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1 Three narratives of sequence analysis

While the Optimal Matching algorithm (OM) has been very successful in sequence analysis in sociology,

it has limitations, particularly when applied to lifecourse data. This paper addresses some of these prob-

lems, and considers a number of alternative ways of defining similarity between lifecourse trajectories.

Similarity measures can be compared in terms of three related dimensions: one, their algorithmic struc-

ture, two, their practical results, and three, the extent to which they can yield sociologically interpretable
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distances between sequences, their “narrative” of similarity. OM’s narrative depends on defining similar-

ity as edit-distance, and this can be attractive for sequences that are naturally discrete in time, but it does

not map without problem onto sociologically meaningful intuitions of similarity, particularly when time

is continuous.

The alternatives considered in this paper include two relatively minor modifications of OM, a group

of methods that focus on enumerating common subsequences, and a time-warping method. Each of the

alternative algorithms implicitly defines similarity in a different way, providing a different narrative and

orienting us to different intuitions of similarity. The two modifications of OM attempt to address problems

arising from OM’s focus on context-free comparisons between tokens, but for technical reasons they fail

to produce valid distance data. The subsequence-oriented approach defines similarity in terms of the

extent to which two sequences go through the same states in the same order, which is radically different

from the principles underlying OM, and empirically provides very different distances. Finally, the time-

warping method provides distances defined in terms of local expansion and compression of the time axis,

which yields a very different way of looking at similarity of longitudinal data. The implementation of the

time-warping algorithm is structurally very similar to OM, though it produces distances that are in many

cases intermediate between OM and the subsequence approach.

Thus, in terms of tools for comparing sequences, we have three distinct narratives: similarity in terms

of edit distance (potentially with modifications), similarity in terms of going through the same states in

the same order, and similarity in terms of warping the time axis. At one level measures are algorithms,

with deterministic behavior set by their rules and parameterisation, but we can think of “narrative”

as referring to our understanding, perhaps heuristic, of the relationship between the algorithms and

interpretable, meaningful comparisons made between sequences.

1.1 Method and meaning

For sequence analysis to be useful to sociology, it has to make sociological sense. We can reduce this

requirement in the current context to a demand that inter-sequence distances can be made to correspond

systematically to sociological ideas of similarity, leaving aside the important but less distinctive issue of

what use (clustering, comparison with ideal types, etc.) is made of the similarity data. This topic has

not received a great deal of systematic treatment, though proponents of sequence-analytic measures will

implicitly or explicitly assert that their measure is meaningful.

Sociological meaningfulness was one of the multiple foci of criticism of sequence analysis posed by Wu

(2000) and Levine (2000) (in response to Abbott & Tsay, 2000), who still represent the most sustained

intellectual attack on the approach even now, some 14 years later.1 Other criticisms tend to focus on the

advantages of one distance measure compared to others, while taking the utility of sequence analysis as

such for granted (e.g., Lesnard, 2010; Hollister, 2009; Halpin, 2010).

Wu and Levine raised many concerns about the black-box nature of the process, and the inability of

its proponents to satisfactorily elucidate the link between the operation of the OM algorithm and the-

oretically relevant differences between trajectories. They saw its utility in molecular biology as arising

from a close relationship between its elementary operations and processes of change in DNA recombi-

nation, with this mapping being entirely invalid for social processes. However, OM’s algorithm does

not intentionally (or even particularly closely) model molecular biology processes; rather it is driven by

computational tractability, and can be applied to token strings in a variety of contexts, including DNA

and social applications. This view of the algorithm as modelling the data generation process lead them

to compare it unfavourably to the alternative narrative commonly applied to longitudinal social data,

1A relatively rare example of an application that draws negative conclusions about the utility of OM is McVicar and Anyadike-
Danes (2010).
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hazard rate modelling or “event history analysis”. EHA presents a very attractive mental (as well as

statistical) model of lifecourse processes, with causality operating in continuous time, taking account

of current state, history and duration dependence, and can indeed model the data generating process.

Moreover, as a stastical model it can estimate the effects of other measured variables and test precise

hypotheses about them. However, sequence analysis (which typically has other goals) is not a model of

data generation, but rather (at the level of the distance measure) a way of defining pairwise similarity

for (typically) descriptive and exploratory purposes. Wu in particular read the algorithm as competing

with models like EHA, which lead him to unnecessarily strong objections to the logic of the elementary

operations. In particular he misread the substitution operation as a kind of transition, and objected to

“impossible” transitions (such as from married to never-married). While he may have been mistaken,

parameterisation of OM worries lots of people – rightly, because parameterisation has a stark effect on

the resulting distances. However, the problems are not insurmountable, particularly if substitution costs

are thought of as simply describing differences between the categories of the state variable. Sequence

analysis therefore consists of a mapping of the state-space distances onto the sequence domain, yielding

a set of sequence-space distances. Viewed this way substitution costs are less intimidating, and in many

simple ways the state-space patterns will influence the sequence-space patterns, though given the extra

complexity inherent in sequences, this is not a deterministic relationship.

As we have seen, the competing narrative of event history analyis is very attractive, though it does a

very different task to SA. Other statistical models that provide competing narratives include latent class

models (e.g., Barban & Billari, 2012), which focus on the search for classes rather than modelling the

data generation process, or latent growth curve models (e.g., Lovaglio & Mezzanzanica, 2013) which

focus on the multiple-individual time-series nature of the data.

While one may discount some of Wu and Levine’s objections, and note that sequence analysis can

serve different functions from EHA, LCA, LGCM and other statistical models, it is well to note that their

fundamental injunction holds true: for sequence analysis to be worth the candle we need to be able to

justify the narrative it gives us about similarities between sequences through sociological state spaces.

1.2 The narrative of sequence analysis: mapping state-space onto sequence
space

Sequence analysis is concerned with identifying similarity between sequences. We do this by reference

to information about the state space through which the sequences move, at the minimum in terms of

identity and difference of states (as in subsequence approaches), but usually with more detailed ideas

of distances within the state space (as when we use the “substitution cost matrix” in OM). In a broad

sense the narrative of sequence analysis is the mapping of information about the state space onto the

sequence space. How the mapping occurs is obviously critical but varies, sometimes dramatically, from

one algorithm to another.

The simplest mapping is the Hamming distance, where the inter-sequence distance is the sum of

the state distances at each timepoint. While the correspondence between the state space and sequence

space is thus utterly clear, Hamming is blind to similarity that is displaced in time. The other available

algorithms allow time-dislocation in different ways, at the expense of a more complicated relationship be-

tween the state space and the sequence space. OM uses deletion and insertion of elements in the sequence

to allow time-dislocation by “alignment”, but otherwise replicates the Hamming distance’s mapping be-

tween state and sequence (though in the context of OM this is described as “substitution”). Time-warping

methods achieve the dislocation by warping the time axis, and then doing a Hamming-style comparison.

Subsequence-based methods depart entirely from the Hamming-style comparison, and achieve a radi-

cal time-dislocation by focusing on the order of states rather than when they occur. Thus the available
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algorithms will have different consequences and give different ways to think about the similarity.

OM’s edit-distance narrative leads to differences after alignment being understood as substitutions

(an edit operation). However, viewing the substitution cost matrix as a state-space distance matrix

has advantages, stressing the commonality with other contexts where substitution is a less attractive

metaphor, such as Hamming distance and time-warping. Viewing substitution costs as state-space dis-

tances also demystifies the derivation of substitution costs: state-space distances are just statements

about differences between the categories of the state-space variable. These differences can be notional,

based on external data or even derived from the sequences on the basis of transition rates. It might also

avoid common misunderstandings about substitution, sometimes seen as directly modelling the empirical

sequence-generating process, or leading to worries about the misapplication of molecular-biology models

to sociology, and about “impossible transitions” etc.

The paper proceeds by looking at this set of measures, benchmarked against the simplest of them all,

the Hamming distance, and compares how they perform with real lifecourse history data. All methods

but Hamming allow some sort of time dislocation, be it by insertion and deletion, compression and

expansion, or counting of subsequences wherever they appear. The measures’ performance in a typical

sequence-analysis workflow is compared: cluster analysis to generate a descriptive data-driven typology.

All methods except the subsequence methods give results that are not very different from Hamming,

suggesting that time-dislocation is important only a small part of the time; the subsequence method

produces quite different results. The next section considers the shape of the sequence space in so far

as multidimensional scaling can reveal it; this again reveals that the subsequence method is different,

but also that for OM and the timewarping method there is little evidence of natural clustering among

the trajectories. The following section bypasses the relative instability of cluster analysis by analysing

correlations between measures: this shows again that the subsequence method is very different, and that

the structure of distances in the state space is more important, much of the time, than the nature of the

measure. In the final section, the time-warping measure is explored in more depth, showing that as its

parameters are varied, it constitutes a bridge between OM-style measures and order-based measures like

the subsequence algorithm.

2 Lifecourse data and token sequences

Optimal matching, or the Needleman-Wunsch algorithm (Needleman, Wunsch et al., 1970), and related

approaches to defining distance or similarity between sequences, work with sequences that pass through

a finite, discrete state space, such as strings of bytes representing characters (in the case of Levenshtein,

1966, bits or other tokens representing “words”). This maps well onto domains like fuzzy text search

in computer science, or molecular biology where sequences are linear macro-molecules with repeating

elements draw from a small set (e.g., DNA and the four CAGT bases). It also works for other naturally

discrete state spaces such as a coding of utterances in conversations, steps in a dance, voting behaviour

at successive elections, and so on. OM’s elementary operations of insertion, deletion and substitution

implicitly require sequences to consist of discrete, successive tokens, which can be operated on as inde-

pendent atomic units. In contrast, life courses operate in continuous time (though in practice always

measured with rounding, for example, in whole months). Two approaches are commonly used to repre-

sent continuous time/discrete space trajectories as token sequences: either whole spells in a given state

are represented as single tokens, ignoring duration, or time units are represented as tokens so that spells

are represented by runs of consecutive tokens, representing duration as repetition. The latter approach is

used widely and, on the whole, it works well. However, if the distance measure implicitly treats tokens as

strictly distinct from their neighbours, this is sub-optimal. Where the average spell length is longer than
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one token, successive tokens are highly likely to have the same value, simply because no transition has

occurred. In a true token string, while successive tokens will be correlated and often identical, each token

is an independent realisation. For instance, if our sequence is vote at successive elections, party loyalty

and patterns of flow between parties will mean that successive observations are related, but each vote is

a distinct event. If however, the sequence is an annually-collected report of the most recent vote, it can

only change when there has been an election: in this sequence for most t/t+ 1 transitions there is a very

different sort of dependence. A more common example would be a trajectory through an occupational

group state space: here most months will succeed the previous month without change of state, but only

because no change of job has occurred, not that a new job in the same group has been found. This sort of

dependence is not well picked up by OM and similar techniques, because we are dealing with spell data

and they do not take account of that sort of structure.

That is, we often have reason to feel that the token-oriented view is inadequate for lifecourse data.

Alternatives exist, but they have not been considered systematically together. In this paper I consider

together a number of approaches that

• attempt to look at the context of tokens (the values of their neighbours, the length of the spells in

which they are embedded)

• focus on spells, weighted by duration, rather than repeating tokens, or

• focus on the time dimension, defining similarity in terms of warping time.

I consider both the technical characteristics of the approaches, and the sort of sociological story we

can use them to tell about similarity between life course sequences.

3 Modifying the algorithm: “localised” and “duration-adjusted”

OM

One key problem with OM is that by defining distance in terms of token editing, it is blind to context.

Only the values of the pair of tokens, each in one sequence, are taken into account, and their environment

is invisible. Intuitively it is attractive that edits could mean different things according to context. In the

lifecourse context, where transitions are relatively rare, and spells are typically rather longer than one

unit, a deletion that alters a spell length is less important than one which removes a short spell entirely.

Under OM, AAAB is as distant from AACB as from AABB (given d(A,B) = d(A,C)). More generally, it is

reasonable that the importance of an edit can be affected by context, such that substituting B for A in WAX

may not mean the same thing as in YAZ, while for OM the substitution cost is a function of A and B and

nothing else.

This general problem motivated two independent approaches to modifying OM. While different in

detail, both the modified algorithms proposed by Hollister (2009) and Halpin (2010) take context into

account. Unfortunately, neither approach preserves the metric character of OM distances, which limits

their utility considerably. I consider them here insofar as they throw light on the relationship between

the algorithm and the meaning of the resulting distance, rather than as measures to be recommended for

general use.

3.1 Hollister’s LOM algorithm

Hollister’s motivation is specifically the issue of context, that, in not taking account of a token’s neigh-

bours, OM gives edits that should be substantively different the same weight. If one inserts an element in
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a string, that insertion should be less costly, the more the inserted element is similar to the two adjacent

tokens. This will have the consequence that insertions which lengthen a spell (i.e., the two neighbours

are identical to the inserted element) will be very cheap, but it is more general in that insertions between

tokens similar but not identical to the inserted token also cost less. Thus, to insert element k between

elements i and j the indel cost is:

ιijk = α
dik + djk

2
+ β

where α and β are chosen by the analyst and dij is the distance between i and j in the state space (i.e.,

the ij substitution cost). To insert at an end of a sequence, ι = αdik+β. The β is a fixed cost for insertion,

and α weights the distance, d, between the inserted element and each of its neighbours. (Note that while

the OM algorithm is usually described in terms of insertions, deletions, and substitutions, we can think

of deletions as insertions in the other sequence, and of substitutions as insertions (or deletions) in both

sequences.)

3.2 Duration-adjusted OM

OMv, the duration-adjusted version of OM described in Halpin (2010), has a motivation that is super-

ficially different from Hollister’s LOM, but with strong underlying similarities. The key intuition is that

operations on longer spells should cost less than operations on shorter spells. It is easier to see how this

works if it is noted that insertions, deletions and substitutions can all be cast as deletions: an insertion

of a missing element in s1 is equivalent to deleting the extra element in s2; a substitution is equivalent

to a paired deletion of the corresponding elements in the two sequences. Thus all operations can be

considered deletions, and deletions shorten the spell in which they occur, obliterating it if it has only one

element. OMv operates by weighting such operations less, the longer the spell in which they operate.

A weight of 1/
√
l is used as the default, where l is the spell length. Thus deleting an entire 1-unit spell

would cost more than shortening, for example, a 5-unit spell by 1 unit. However, deleting a whole spell

still costs more the longer it is. LOM will have a similar effect of favouring the cheapening operations

within spells, though only by considering the adjacent elements, not the whole spell. OMv is more gen-

eral than LOM in looking to the entire spell rather than the two adjacent elements, but LOM is more

general than OMv in looking at the distance to the adjacent tokens, rather than just whether they are

part of the same spell. While LOM has a narrative of attention to local context, OMv has a narrative of

paying attention to lifecourses as sequences of spells.

Both measures are implemented as relatively simple modifications of the Needleman–Wunsch al-

gorithm, but it can be shown that, unlike OM, the dissimilarities they produce do not have the metric

property. In the next section I discuss what this means and why it matters, and then go on to demonstrate

that the measures are not metric.

3.3 Why metricity matters

It is important that dissimilarities be metric, if we are to use them with conventional cluster-analytic or

multi-dimensional scaling tools, which rely on the dissimilarities having a coherent global relationship,

such that they can be used to construct a (perhaps latent) space within which the observations can be

arrayed. Even more, it is very hard to think of a non-metric dissimilarity as a distance. The metric property

distills critical characteristics of distance as we experience it in everyday Euclidean 3-dimensional space,

and allows us to think of certain non-Euclidean measures as distances. A dissimilarity ∆(x, y) can be

considered as metric if it has the following characteristics:

1. ∆(x, y) = 0⇔ x and y are the same
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2. ∆(x, y) >= 0

3. ∆(x, y) = ∆(y, x)

4. ∆(x, y) <= ∆(x, z) + ∆(z, y): the triangle inequality

In other words: distance is zero if and only if the entities are identical (or are in the same location);

negative distances are impossible; distances are symmetric; and the distance from x to y cannot be greater

than the distance from x to any other point plus the distance from that point to y – there are no short cuts!

These conditions are naturally fulfilled by distances in Euclidean space, but they are also satisfied for a

large body of measures in non-Euclidean space. At an intuitive level it is easy to see that dissimilarities

that satisfy these conditions are like distances, and that those that do not may cause difficulties. For

many dissimilarities the first three are easy to satisfy (though if the measures are travel times in a city

with one-way streets, requirement 3 is not satisfied). The triangle inequality often causes difficulties.

It is inherent in the OM algorithm that the triangle inequality is satisfied, since it calculates the

dissimilarity as the cheapest additive concatenation or summation of single-edit distances. First, note

that as long as the state-space distances are metric, all one-operation distances in OM are metric. That

is, the distance from ABA to ACA depends on the substitution cost or state-space distance, d(B,C), and

for there to exist a state D such that δ(ABA,ACA) > δ(ABA,ADA) + δ(ACA,ADA) would imply that

the distance in the original state space from B to C is greater than the sum of B → D and D → C;

i.e., substitution gives metric distances between sequences unless the space described by the state-space

distance matrix is non-metric. Since insertions and deletions have a single fixed cost, distances like

δ(ABC,AC) will also be metric.

That OM’s minimising concatenations will generate metric distances can be demonstrated by consid-

ering a route, δ′12, from s1 to s2, made by a sequence of elementary OM operations without minimising

the cost. If we find a sequence s3 such that there exist routes such that δ13 + δ23 < δ′12 we have shown

that δ′12 is not the cheapest route, since the s1 → s3 → s2 route is also valid and is cheaper. Thus OM

necessarily produces metric routes, and if we find the cheapest route from s1 to s2, there can be no third

sequence such that the triangle inequality is not satisfied.

In a general sense, we can consider non-metric dissimilarities to arise where the measures are not

coherent enough to imply a space, a structured relationship independent of the observations, within

which the observations can be located. Some measures are very good at identifying close matches, but

where the dissimilarity is great, differences between the values of the measure are uninformative. Some

measures may compare x and z using one set of shared characteristics, and z and y using another set,

such that x and z are similar, and z and y are similar, but if x and y do not share characteristics they may

be judged as very dissimilar. Elzinga (2006) has a valuable discussion on measures and metric properties.

3.3.1 Localised and duration-adjusted OM are not metric

It is easy to demonstrate that LOM is not metric. If we consider the following three sequences:

• s1 = BBBBAB

• s2 = CCCACC

• s3 = BBBACC

Given the following cost structure:

• ι = 0.5
dik+djk

2 + 0.5

• dij = 1, i 6= j
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• dij = 0, i = j

the following dissimilarities are generated:

LOM OM

Pair d = 1, α = β = 0.5 ι = 1.0 ι = 0.75

δ12 6 6 5.5

δ13 2.5 3 2.5

δ23 3 3 3

The dissimilarity between s1 and s2 is greater than the sum of the dissimilarity between s1 and s3, and

s3 and s2: d(1,3) + d(3,2) = 2.5 + 3 < d(1,2) = 6; the triangle inequality does not hold. The sequence

s3 becomes s1 with a discounted insertion of a B between two Bs plus two other operations, which reduces

the dissimilarity between the level OM gives with the corresponding indel cost of 1.0. If we reduce OM’s

indel cost to reduce δOM
13 to match, it also reduces δOM

12 , preserving the triangle inequality. Thus under

LOM, because there is a δLOM
13 discounted edit that is not triggered in the δLOM

12 or δLOM
23 comparisons,

the measure is not metric.

Like LOM, OMv also produces non-metric dissimilarities. Effectively, sequences with long spells will

be judged more similar to all other sequences, because they attract discounted operations. Two sequences

with many short spells may be quite dissimilar from each other but each may be judged quite similar to

the long-spell sequence, violating the triangle inequality. For instance, the OMv distance between BBBBAB

and CCAAAC is 3. However, going through BBBBBB the distance is 0.41 + 2.45 = 2.86. The fact that BBBBBB

consists of a single spell means that its distance even from a spell with no shared elements such as CCAAAC

is reduced.

To summarise, from a narrative point of view, OM gives a definition of distance in terms of edits

in token strings, which has great virtues of simplicity and efficiency, and takes into account the spatial

structure of the initial state space in a clean way. However, by working with a model of time as naturally

discrete, and of elementary operations as blind to their neighbourhood, the distances do not map unprob-

lematically on to lifecourse history and other sociological data. The two attempts to adapt the algorithm

to improve its narrative are sociologically attractive, but run into technical difficulties. 2

4 Combinatorial measures: similarity by counting subsequences

Token-editing approaches define distance as the cost of the edits necessary to turn one sequence into

another, but another tradition in sequence analysis has a radically different approach – and, as we will

see below, distinctly different results.

In the 1990s Dijkstra and Taris (1995) (see also Dijkstra, 1994) proposed a way of looking at similarity

of longitudinal data that focused on order. Leaving aside for the moment concerns with duration, two

sequences are defined as more similar, the more they go through the same states in the same order.

They proposed a way of calculating this similarity; by ignoring non-common elements and repeated

elements their algorithm was tractable. However, as Abbott (1995) pointed out, ignoring non-common

and repeated elements discards a lot of meaningful information, and for token sequences OM offers a

more flexible and general measure. Nonetheless, there is something very attractive about this order-

focused principle of similarity.

2The LOM and OMv measures are available as part of the SADI package of sequence analysis tools for Stata, at
http://teaching.sociology.ul.ie/sadi/.
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Using more complex algorithms, Elzinga proposed a more general approach which draws on this

general concept of similarity (Elzinga, 2003, 2005, 2006). His method efficiently counts subsequences

(order-preserving subsets of a sequence, not necessarily consecutive) and he proposed a variety of mea-

sures based on enumerating matching subsequences. If two sequences share a subsequence, they go

through those states in the same order; Elzinga’s method efficiently enumerates all such matching subse-

quences, and thus achieves in a more general way Dijkstra and Taris’s goal.

All three of OM, the DT measure and Elzinga’s measures are oriented to token-strings – all the algo-

rithms treat the individual elements as atomic and capable of being considered out of context. Where

duration is important, we can represent time by repeating tokens proportionally to spell length; as dis-

cussed above this has drawbacks, but further with Elzinga’s method, long sequences are costly to process

(since the number of subsequences is 2l where l is the sequence length). However, he describes a number

of variants of his measure which treat spells as tokens whose subsequence matches can be weighted by

a function of the spell durations. This is a big improvement, in efficiency terms, over treating person–

time-units as tokens: a five-year sequence will contain 60 person–months but perhaps only three or four

spells. However, it must be noted that spells are no more atomic than person–months are, in the sense

that their duration is stochastic.

Thus Elzinga’s version of Dijkstra and Taris’s principle of similarity provides another compelling nar-

rative, which can be applied to lifecourses considered as sequences of spells with durations. In so

far as questions remain about its operation, they have to do with the fact that existing implementa-

tions count matches as binary, and cannot deal with partial similarity (as other methods do via state-

space distance matrices), and whether the algorithms of enumeration (which involve different types

of double counting, of subsequences of subsequences), and duration-weighting of spells as tokens,

make for interpretable distances in lifecourse contexts. With reference to the issue of partial matches,

it is worth noting that Elzinga and colleagues are preparing methods that deal with “soft matching”

(elzinga_wang_studer_forthcoming; Elzinga & Wang, 2012).

4.1 Implementation

Below, I present results using a duration-weighted, spell-oriented version of Elzinga’s “number of match-

ing subsequences” (NMS) similarity measure, which I refer to as the X/t measure. My implementation

in Stata differs from the algorithm described in Elzinga (2006), in two main ways. First, rather than use

the efficient algorithm he describes for enumerating common subsequences of a pair of sequences (which

is called N(N−1)
2 times), I enumerate by brute force the subsequences of each sequence (called only N

times) and then efficiently count the matches (N(N−1)
2 times). Second, Elzinga proposes a number of

ways of taking duration into account, the most intuitively attractive of which is to weight by the sum of

the spell-wise product of the durations of the subsequences. Thus, for a pair of subsequences, [A/5,B/4]

and [A/1,B/2], Elzinga suggests the matching AB be weighted by 5 × 1 + 4 × 2 = 13. However, as a

consequence of the internal data structure, I cannot exactly replicate the duration weighting and instead

weight by the product of the cumulated subsequence duration, (5 + 4)× (1 + 2) = 27.

Table 1 shows three example sequences with their subsequences. All three have the same number of

elements, and thus the same number of subsequences. However, since S3 has a repeated element, it has a

smaller number of distinct subsequences (the subsequence B appears twice, with a total duration of 15).

The SXX measure calculated in the final row is the sum of the square of the cumulated duration in each

distinct subsequence (so the BB subsequence in S3 yields 15× 15 rather than 9× 9 + 6× 6).

The distance measure is defined as:

δX/t =
√
SXX + SY Y − 2× SXY
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Table 1: Three example sequences, with their duration-weighted subsequences

S1 = (A/10, B/4, C/6) S2 = (A/10, B/7, C/3) S3 = (B/9, A/5, B/6)

ABC / 20 ABC / 20 BAB / 20
AB / 14 AB / 17 BA / 14
AC / 16 AC / 13 BB / 15
BC / 10 BC / 10 AB / 11
A / 10 A / 10 B / 9 (+ 6)
B / 4 B / 7 A / 5
C / 6 C / 3 (B / 6)

SXX:
∑
t21i = 1104

∑
t22i = 1116

∑
t22i = 1192

Table 2: Enumerating common tuples

S1 S3 Product of duration

ABC / 20 ABC / 20 20 × 20 400
AB / 14 AB / 17 14 × 17 238
AC / 16 AC / 13 16 × 13 208
BC / 10 BC / 10 10 × 10 100
A / 10 A / 10 10 × 10 100
B / 4 B / 7 4 × 7 28
C / 6 C / 3 6 × 3 18

SXY12 =
∑
t1it2i 1092

S1 S2 Product of duration

ABC / 20 — — 0
— BAB / 20 — 0

AB / 14 AB / 11 11 × 14 154
AC / 16 — — 0

— BA / 14 — 0
BC / 10 — — 0

— BB / 15 — 0
A / 10 A / 5 10 × 5 50
B / 4 B / 9 4 × 9 36
B / 4 B / 6 4 × 6 24
C / 6 — — 0

SXY13 =
∑
t1it3i 264
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Table 3: Calculating the distances from the sums of products of duration

SXY Distance

S1 S2 S3 S1 S2 S3

S1 1104 1092 264 S1 0 6.0 42.0
S2 1092 1116 342 S2 6.0 0 40.3
S3 264 342 1192 S3 42.0 40.3 0

where SXY is the sum of the product of the cumulated duration of each subsequence shared between

sequences X and Y. SXX and SYY represent the same measure for X compared with X and Y with Y,

respectively, that is, the sum of the square of the cumulated duration of each subsequence. An alternative

would be to weight shared subsequences according to the sum of the product of the time in each state –

this will yield greater differences between sequences with similar spell order but different durations. For

instance, in the example above, S1 and S3 share an ABC subsequence, and this is weighted at 202 = 400,

the same as the subsequences’ contributions to SXX and SYY, rather than 10 × 10 + 4 × 7 + 6 × 3 = 146

(compared to 152 to SXX and 158 to SYY). However, since the differences in the state-specific durations

will feature in the shorter subsequences (AB, AC, BC, A, B and C) this does not compromise the measures’

ability to distinguish between similar sequences. Indeed, it is possible to argue that the other approach is

deficient in multiply counting the differences. The primary reason for using the subsequence cumulated

duration is computational convenience: it requires storing a single datum per subsequence, rather than

a vector as long as the number of elements. Where sequences are long, the number of subsequences can

be extremely large.

Table 2 shows the calculations of the SXY quantity and Table 3 the final distances. The sequences s1
and s2 share the ABC strucure so match quite closely, while s3 is judged quite different, though it does

match the other two with the AB structure.

Elzinga has implemented many of his proposed measures in his own software, CHESA. A number are

also implemented in the R package for sequence analysis, TraMineR (Gabadinho, Ritschard, Müller &

Studer, 2011), and this X/t implementation is available in SADI.

5 Time-warping

The concept of time-warping provides a third type of narrative: trajectories may have different or varying

speeds such that we can locally compress and expand time to maximise their similarity. The amount of

distortion plus the amount of residual difference can be viewed as a measure of dissimilarity (see Figure

1 for an illustration using a sequence that has one real-valued dimension). While this gives a mechanism

to “align” parts of sequences, to respond to full or partial matches at the same or different times, it does

so by mechanisms that have a different surface logic from OM, one which is much more appealing for

cases where we think of time as essentially continuous (such as lifecourse data). While the surface logic

is, and resulting dissimilarities can be, quite different from OM and related algorithms, it is interesting to

note that it is implemented in a manner very similar to OM’s Needleman-Wunsch algorithm.

Time warping has been around as a term for quite a while: for instance, Abbott and Hrycak (1990)

use the term to suggest using non-linear time scales (for instance the log of sequence time) to cope with

domains where the rate of transition varies with time (e.g., labour market volatility in youth giving way

to stability), and in a sense OM warps time by matching patterns at different time-points. However, in

processing longitudinal data the term has always had a more specific meaning, which features in the

seminal work on sequence analysis, Time Warps, String Edits and Macromolecules (Sankoff & Kruskal,

1983).
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Figure 1: Two one-dimensional sequences compressed and stretched to maximise match

Time-warping has been used widely in computer-science contexts. It was favoured for tasks like

speech recognition, signature verification, and other machine learning tasks. It was typically used to

match a high-dimensional time-series to a “dictionary” of standard elements, a strategy that does not de-

pend on its being a metric. That is, where two sequences resemble each other well, their TW dissimilarity

will reliably be low, but differences between high dissimilarity scores may not be informative. Concep-

tually it is a continuous time approach, but in practice any time-series data processing must discretise,

either by sampling the data at regular intervals (e.g., sound recording samples air pressure 41,000 times

per second, unemployment figures are given on a weekly basis) or through periodic summaries (such as

income per month, daily cumulated rainfall).

While not all time-warping dissimilarities are metric, a modified time-warping distance measure, the

time-warp edit distance (TWED), has been proposed by Marteau (2007, 2008), who has shown it to be

metric. I consider the measure here as a competitor to OM for lifecourse data. It is quite similar to

OM in its operation, as it uses a state-space distance matrix (functionally equivalent to OM’s substitution

matrix), and has operations analogous to substitution, insertion and deletion (though the latter two are

better thought of as compression and expansion, or even better as compress-A and compress-B). It has a

stiffness parameter ν and a gap-penalty, λ.

Formally, time warping is a family of algorithms that can be said to do “continuous time-series to

time-series correction” while OM et al do “string to string correction” (Marteau, 2007). That is, concep-

tually time-warping uses continuous time, but it can be shown to work well in discrete time (Kruskal &

Liberman, 1983). Marteau shows that there is a low bound to the discrepancy caused by such discretisa-

tion for this measure. While TWED can accommodate any sort of state space, and is usually described in

terms of Rn, a space composed of possibly many real dimensions where distances between points can be

calculated in Euclidean or other terms, there is no difficulty in mapping to a discrete state space where

distances between states can be given in a lookup table, the state-space distance matrix. TWED is de-

signed to accommodate irregular time-sampling, but is a little simpler to program when we have fixed

time steps, as is the case considered here, and as is typically the case with lifecourse data.

In its internal operation, it differs strongly from OM in that the operations (i) consider consecutive
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pairs of tokens in all three operations (ii) has a stiffness parameter that cumulates each time a comparison

is made where time is realigned, and (iii) does not edit the content or order of the sequence (insert or

delete) but aligns by altering the time dimension (though in reality there is some elision of elements).

The compress operations are costed at d(si−1, si) + ν + λ. That is, compressing at point i depends

on the similarity of si to si−1, plus the stiffness parameter (ν) and the gap penalty λ.3 This operation

is considered as time-warping, stretching or compressing the time-axis, depending on which sequence

is being considered. Matching is TWED’s equivalent of substitution: when we stop deleting or warping

time, we consider the difference between the now-aligned tokens as a matching cost (with exactly the

same effect as substitution). However, the comparison is between consecutive pairs of tokens, and has a

stiffness penalty of 2ν(|i − j|), i.e., twice the stiffness parameter times the time dislocation between the

two sequences.

TWED offers an alternative to OM that is very similar in terms of implementation, but quite different

in its motivation. By virtue of its stretching and compressing operations, and its attention to successive

pairs of tokens, it is likely to respect the spell structure of the trajectory better than OM. In this respect,

and since it generates metric distances, it may well achieve what LOM and OMv attempted.

5.1 The TWED algorithm

In practice, the implementation and application of TWED is very similar to OM. It takes as parameters a

matrix of distances between the states (identical to the substitution cost matrix, except that the operation

is not thought of as substitution), and two parameters for stiffness and gap penalty that are broadly

analogous to indels in that they facilitate or deter compression/expansion. Thus we are looking for

full and partial similarity at the same or near location, where “partial” and “near” are affected by our

parameterisation. The same description applies to Optimal Matching.

Also similar to OM is the internal detail of the implementation. As is well known, OM can be described

as a recursive algorithm such that the distance between sequence A (up to element p) and sequence B

(up to element q) is given by:

δOM (Ap, Bq) = min


δOM (Ap−1, Bq) + ι

δOM (Ap−1, Bq−1) + d(ap, bq)

δOM (Ap, Bq−1) + ι

where ι is the indel cost and d(ap, bq) the substitution cost between element p of sequence A and element

q of sequence B. This can be programmed efficiently in p× q operations.

TWED can be expressed in an identical structure:

δTW (Ap, Bq) = min


δTW (Ap−1, Bq) + d(ap, ap−1) + νd(tap , tap−1) +λ

δTW (Ap−1, Bq−1) + d(ap−1, bq−1) + d(ap, bq) + 2νd(tap , tbq )

δTW (Ap, Bq−1) + d(bq, bq−1) + νd(tbq , tbq−1) +λ

On the simplifying assumption that observations are taken at fixed 1-unit intervals (i.e., ti+1− ti = 1),

this simplifies to:

min


δTW (Ap−1, Bq) + d(ap, ap−1) + ν +λ

δTW (Ap−1, Bq−1) + d(ap, bq) + d(ap−1, bq−1) + 2ν|p− q|
δTW (Ap, Bq−1) + d(bq, bq−1) + ν +λ

3More generally, ν should be multiplied by the time difference between t[i−1] and ti, but that is always 1 in the sort of data we
are using.

13



The first row represents compressing sequence A, the third compressing sequence B (equivalently

expanding sequence A), and the middle represents the residual-mismatch cost. While the structural

analogy to OM is strong, the manner in which the costings work is different: the equivalent of indel
operations take context into account: if we compress A the cost depends on the pair of values, d(ap, ap−1)

as well as the parameters ν and λ (stiffness and gap penalty). Thus compression is cheaper within a

spell in the same state, like OMv, and is cheaper where the previous value is similar, like LOM. The

cost of the residual mismatch is also an incomplete analogy to substitution: we look at the mismatch

at both ti and ti−1
4, and incur an extra penalty depending on how far apart the locations are in the

unwarped sequences (2ν|p − q|). Effectively we are paying a cumulating penalty for alignment, both in

the compression/expansion operation and in the subsequent comparison.

Thus, though the structure is very similar, we can expect the resulting distances to be different

from OM, since on the one hand more context is taken into account in the elementary operations,

and the penalty for alignment bears not only in the act of alignment (compression/expansion or inser-

tion/deletion) but also in the comparison of segments warped or aligned out of their original locations.

Table 4: The “linear” and “flat” state-space distance matrices

Linear matrix
FT PT UE Non

Full-time employed 0 1 2 3
Part-time employed 1 0 1 2
Unemployed 2 1 0 1
Non-employed 3 2 1 0

Flat matrix
FT PT UE Non

Full-time employed 0 1 1 1
Part-time employed 1 0 1 1
Unemployed 1 1 0 1
Non-employed 1 1 1 0

6 Some results

In what follows I compare OM, TWED and X/t using an example data set which consists of 6 years

of monthly labour market data for women who have a birth at the end of the second year (derived

from British Household Panel Study data). The state space differentiates between full- and part-time

employment, unemployment and non-employment.

Additionally to OM, TWED and X/t, I also present results for Hamming distance, which can be consid-

ered as a special case of OM where alignment through indels is suppressed. The Hamming distance makes

for a very simple “narrative” where the mapping between state-space distances and sequence distances

is a simple summing of the distance at each time point: full or partial similarity at the same time. This

is an important comparison because where sequences tend to have long spells and differ largely in when

exactly transitions occur (as is often the case with lifecourse data), the Hamming distance will be fairly

low, and the amount it can further drop if alignment were allowed will be relatively small. It may be that

with OM and other measures we gain only a little information (through better distances) at the expense

of a much more complicated story about similarity.

4DRAFT NOTE: Marteau’s description of TWED is not consistent, and this double counting is not always present; I need to test
what happens when only the ti pair is compared.
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Figure 2: Indexplot (l) and chronogram (r) for Hamming distance, linear state space

In the next section I compare Hamming, OM and TWED using a very simple state-space distance

structure, which places the four states on a single dimension (hence “linear”) with equal intervals between

them (see Table 4, upper panel). Since X/t does not use such information on state-space distances, it

cannot be fairly compared in this context, so I also compare X/t with Hamming, OM, and TWED using

the another simple state-space cost structure, where all states are equally dissimilar (hence “flat”: see

Table 4, lower panel):

6.1 Patterns

For each measure, distances are calculated and grouped into clusters using Ward’s method. Eight clusters

are chosen for convenience and ease of exposition. Results for the “linear” cost structure are presented

in Figures 2, 3 and 4, which show indexplots (sorted within clusters by the nested subcluster structure5)

and state-distributions (or chronograms). Cluster solutions have been re-ordered to maximise agreement

across measures, in so far as possible. While there are clearly differences in the assignment of sequences

to clusters, there is a remarkable level of similarity (especially considering that cluster analysis can be

relatively unstable). In terms of differences, the Hamming measure, for instance, clusters the handful

of 100% unemployed cases with cases that mix employment with unemployment, while OM and TWED

put them in a distinct cluster. OM takes some cases from Hamming’s cluster 8 and puts them in cluster 4

(which is really closer to Hamming’s cluster 6: it is not entirely possible to reconcile the cluster solutions)

– presumably in the latter case the differences have to do with Hamming seeing a block of similarity at

a certain time (in this case, non-employment immediately around the birth) which matches well with

other cases in cluster 8, whereas OM can recognise similarity in the full-time/non-employed/full-time

pattern which features in cluster 4, though not all with the same timing. TWED picks up rather more of

a spike in non-employment around the birth in cluster 4 than OM does, but less in cluster 8. However,

notwithstanding these differences, for all three measures, the overall character of clusters 3, 4 (6 for

5As will become apparent below, clustering does not recover stable natural clusters for OM and TWED. Thus cluster solutions
are somewhat unstable and arbitrary. Nevertheless, the full hierarchical structure of the cluster analysis captures a lot of the
information embedded in the distance matrix. Sorting index plots within cluster by the nested subcluster structure (i.e. presenting
the dendrogram order), thus makes a lot more useful information available to the eye.
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Figure 3: Indexplot (l) and chronogram (r) for OM distance, linear state space
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Figure 4: Indexplot (l) and chronogram (r) for TWED distance, linear state space, ν = λ = 0.5
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Figure 5: Indexplot (l) and chronogram (r) for Hamming distance, flat state space

Hamming) and 8 is quite similar (broadly, from full-time to predominantly non-employment, though with

some part-time, particularly for Hamming; full-time with a greater or lesser period of non-employment

around the birth with a return to full-time or part-time work, with the part-time increasing over time;

from full-time through non-employment around the birth, to part-time). That clusters 1 (4 for Hamming),

2 (7) and 5 are similar is not much of an achievement as they are very simple clusters, dominated by

single-spell sequences.

Looking at the second set of graphics, with the “flat” state-space distance matrix (implicit in the case of

X/t), we see the same sort of similarity across the first three measures (Figures 5, 6 and 7). If anything the

similarity is stronger with the flat matrix than with the linear, possibly because the absence of the strong

good or bad matches possible with the linear matrix means that there is less opportunity to benefit from

time-displacement, causing OM and TWED to converge on Hamming. However, it is worth emphasising

that the difference between measures is much less than the difference within measures across state-space

matrices: switching from the linear to the flat matrix makes a bigger difference than switching between

algorithms. It should not be surprising that the state-space distance structure should matter: it creates

quite different landscapes, one in which full-time work and non-employment are very distinct, while

unemployment and part-time are more similar, and the other in which everything is equally distinct so

nothing stands out.

Figure 8 displays the X/t results. While all the foregoing results show a good deal of similarity (even,

to a lesser extent, across the two state-space distance matrices), Elzinga’s measure produces radically

different results. Single-spell sequences are naturally maximally distinct (or identical) so are pulled

out in pure simple clusters, without the admixture of sequences that are only close to 100% in that

state. There are three substantial clusters with moderate numbers of transitions, and two of these (2

and 6) correspond relatively well with patterns found by the other measures, though cluster 1 is very

heterogeneous (and across the eight clusters, only 71% of sequences fall in the corresponding OM cluster,

42% if we exclude the three clusters of simple sequences). Finally there are two tiny clusters containing

sequences with high numbers of transitions (and therefore complex sets of subsequences) which are

very distinct from all other sequences. It is evident that the number of transitions is very important
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Figure 6: Indexplot (l) and chronogram (r) for OM distance, flat state space
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Figure 7: Indexplot (l) and chronogram (r) for TWED distance, flat state space
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Figure 8: Indexplot (l) and chronogram (r) for X/t distance

(clusters 1, 2 and 6 have respectively 2.9, 6.5 and 3.8 spells on average, and the two micro-clusters

11 and 12), and that ever being in the same state is important. Moreover, while duration is explicitly

brought into consideration, this does not tie time down in the same way as the other measure: i.e., since

according to all common-subsequence measures, xxABC, AwBwC and ABCzz will all be equidistant because

the measures focuses on order (if weighted by time) and not time, while OM and TWED penalise for

temporal displacement. Where the substantive concern is with order, X/t has big advantages, but with

life-course sequences such as these, where there is an explicit anchor time point (here the birth at the

end of year two, but more typically the start of the trajectory) and a developmental time-scale of some

sort (here, changing constraints on labour market activity as the child ages) measures that pick up “full

or partial similarity at the same or similar time” produce more useful patterns.

6.2 Multidimensional scaling of inter-sequence distances

The foregoing cluster analysis reflects a typical work-flow with sequence analysis, where distances are

converted into a data-driven classification of sequences. We can understand a little more about how the

clustering generates the classification by looking at the space implied by the distance. Do the sequences

have a lumpy distribution in this space (and hence generate robust clusters)? Can we understand some-

thing about the overall pattern of distances: which sequences are distant from each other, which more

close? Does this structure emerge in a similar way across measures or are there systematic differences.

In this section we look at multi-dimensional scaling of the OM, TWED and X/t distances.

Figure 9 graphs the first two dimensions for the OM distances, distinguishing the 8-cluster solution,

using the linear state space. The sequences are located in an approximately oval cloud, with clear poles

marked by sequences that are 100% full-time employed or 100% non-employed, and less distinct poles

dominated by the other two states (more easily detected with more dimensions). Some sequences appear

to form strings: inspection of the data shows these tend to contain one transition, where as the transition

occurs earlier they move progressively closer to the pole concerning the second state. However, apart

from these structures, the distribution through space is relatively even, such that there is no natural

clustering. As is clear, the cluster solution that Ward’s algorithm generates does not identify well defined
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Figure 9: Multidimensional scaling of OM distances, by cluster

groups. However, it does partition the space into distinct areas, albeit with rather arbitrary boundaries.

In that much, we can consider it a useful data reduction strategy but not a successful discovery of natural

clusters.

Figure 10: Multidimensional scaling of TWED distances, by cluster, linear state space, λ = ν = 0.5

Figure 10 shows the corresponding graph for TWED. The shape of the cloud is different, but the

qualitative statements relating OM also apply here. The poles and strings are apparent, as is the absence

of natural clustering.

The structure apparent in the MDS of the X/t distances is very different. Figure 11 shows the whole

data set and Figure 12 zooms in on the core, where the vast majority of the sequences lie. The main graph

shows a single dense cluster and a number of very remote points. The most remote points consist of

sequences with very high numbers of spells and, as we move towards the cluster, sequences get simpler.
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Figure 11: Multidimensional scaling of X/t distances, by cluster

Figure 13 replicates Figure 12 displaying number of spells rather than cluster membership, and this

demonstrates the pattern very clearly: the very simplest sequences are in the top right, and as we move

left the number of spells increase steadily.

In this measure, sequences with many spells are further from all other spells, particularly those with

fewer spells, but also from other high-spell sequences with different patterns. Low-spell sequences, and a
fortiori single-spell sequences have lower distances, but are still distinct from each other (when different).

Because simple sequences are common, they will tend to form clear clusters despite their relatively low

distances to other sequences – they form dense natural clusters in the space, clearly separated from each

other albeit by small distances. Correspondingly, while high-spell sequences are distant from others,

they are sparsely distributed in the space and therefore tend to make quite loose clusters, which can be

affected by number of spells at least as much as substantive pattern.

The main conclusions we can draw from this analysis is that OM and TWED are relatively similar

and do not show a natural cluster structure, while X/t gives a very different result, with strong natural

distinctions between clusters of simple sequences, but lower power to distinguish complex sequences.

6.3 Correlation analysis

As we have seen, cluster analysis is a somewhat unstable technique unless there are strong natural clusters

in the data, giving results that are sensitive to small changes in parameterisation or sampling. However,

the underlying distances are not the cause of this instability, so another approach is to compare the

distances directly. That is, comparing cluster solutions across measures can be messy and risks being

subjective, but we can get a alternative overview of the various measures by looking at correlations

between the distance matrices. Focusing on a single number makes for a less rich but more tractable

comparison, and it is clearly the case that the difference between a pair of measures has many more than

one degree of freedom, and differences two highly correlated measures may well be important. However,

the extent to which measures agree about sequence pairs is important, and looking at their correlation is

clearly informative.

Tractability, moreover, allows us to compare larger numbers of measures for context: here as well

as OM, TWED (with three parameterisations) and X/t, I include LOM (with two parameterisations) and
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Figure 12: Multidimensional scaling of X/t distances, by cluster, zooming in

OMv. I also include Lesnard’s dynamic Hamming measure (Lesnard, 2010), which is a version of the

Hamming distance that calculates the state-space matrix dynamically from the time-dependent transition

rates. Where relevant, I apply both the linear and flat state-space matrices.

The resulting correlation matrix is presented in Figure 14 as a heatmap. Rows and columns have been

sorted manually to maximise coherence. To get a sense of the scale, white cells correspond to coefficients

of 0.98 and higher, yellow about 0.85, and the darkest in the range from about 0.1 to 0.3.

The first thing to emerge clearly is that Hamming, OM, LOM and OMv (with the same state-space

matrix) produce distances with very high correlations, between 0.984 and 0.999. This is true for the

linear and flat matrices, but not across matrices: the state-space distance structure matters quite a bit

more than the measure, within this set of measures. Effectively, for most pairs of sequences, particularly

simple ones, the difference between Hamming and the more complicated distance measures is negligible

or zero. This is not to say that, for the pairs where the measures do differ, the time-dislocating measures

do not offer significant value added.

The second thing to emerge is that for the flat matrix, TWED is also part of this group, highly cor-

related with Hamming and OM. Related to this is the fact that for flat and linear state-space matrices,

TWED is close to the OM/Hamming results for the flat matrix, though the correlation is slightly lower

across matrices (e.g., for TWED with the first parameterisation and the linear matrix, the correlation with

OM with the flat matrix is 0.937, versus 0.983 when both TWED and OM use the flat matrix). Thus we

see evidence that TWED is less affected by the state space matrix for the parameterisations used. Dy-

namic Hamming also falls in the flat-matrix group, presumably because the dynamic state-space values

calculated from the transition rates are not distinctly different from the flat matrix (i.e., there is no pair

of states with distinctly higher transition rates; this can clearly differ with other data sets).

The final piece of information to be gleaned is the complete distinctness of the X/t measure. Its

correlations range from 0.078 with OM (linear matrix) to 0.297 with TWED (linear matrix, first parame-

terisation). It is only with TWED that the correlation exceeds 0.13, suggesting that TWED respects order

in a manner like, but rather weaker than, X/t, and more than the other measures.
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Figure 13: Multidimensional scaling of X/t distances by number of spells, zooming in

6.4 Parameterising TWED and similarity to other measures

The correlation analysis suggests that while there is a big gulf between X/t and the other measures,

TWED may serve as an intermediate measure, though closer to OM et al than X/t. However, TWED is not

well understood, and in particular the effects of its parameterisation is not clear. The ν “stiffness” param-

eter bears on all three operations, making compression and expansion more expensive, and penalising

comparisons proportionately with their displacement, and the λ gap penalty adds further to the cost of

expansion and compression. However, it is not clear what the consequences of the parameterisation is –

while high values will reduce TWED to Hamming distance, it is not clear what lower values do. We have

seen so far that changing ν between 0.0 and 0.25, holding λ constant at 0.5, has relatively little effect

on the correlation of the distances with other measures (values of the parameters not much higher than

these constrain the measure to Hamming; this is analogous to raising indel with OM, but takes effect at

lower values).

To explore this issue, I present an analysis of the correlation structure, comparing OM and X/t, with

TWED with multiple parameterisations: each parameter takes values between 0 and 1 (0.0, 0.002, 0.005,

0.01, 0.02, 0.05, 0.1, 0.2, 0.5 and 1.0). Figure 15 plots the correlation of TWED with OM (using the flat

matrix) and X/t. For high levels of either parameter (where high means approximately 0.2 to 1), TWED

is very close to OM and is almost indistinguishable as either value approaches 1 (in fact, each is near

indistinguishable from Hamming), but for lower values the correlation with OM declines slowly at first

but then more quickly, and the correlation with X/t rises initially quickly but finally slowly, peaking at

about 0.6 as the parameter values reach zero. We thus see that varying the parameters of TWED can

yield distances that differ strongly from OM, in a way that responds to dimensions of sequence similarity

that X/t detects (the implication is order) but without abandoning the fundamental sensitivity to timing,

albeit with an elastic interpretation.

In this data set, the two parameters seem to be almost interchangeable, such that their sum seems to

be driving most of the pattern. This suggests that expansion and compression are doing a lot of the work,

particularly at lower values (i.e., further from OM, closer to X/t), since both parameters bear on those

operations, while the stiffness parameter, ν, alone bears on the residual match operation. With other

data sets, the overall pattern is the same, with a little more evidence of independent effects of the two
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Figure 14: Correlations between a variety of measures, BS data

parameters.

6.5 What the analysis tells us

The comparison between measures using the mothers’ labour market data throws a good deal of light on

the difference between measures. One striking finding is that there is little difference between many of the

measures, and that the state-space distance matrix is often far more important than the algorithm. The

difference between the time-dislocating measures and Hamming can be very small, viewed through the

lens of the correlation of the distance matrices, though cluster analysis can amplify small differences (not

always pathologically, either, one hopes; such small differences are likely to have to do with sociologically

interesting, higher-transition sequences).

The TWED measure has strong commonalities with OM at an algorithmic level, though its narrative is

different. We see that at high parameter values it is quite similar to the OM/Hamming complex, though

its sensitivity to the state-space matrix seems lower. The combinatorial duration-weighted X/t measure

is very distinct: while it picks up some of the same broad patterns at the cluster analysis level (and

there, largely by virtue of isolating the single spell sequences, as do the other measures with a little less

efficiency) it gives a very different overall account of sequence similarity, and correlates poorly with all

the other measures. TWED, however, provides a bridge, approaching X/t at very low levels of its gap and

stiffness parameters, suggesting that at high levels of the parameters it is picking up on the time-structure

of the sequences in a manner very similar to OM et al and at low levels, picking up on order information

in a manner quite similar to X/t.

24



Figure 15: Correlations between TWED, OM and X/t for varying gap and stiffness parameters. Selected
points labelled with their λ (gap penalty) and ν (stiffness) parameter values.

7 Conclusion

Inter-sequence distance measures are deterministic algorithms which map state space onto sequence

space according to a set of fixed rules. We can understand the mapping in terms of the algorithmic rules,

though it is hard to predict what the consequences will be for a given empirical domain or data set. We

can also understand the mapping in more heuristic terms, e.g. by considering the algorithm as a model

of the data generating process, or as indirectly capturing elements of inter-sequence relationships in a

way we can describe more generally.

There may be situations where a distance measure’s operation corresponds closely enough to the data

generating process that it can be seen as modelling it, but these are rare. Some commentators see the

OM algorithm as directly modelling the processes of divergence of DNA across generations. This is not

correct: though there are some similarities, OM’s operations do not accurately model DNA transcription

and mutation, but are driven by algorithmic tractability. What is important for OM’s utility in the context

is (i) that DNA is indeed a token string and (ii) that DNA does have a pattern of relatedness (closeness

due to inheritance) that will show up as potentially displaced matching patterns of tokens. OM is not

like, say, the Fisher–Wright model, which does explicitly attempt to model the effect of inheritance on

population genetics; rather it is a computationally-efficient heuristic that captures significant features of

the phenomenon.

As a heuristic, it will also work for other domains, more or less well depending on the extent to which

the token-string representation, with operations on context-less tokens, captures the nature of similarity.

Even where it does not work perfectly, it will still capture similarity.

What this paper has been concerned with is both algorithm and the story or narrative with which we

can represent the heuristic, and the applicability of distance measures to life course data. In a general
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sense the narrative is one of mapping between state space and sequence space, starting logically with

the simplest mapping, the Hamming distance (full or partial similarity at the same time), and then

moving on to measures that allow time-dislocation in similarity. It has become evident that part of OM’s

success in the sociological sequence analysis (despite worries about its non-applicability) has to do with

its achievement of a difficult job, to wit, efficient production of metric distances between sequences. We

have seen alternatives that attempt to stay in the same paradigm as OM fail for technical reasons. LOM

and OMv attempt to make OM more relevant to lifecourse data by taking account of context, but lose

the metric property. The combinatorial approach of X/t has a radically different narrative (the same

states in the same order), and while this narrative is sociologically very attractive, in practice the focus

on time as order means a weaker connection with time as calendar or developmental scale; calendar and

development are often important in life course perspectives. And while X/t also tends to make some very

strong distinctions, it also fails to separate complex sequences where it would be sociologically attractive

to do so.

In terms of narrative and results, TWED offers a real alternative. While the mechanics of the algorithm

are extremely similar to OM, with direct mapping between the three elementary operations, it has a

different genealogy: while it works with sequences of discrete tokens, it is consistent with and derived

from a continuous-time perspective. Because of this genealogy and because the implementation explicitly

takes context into account, it offers us an escape from the contextless-token problem while providing a

metric distance. As we have seen, empirically it can range between results that are very close to Hamming

and OM, when its gap and stiffness parameters are high, to results that move strongly towards the order-

sensitive results of the duration-weighted combinatorial measure, X/t. Thus it gives us a way of moving

between calendar- and order-oriented time.

In some ways the result of this investigation is negative: in so far as we started with a worry about

the validity of OM for lifecourse data, a part of the finding is that many (but not all) different measures

produce remarkably similar results (and that the structure of the state space can matter much more than

the algorithm). That is, OM may be technically inadequate but its problems have little consequence; its

narrative produces results consistent with quite dissimilar narratives. However, it has also been shown

that measure does matter, that differences do exist, particularly between time as scale and time as order,

and that with other algorithms we have alternatives to OM’s discrete-token string-editing paradigm.
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