficial inspection
of the imputed sequences.

Figure 2 shows some example imputations, for six representative sequences.
Each block represents an observed sequence with ten imputations; the grey in
the top row is the gap (some sequences have more than one gap: this is typ-
ical). It is clear from inspection that the imputation behaves in general as ex-
pected. Gaps bracketed by a single state are usually filled in with that state
(none shown in the example, but reasonably common in the complete data).
Gaps bracketed by two states usually have a single transition between the two,
with the transition time being random. Some extra transitions or third states
are imputed, but these are less common, if more likely with longer gaps.
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Figure 2: Examples of imputations: gappy sequences with 10 imputed copies.
The grey sections in the top row of each block represent gaps; in the rows below we can
see ten examples of what the model imputes.

At present, only visual inspection of the imputations has been carried out,
but it would be desirable to analyse them more systematically, and to relate
this to a formal comparison of the predictive models.

To summarise the experience with imputations within this data set, the
model used is reasonably complex but does not take fixed individual character-
istics into account. A certain amount of models fail to converge, so the fall-back
strategy is important but is used relatively rarely. The imputations produced
have (at least superficially) good or verisimilar characteristics, in terms of ran-
domisation of transition points, and occasional introduction of third states.
Quite importantly, imputation increases the data set from 872 to 1079 cases,
an increase of almost 24 percent. As we will see below, these additional cases
are disproportionately “interesting” sequences with multiple spells.

We now move on to the issue of how to benefit from these multiple impu-
tations in analysis.

4 How can we exploit MI of lifecoure sequences?

Multiple Imputation normally proceeds by stochastic modelling of the multi-
ply imputed data sets. Parameters are simply averaged across the replicated
data sets, yielding estimates of the true value that are no longer biased by
missing data, subject to assumptions about the nature of the missingness. The
variance of the estimate is also calculated across the imputations, in a slightly
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more complicated way (see for instance Royston, 2004, p. 273). However, in the
usual workflow of sequence analysis, the next stage is the generation of pair-
wise distances by OM (or other measure), followed by cluster analysis. These
are methods which are not usually framed in inferential terms, so there is no
ready analogue of standard error. So how do we benefit from the information
carried through the multiple imputations?

We can consider a number of strategies. The simplest would be to take
the average distance between the imputed sequences and all other sequences,
and treat that as the definitive distance set for that sequence. That is neat and
efficient in that it yields a single measure, but it completely obscures the vari-
ability inherent in MI.3 This method is considered further, below (section 6.1).
Another simple approach would be to cluster the imputed data sets separately,
and compare the pattern of cluster membership, particularly for different im-
putations of the same sequence. However, clustering is relatively unstable, in
the sense that small changes in the data will sometimes lead to disproportion-
ate changes in the cluster solution, so it can be hard to compare across impu-
tations – in particular, it is hard to deal with assessing the affect of different
imputations on a sequence’s membership of a set of clusters if the set of clus-
ters changes as well. This instability makes it preferable to pool the imputed
data sets and to conduct the cluster analysis on the combined sequences. This
yields a single solution, and we can then investigate to what extent different
imputations of the same sequence end up in different clusters. The downside
of this approach is that it becomes memory intensive and slow, since the mem-
ory and time requirements are in theory approximately O(N2) (i.e., scale with
the square of the number of cases). Moreover, Stata has a hard limit of 11,000
rows for matrices.

5 Analysis

We therefore proceed by conducting cluster analysis on the pairwise distances
from the pooled data. There is no particular issue in generating the pairwise
distances using OM. Similarly, clustering using Ward’s linkage raises no con-
ceptual issues with the pooled data. In particular, if there were no imputed
cases, but simply a fixed number of repetitions of each observed sequence in
the pooled data, we can expect the same cluster solution as if each sequence
were represented once only.4Thus, the extent to which imputed sequences’
cluster membership varies is a measure of the uncertainty in the imputation.

5.1 Pairwise distances

While there are no conceptual issues involved in calculating optimal match-
ing distances with imputed data, there is a practical one: calculating pairwise
distances is also O(N2). However, there is no reason to calculate duplicate
distances, so the extra burden only applies to imputed sequences. My SADI

3This approach could be linked to the discrepancy measure (Studer et al., 2011), which is an
analogue of variance, applied to pairwise distance matrices. Using this approach, the variability
becomes meaningful again. It is intended to explore this in future research.

4This can be verified empirically.

9



add-ons for Stata5, SQOM for Stata, and TraMineR for R all deal with duplicate
sequences automatically (SQOM is, however, too slow for large data sets).

There are distance measures available other than OM. OM is the default
in the sequence analysis literature. It is oriented to strings of tokens and is
good at recognising similarity at different locations. However, in this con-
text some characteristics of OM will tend to smooth differences between repli-
cations (for instance, it will be relatively insensitive to small changes in the
transition point). Other measures might have different consequences. Ham-
ming distance would possibly increase the perceived difference between im-
putations, and spell-sensitive measures such as time-warp edit distance TWED
(Marteau, 2008) and Elzinga’s X/t approach (Elzinga, 2005, 2006) will be par-
ticularly prone to treating imputations with a third state as distinctive.6

5.2 Clustering

Clustering with Ward’s method is the typical sequel to calculating distance
measures. Its primary purpose is to generate an empirical typology of the se-
quences. Ward’s linkage performs well: in my experience it is more likely than
other readily available linkages to yield a solution with reasonably even dis-
tribution of cases across the clusters; many of the other linkages tend towards
one huge cluster and many tiny ones.

Clustering a large data set is slow, and as noted above, Stata imposes a
strict limit of 11,000 cases. Thus we are limited in the number of replications
we can use. However, for a data set of up to 1,100 cases, we can have 10 repli-
cations. Considering, however, that in this pooled data set that there are very
high numbers of duplicates, it would be desirable that the clustering could
work with weighted data. For the fully observed sequences, they could enter
with a weight equal to the number of replications, and only the imputed se-
quences would increase with the number of replications. Were this possible,
much larger numbers of replications would be feasible (and clustering with
any duplicates would be significantly faster). Ackerman et al. (2011) demon-
strate that clustering weighted data is possible for many linkages (including
Ward’s), but I have not been able to find an implementation.

However, for the present data set, with a size of 1,079 including imputed
sequences, Stata will accommodate up to ten replications. On an elderly PC
(3MHz, non-SMP Stata) this data set requires approximately four hours to run
the cluster analysis. A five-replication version completes in less than 30 min-
utes, suggesting that the process is worse than O(N3). This suggests that it
would be worth investigating alternatives such as R’s fastcluster library,
which claims to be O(N2), and is not subject to the 11,000 case limit. However,
for present purposes Stata does the job, and Figure 3 shows the eight-cluster
solution that results.

5See http://teaching.sociology.ul.ie/sadi/, or do net from

http://teaching.sociology.ul.ie/sadi/ followed by net install sadi within Stata.
6A release of SADI containing a larger range of distance measures is in preparation. As well as

OM, it will provide Hamming distance, Lesnard’s dynamic Hamming, Hollister’s localised OM,
Halpin’s duration-adjusted OM, TWED and a version of Elzinga’s duration-weighted combinato-
rial measure.
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Figure 3: The eight-cluster solution, for five replications

5.3 Variation in cluster membership

The cluster solution in Figure 3 would normally be the product of interest, but
here our focus is not so much on the classification of trajectories as on the vari-
ability of the imputed sequences. That is, for a given cluster solution, and a
given gappy sequence, to what extent are different imputed versions of the se-
quence assigned to different clusters? A simple way to measure this agreement
is to calculate for each base sequence, how many pairs of imputed sequences
disagree. Given r replications of a sequence, there are r(r−1)

2 pairs, and we
can create an index of the proportion of pairs where both sequences fall in the
same cluster. Figure 4 summarises this quantity across all imputed sequences,
for five and ten replications, for cluster solutions between 2 and 200 categories.
Clearly, the more clusters in the solution, the easier it is for two imputations
of the same sequence to fall in different clusters. From this figure we see a
number of features. First is that as the number of clusters rises, so does the
disagreement, but at a relatively slow rate. Second is that the picture is quite
similar for five compared with ten replications. Third, as the number of clus-
ters increases, many of the splits have no effect on the index. But perhaps most
important is that fact that even at very high numbers of clusters, more than 97
percent of imputed sequences are in agreement. Inspection of the data shows
that some of this high level of agreement is due to exact agreement between
imputations: naturally, given the discrete state space and the fact that some
gaps are short, some imputations are exactly identical. What is probably more
important, however, is that many of the imputations differ in small ways that
OM will discount, such as having a small difference in the timing of the im-
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Figure 4: Agreement between imputed sequences

puted transition. Coupled with the fact that the imputed proportion of the
sequence is relatively small (sequences are six years long, and the longest gap
is one year, though sequences may have more than one gap), this means that
variation among imputations is often very small. This is an important conclu-
sion, but one that depends on the specific data set: imputation adds relatively
little uncertainty to the analysis. For other data sets, with more missing data, or
a bigger state space, this conclusion might not hold, but looking at agreement
measured in this way will be informative.

5.4 Comparing imputed with fully-observed sequences

Given the relative stability of the imputed sequences, the next question that
arises is how similar the incomplete sequences are to the complete ones. Fig-
ure 5 shows the distribution of complete and incomplete sequences across the
eight-cluster solution (see also Table 1). It is immediately clear that simple
clusters of simple sequences (particularly clusters 1, 4 and 8, composed mostly
of trajectories entirely in a single state) are very predominantly composed of
completely observed sequences. In contrast, clusters composed of sequences
that experience multiple transitions have much higher proportions of imputed
sequences (in particular clusters 2, 5 and 6). Given what we know about the
relative stability of the imputations, we can say that this is a true feature of
the incomplete sequences and not an artifact of the imputation. That is, in-
complete sequences are much more likely to display high rates of transition
in their observed portions, than are complete sequences. There are probably
many reasons for this, but a major one is that individuals with unstable or
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Figure 5: Comparing complete with imputed sequences, eight-cluster solution,
five replications

complex life situations are more likely to be hard to contact for interview, and
will have more opportunity for measurement error to enter when they are in-
terviewed because they have more information to report (dates of transitions,
etc). It may also be the case that there is measurement error in some of the
completely-observed simple sequences, i.e., that gaps in the record that repre-
sent an unobserved spell in another state are “papered over” by reporting a
too-early date for the return to the main state.

5.5 Reviewing the imputation exercise

To recap the imputation exercise, the predictive models seems to be generat-
ing plausible and stable imputations, which in turn are clustered very simi-
larly, with in excess of 97 percent in the same clusters. Very importantly, in
this data set imputing internal gaps up to 12 months long increases the avail-
able sample size by a quarter. Moreover, incompletely observed sequences are
distributed significantly differently from completely observed sequences, be-
ing much more likely to be complex, multi-transition sequences. In this sort
of data, quite aside from representativeness issues, there is a problem that the
space of these “interesting” sequences is fairly sparse, so an increase in their
presence is particularly welcome, and facilitates the clustering of complex se-
quences. Representativeness is important too, of course, so the inclusion of
these sequences reduces bias substantially. At least impressionistically, there-
fore, multiple imputation of lifecourse sequences seems to be an attractive op-
tion, and is much better than the basic alternative of modelling only complete
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Table 1: Distribution across 8-cluster solution of complete and imputed se-
quences, five replications, percentages in parentheses

Cluster Complete Incomplete Total

1 1,370 15 1,385
(31.42) (1.45) (25.67)

2 465 242 707
(10.67) (23.38) (13.10)

3 325 80 405
(7.45) (7.73) (7.51)

4 880 90 970
(20.18) (8.70) (17.98)

5 480 338 818
(11.01) (32.66) (15.16)

6 255 180 435
(5.85) (17.39) (8.06)

7 255 65 320
(5.85) (6.28) (5.93)

8 330 25 355
(7.57) (2.42) (6.58)

Total 4,360 1,035 5,395
(100.00) (100.00) (100.00)

sequences.

6 Alternative approaches

Cluster analysis of the pooled data is one approach to using the multiple im-
putation data. Other approaches are possible. I consider two here: using the
average distance between the multiple imputations and other sequences, and
using OM with gaps marked as missing values.

6.1 Averaging distances

Averaging distances is a way of reducing the multiple imputations to a sin-
gle entity. It is not possible to average the imputed sequences to a single se-
quence, but we can find the average distance between the set and each other
sequence. Thus we end up with a single set of distances for each incomplete
sequence. This has the advantage of not inflating the data set, but loses all
sight of the variability of the imputations. In principle we should end up with
a very similar picture to the pooled cluster analysis, except that the imputed
sequences now belong to exactly one cluster. The clustering will not be exactly
the same, however, since the points implied by the averaged distances are not
the same as those implied by the multiply imputed distances. Small changes
in the data will tend to lead to moderate inconsistencies in the cluster solution.
We can see this by comparing the cluster membership of the sequences under
this analysis, with that under the pooled analysis (for five replications). Table 1
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Table 2: Comparing the average-distance and the pooled solutions, five repli-
cations

MI solution Average-distance solution

1 2 3 4 5 6 7 8 Total
1 1,385 — — — — — — — 1,385
2 5 655 — — 2 10 35 — 707
3 90 — 315 — — — — — 405
4 — — — 970 — — — — 970
5 — 30 — — 678 110 — — 818
6 — 15 — 100 — 320 — — 435
7 — 20 — — — — 300 — 320
8 — — — — — — — 355 355
Total 1,480 720 315 1,070 680 440 335 355 5,395

cross-tabulates the MI solution with the average-distance solution (with the
latter permuted to give the largest possible agreement; as clusters have no la-
bels, clusters in two different classifications can only be identified on the basis
of shared membership). For one run, we get agreement measured by the Ad-
justed Rand Index of 0.866 (Vinh et al., 2009), and a κmax index of 0.908 (Reilly
et al., 2005).7 These are high levels of agreement, but are far from perfect. As
we can see from the table, almost 8 percent of cases are off the diagonal. It
should also be noted that these figures vary if we impute another set of cases
(in other words, five imputations is likely too low for stability).

As an index of the instability of clustering, approximately 4 percent of com-
pletely observed sequences are placed in different clusters, as a result of the
presence of the averaged or multiply imputed sequences. Over 20 percent of
the imputed sequences are assigned to different clusters. From all this I con-
clude that while averaging is convenient and may be a way of accommodating
imputation in larger data sets, it is not equivalent to clustering the multiply
imputed distances.

6.2 A second alternative: missing as special category

As I stated at the beginning, there are other methods for dealing with gaps in
sequences, at the level of defining the pairwise distances. These completely
avoid the issue of imputation, and it is worth exploring them. One strategy,
which is proposed in the TraMineR documentation (Gabadinho et al., 2009,
section 9.4.5), is to treat missing states as belonging to a special category, and
to assign substitution costs to this category. An undesirable consequence of
this suggestion, which is explicit in the documentation, is that missing states
are regarded as identical, that is, a missing state in one sequence counts as a
perfect match with a missing state in another. I adapt the approach to avoid
this, and justify it as follows: Missing means the state is unknown but belongs
to the state space. We can therefore assign the maximum substitution cost to the

7The ARI compares two unlabelled classifications and indexes the extent to which any pair of
cases is in the same (or different) groups in one classification is in the same (or different) groups
in the other; 1.0 implies perfect agreement. The κmax is Cohen’s Kappa for the permutation of the
classification that maximises it.
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Table 3: Missing as a special state, versus MI: comparison of cluster solution

MI solution “Missing as state” solution
1 2 3 4 5 6 7 8 Total

1 1,385 — — — — — — — 1,385
2 — 440 215 — 12 35 5 — 707
3 15 — 390 — — — — — 405
4 — — — 960 — 10 — — 970
5 — — — 65 603 145 — 5 818
6 — — — 70 5 345 — 15 435
7 — 5 — — — — 315 — 320
8 — — — — — — — 355 355
Total 1,400 445 605 1,095 620 535 320 375 5,395

substitution between missing and any known state, as a ceiling. Similarly, we
can assign the maximum substitution cost to the match between missing and
missing, on the grounds that there is no more reason to assume that the two
unobserved states are a match than in the case with one unobserved and one
observed state. This requires a substitution matrix with a non-zero value on the
diagonal, which is counter intuitive but can be accepted as long as we view the
missing category as “unobserved” rather than as an identified extra category.
Depending on how the OM algorithm is programmed, this special substitution
matrix will propagate correctly into the calculations (it works with SADI but
I have not tested TraMineR). The net result of the strategy is that a sequence
with missing values has distances calculated that are greater than or equal to
the distances that would be calculated if the sequence was fully observed.

Clearly this has a different rationale to multiple imputation, maximising the
difference due to missing data rather than replacing it with plausible values.
However, it offers a useful benchmark. The question is, how often does this
approach put sequences in different clusters from the MI approach? As we see
from Table 3 there is a relatively high level of disagreement (11 percent of cases
off-diagonal, ARI 0.832, κmax 0.868). Among the incomplete cases, 22 percent
disagree.

From this we see that while the approaches have the same effect in includ-
ing sequences that would otherwise be discarded, the results are not equiva-
lent. Intuitively, given that the imputed sequences are usually quite plausible,
in the sense of being based on observed data, whereas the missing-as-state
distances are maxima, intentionally biased upwards, it is likely that the MI
distances are in general more accurate than the missing ones.

7 A caveat: is there more to missingness?

To return to the issue of the prediction model, I want to introduce a final qual-
ification. The prediction model needs to respect the mechanisms by which
observations become missing, and with longitudinal data we can sometimes
say more about this process. In particular, if missingness applies to spells of
time, rather than to states at particular dates, it is likely that we can improve
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the model. A typical way in which a gap can develop in panel data is due
to the interviewee missing an interview (at year Y). If the account of the life-
history given at the interview at year Y + 1 does not extend back to the date
of interview at Y, there will be a gap in the record, starting immediately af-
ter interview Y. In this case the structure implies that while there was almost
definitely a transition at the end of the gap, there is no particular reason for
supposing the gap begins with a transition.

The details depend on precisely how the data were collected, and what in-
formation about this persists through to the final data set, but in general if
information about the structure of data collection is available it may improve
the prediction model in significant ways. In the case of the BHPS, the key infor-
mation that propagates into the final data set is whether interview took place
in that month, and whether the month is explicitly accounted as the first or last
month of a spell. Adding this information to the model described in section 3.1
makes a big difference as measured by the likelihood ratio test. However, the
differences it makes to the imputations are subtle, to say the least. Visual in-
spection suggests that there may be more transitions at the edges of gaps, but
the distribution of states and the numbers of transitions imputed doesn’t seem
to change materially. This improvement in imputation is probably much more
relevant to methods that are sensitive to duration and to transition rates, such
as hazard rate modelling.

More work is needed on this issue, in particular to make a more formal com-
parison of the imputations, and to examine them in hazard modelling frame-
works.

8 Conclusion

Resolving the problem of gaps in sequence data is essential. Longitudinal data
is particularly subject to missingness, so discarding incomplete cases can be
particularly costly in terms of reduced sample size and loss of representativity.
And as we have seen, not only are incomplete sequences distributed differ-
ently from complete, but they are concentrated among the “interesting”, high-
entropy sequence where there is a lot going on. From a cluster analysis point
of view these sequences occupy a part of the trajectory state space that is hard
to cluster because it contains so much variability, and therefore sparseness is a
particular problem.

As a response to missingness, multiple imputation of lifecourse sequences
seems to work very well. In the example used, the amount of information
in the sequences is enough to impute the gaps with relatively little variabil-
ity, though for data with longer gaps or a larger state space, this may not be
so true. The formal structure of the imputation, where gaps are “closed” in-
crementally from the edges, with prior and subsequent state having the key
predictive role, seems to be effective. The distribution of the imputations is as
one would expect, on the basis of visual inspection, though more formal test-
ing is planned. While prior and subsequent state work very well on their own,
it is evident that more is needed in the predictive model: the implied constant
uniform Markov process is clearly not realistic. Improving the model by taking
account of time, and prior and future “history”, makes a big difference to the
fit of the model, but not a dramatic difference to the imputations (again, a more
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formal examination of the imputed values is intended). Whether it is valuable
to include fixed individual characteristics is a question that has not been re-
solved, though it seems that the additional information they would bring in,
having taken account of the observed part of the sequence, is likely to be small.

Clustering as a sequel to multiple imputation is unusual, and loses some
of the benefit of averaging inference across imputations. Further, it is mem-
ory and computationally intensive, which is an issue that limits the number of
replications that can be dealt with. However, as a practical issue cluster analy-
ses of reasonable numbers of replications can be dealt with in acceptable time,
using Stata’s default capabilities. The hard limit of 11,000 cases imposed by
Stata’s matrix system is a serious issue, and it seems necessary to explore other
software, particularly for larger data sets or higher numbers of replications.
Nonetheless, the strategy of pooling imputations, and clustering the combined
data set, is effective, particularly when agreement between pairs of imputa-
tions can be tracked.

While clustering is an obvious thing to do with pairwise distance data, it
has its limits and its instabilities, and it is worth looking to other techniques:
discrepancy analysis (Studer et al., 2011) has particular promise in this respect,
and is an avenue for further research. Looking at the average distance across
imputations connects with this perspective.

Two alternative approaches were examined: reducing the distances of the
multiple imputations to an average and thus reducing the imputed data set to
size N, and treating missing as a special maximally different, non-self-identical
state. The main advantage of the former is that we get a multiply imputed mea-
sure of the location of the incomplete sequences in the sequence space, and can
proceed without the costs associated with large sample size: for data sets too
large to cluster in their replicated format this offers some potential. However,
since it loses sight of the variability of the imputations it is less attractive than
clustering the replicated data, where that is possible. The second alternative,
that of treating missing as a special state, also has some value, in providing
a benchmark in that it includes the missing data in the analysis, but without
any imputation. However, it includes the incomplete sequences in a somehow
grudging way, and their distances to all other sequences are systematically bi-
ased upwards. Insofar as the imputation model is sound, the multiply imputed
distances (averaged or as a distribution) are less biased.

At any rate, the standard practice of dropping incomplete cases is in se-
quence analysis, as in other forms of data analysis, clearly inferior.
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