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1 Introduction

SADI is a suite of Stata tools for sequence analysis, with a particular focus on holistic comparisons
of sequences using measures such as optimal matching distance. It provides a number of distance
measures, including

• Optimal matching distance

• Hamming distance

• Dynamic Hamming distance

• Elzinga’s combinatorial X/t measure and

• TWED, a time-warping distance measure.

It provides a number of utilities for graphing sequence-related data, for summarising se-
quences, and for handling sequences in general.

The main alternatives to SADI are the Stata SQ package (Brzinsky-Fay, Kohler & Luniak, 2006),
and the R package TraMineR (Gabadinho, Ritschard, Studer & Müller, 2009). SADI provides some
tools that are not in SQ, and is much faster for some important functions. TraMineR is pretty
attractive for those working in R, but SADI makes it possible to do a lot in a Stata environment,
and has distance measures that are not in TraMineR.

Since some of the distance measures are relatively intensive to calculate, they are implemented
as C plugins, rather than pure Stata or Mata code. This means that they are available only for
Windows and Linux, 32- and 64-bit. If you would like to compile them for another platform,
please contact Brendan Halpin, brendan.halpin@ul.ie, or see section 5.

This document summarises the functionality offered by SADI, with worked examples, and
reproduces the help files (see section 6).

Many of the measures in SADI are discussed in detail in Halpin (2014) and Halpin (2012).

1.1 Referring to SADI

If you use SADI and would like to acknowledge it, please refer to this document, as follows:

Brendan Halpin (2014), SADI: Sequence analysis tools for Stata, Working Paper
WP2014-03, Department of Sociology, University of Limerick, http://www.ul.ie/
sociology/pubs/wp2014-03.pdf.

2 Installation

The SADI package is hosted at http://teaching.sociology.ul.ie/sadi and can be installed as fol-
lows:

net from http://teaching.sociology.ul.ie/sadi
net install sadi

Several commands in the package depend on the mm_expand() Mata function in the moremata
package, so you must also do:

ssc install moremata

I also recommend looking at the SQ package for sequence analysis, not least for its effective
implementation of indexplots:

ssc install sq
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3 Data requirements

Sequence analysis works with linear structures, usually longitudinal in time, that are discrete in
both the time dimension and the state space. Typically, each element represents a time period
or event in sequential order, and contains an observation in a categorical state space. A typical
example is monthly labour market status.

SADI expects sequences to be represented by a consecutive run of variables, where the cat-
egories are numbered from 1 up to the number of categories. Thus each case contains a complete
sequence, in wide format. Missing values are not accommodated, unless missing is treated as
a category in its own right. Sequences of different length should start at element 1, and have a
variable indicating their length.

4 Worked example

In this section, the functionality of SADI is presented. All the steps presented are included in a
Stata do-file available at http://teaching.sociology.ul.ie/sadi/distances.do.

4.1 Quick start

The following Stata commands will set up and run the example described in the following pages:

net from http://teaching.sociology.ul.ie/sadi
net install sadi
ssc install moremata
ssc install sq
do http://teaching.sociology.ul.ie/sadi/distances.do

4.2 Data

We use data from McVicar and Anyadike-Danes (2002), and set up a substitution matrix (i.e.,
a description of distances within the state space). The data consist of 72 monthly observations
(state1 to state72) in a six-element state space, to do with the transition from school to work.

set matsize 1000
use http://teaching.sociology.ul.ie/bhalpin/mvad
sort id

matrix mvdanes = (0,1,1,2,1,3 \ ///
1,0,1,2,1,3 \ ///
1,1,0,2,1,2 \ ///
2,2,2,0,1,1 \ ///
1,1,1,1,0,2 \ ///
3,3,2,1,2,0 )

4.3 Pairwise distances

Sequence analysis proceeds by calculation distances between pairs of sequences, typically gener-
ating matrices of distances between all pairs.

Most distance measures work with the sequences as strings of state-variables, and have a
relatively consistent format. This code creates six pairwise distance matrices, using six different
distance measures:

oma state1-state72, subsmat(mvdanes) pwd(omd) length(72) indel(1.5)
omav state1-state72, subsmat(mvdanes) pwd(omv) length(72) indel(1.5)
hollister state1-state72, subsmat(mvdanes) pwd(hol) length(72) timecost(0.5) localcost(0.5)
twed state1-state72, subsmat(mvdanes) pwd(twd) length(72) lambda(0.5) nu(0.04)

3
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hamming state1-state72, subsmat(mvdanes) pwd(ham)
dynhamming state1-state72, pwd(dyn)

The commands start with a variable list which defines the sequence, and then have differ-
ent options. Where relevant, subsmat() provides the substitution cost or state-space distance
information. The mandatory pwd() options names the matrix in which the pairwise distances are
returned. Where it is possible to compare sequences of different length, length() specifies the
length either as a constant or a variable. Other options are command-specific.

The measure omav is described in Halpin (2010), hol in Hollister (2009), dynhamming in Lesnard
(2008), and twed in Marteau (2007, 2008) and Halpin (2014).

4.3.1 X/t

The X/t measure, a duration-weighted, spell-oriented version of Elzinga’s "number of matching
subsequences" (NMS) similarity measure, is calculated with combinadd. It is described in Elzinga
(2006) and discussed in Halpin (2014). It works with spells (consecutive runs of periods in the
same state) weighted by duration, so we need to restructure the data (one observation per spell,
with a state variable, and a length variable) . The combinprep command does the restructuring,
and combinadd calculates the distances. We need to know the maximum number of spells in the
data, which is returned as r(maxspells) by combinprep.

preserve
combinprep, state(state) length(len) idvar(id) nsp(nspells)
local spmax = r(maxspells)
combinadd state1-len‘spmax’, pwsim(xts) nspells(nspells) nstates(6) rtype(d)
restore

4.3.2 Data-driven substitution matrix

Sometimes researchers use theory or prior information to generate the substitution matrix. Other
times they prefer to use the data to generate it, from transition rates (note that dynhamming does
this automatically, but using time-varying transition rates). This may or may not be a good idea.

The command trans2subs creates a matrix of the transition-rate based distances. Typically
transitions will occur much less often than once per time-unit, so the diagonal will be heavily
populated. Thus the off-diagonal transition rates will be low, and distances will have low variab-
ility. If we exclude the diagonal, we get distances with greater variability.

Distances are defined as 2 − pij − pji where pij =
nij
ni+

.
To calculate the transition rates, the data has to be in long format:

preserve
reshape long state, i(id) j(m)
trans2subs state, id(id) subs(tpr1)
trans2subs state, id(id) subs(tpr2) diag
restore

This yields:

. matrix list tpr1

symmetric tpr1[6,6]
c1 c2 c3 c4 c5 c6

r1 0
r2 1.147539 0
r3 1.064734 1.849958 0
r4 1.643575 1.757525 1.671111 0
r5 1.182927 1.844291 1.96 1.90181 0
r6 1.207729 1.525335 1.831594 1.803575 1.608297 0
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. matrix list tpr2

symmetric tpr2[6,6]
c1 c2 c3 c4 c5 c6

r1 0
r2 1.967601 0
r3 1.98727 1.993341 0
r4 1.984684 1.987531 1.982969 0
r5 1.959993 1.992045 1.999488 1.994867 0
r6 1.951231 1.96336 1.996033 1.985649 1.972029 0

We can then calculate OMA distances using the transition-derived substitution costs, exclud-
ing the diagonal:

oma state1-state72, subsmat(tpr1) pwd(tpr) length(72) indel(1.5)

4.4 Examining distance matrices

4.4.1 Comparing distances

Between different distance measures and different parameterisations (substitution costs) we have
now eight pairwise distance matrices. The simplest way to compare them is correlation. The
command corrsqm reports the Pearson correlation between the lower triangles of two square
(symmetric) matrices, optionally excluding the diagonal (which, for distance matrices, is filled
with zeros for all measures).

foreach dist in dyn ham twd hol omv xts tpr {
corrsqm omd ‘dist’, nodiag

}

This yields:

VECH correlation between omd and dyn: 0.7915
VECH correlation between omd and ham: 0.9856
VECH correlation between omd and twd: 0.8065
VECH correlation between omd and hol: 0.9898
VECH correlation between omd and omv: 0.9197
VECH correlation between omd and xts: 0.1135
VECH correlation between omd and tpr: 0.7701

Note the very high correlation with OMA of the Hamming and Hollister measure, the very
low correlation of the combinatorial X/t measure, and the relatively big difference between OMA
with the original substitution cost matrix and OMA with the transition-rate based matrix.

4.4.2 The triangle inequality

For many of the uses to which these measures will be put, it is necessary that they imply a metric
space. This requires, inter alia, that the distances obey the triangle inequality: for all A and B,
there is no C such that d(A, B) > d(A, C) + d(C, B). The omav and hollister distances do not
fulfill this requirement (see Halpin, 2014).

foreach dist in dyn ham twd hol omv xts tpr {
metricp ‘dist’

}

This results in the following output:
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Matrix dyn is consistent with a metric space
Matrix ham is consistent with a metric space
Matrix twd is consistent with a metric space
Shorter route exists between seq 1 and seq 210 -- 2.056 > 2.042
Shorter route exists between seq 2 and seq 12 -- 1.556 > 1.542
Shorter route exists between seq 2 and seq 28 -- 1.528 > 1.521
Shorter route exists between seq 2 and seq 56 -- 0.931 > 0.924
Shorter route exists between seq 2 and seq 64 -- 0.701 > 0.694
Shorter route exists between seq 2 and seq 71 -- 1.361 > 1.347
Shorter route exists between seq 2 and seq 77 -- 0.889 > 0.882
Shorter route exists between seq 2 and seq 81 -- 0.903 > 0.896
Shorter route exists between seq 2 and seq 113 -- 2.389 > 2.375
Shorter route exists between seq 2 and seq 142 -- 0.486 > 0.472
Matrix hol is NOT consistent with a metric space
Shorter route exists between seq 1 and seq 2 -- 0.161 > 0.131
Shorter route exists between seq 1 and seq 3 -- 0.143 > 0.121
Shorter route exists between seq 1 and seq 5 -- 0.165 > 0.131
Shorter route exists between seq 1 and seq 6 -- 0.097 > 0.072
Shorter route exists between seq 1 and seq 7 -- 0.093 > 0.065
Shorter route exists between seq 1 and seq 8 -- 0.065 > 0.043
Shorter route exists between seq 1 and seq 9 -- 0.069 > 0.049
Shorter route exists between seq 1 and seq 10 -- 0.150 > 0.108
Shorter route exists between seq 1 and seq 11 -- 0.132 > 0.106
Shorter route exists between seq 1 and seq 12 -- 0.163 > 0.139
Matrix omv is NOT consistent with a metric space
Matrix xts is consistent with a metric space
Matrix tpr is consistent with a metric space

The hol and omv distance matrices are not metric, and are hence of limited value. Only the
first ten exceptions are printed, unless the option detailed is given.

4.5 Cluster analysis

Very often, sequence analysis proceeds by conducting cluster analysis on the pairwise distance
matrix. Here we do it for the oma and twed distances, generating cluster solutions with 8 and 12
clusters in each case.

clustermat wards omd, name(oma) add
cluster generate o=groups(8 12)

clustermat wards twd, name(twd) add
cluster generate t=groups(8 12)

4.5.1 Comparing cluster solutions

We can compare the cluster solutions for the two measures in a number of ways. The Adjusted
Rand Index (Hubert & Arabie, 1985; Vinh, Epps & Bailey, 2009) reflects agreement defined as the
extent to which the members of a pair of cases, if in the same cluster in one solution, are in the
same cluster in the other:

. ari o8 t8
Adjusted Rand Index: 0.5977

Clusterings are "unlabelled classifications", in that clusters can only be identified by reference
to the cases they contain. In this sense, a cluster in a clustering based on one distance matrix is
"the same" or similar to a cluster in a clustering based on another matrix only to the extent that
they contain (mostly) the same cases. The permtab command crosstabulates two (equal-sized)
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solutions, permuting the values of one to maximise the agreement. The permuted classification
can be saved as a new variable:

permtab o8 t8, gen(pt8)
tab o8 pt8

The permutation seeks to maximise Cohen’s κ as an index of agreement (Reilly, Wang &
Rutherford, 2005), and reports the κmax to be 0.7346.

. tab o8 pt8

| pt8
o8 | 1 2 3 4 5 6 7 8 | Total

-------+----------------------------------------------------------------+--------
1 | 92 1 0 0 0 0 0 0 | 93
2 | 41 96 0 2 0 0 0 0 | 139
3 | 0 0 57 4 0 0 0 1 | 62
4 | 0 4 2 123 0 0 16 1 | 146
5 | 11 19 0 2 39 13 9 0 | 93
6 | 0 0 0 0 2 28 0 0 | 30
7 | 2 5 0 1 4 0 28 7 | 47
8 | 0 0 0 0 1 0 14 87 | 102

-------+----------------------------------------------------------------+--------
Total | 146 125 59 132 46 41 67 96 | 712

Permutation is simple but expensive if there are many categories. For 12 clusters, permutation
takes 9 × 10 × 11 × 12 = 11880 times as long as for 8. To deal with this, permtabga yields an
approximate-best permutation using a genetic algorithm:

permtabga o12 t12, gen(pt18)

4.5.2 Discrepancy

Studer et al’s discrepancy measure brings a pseudo-ANOVA perspective to distance matrices
(Studer, Ritschard, Gabadinho & Müller, 2011). If we partition the matrix using a cluster solution,
or a pre-existing observed characteristic, we can compare the average distance to the centre of the
partition to the average distance to the overall centre, and generate a pseudo-R2 measure. The
approach uses bootstrapping to generate p-values, and increasing the niter() option from the
default 100 increases precision.

. discrepancy o8, dist(omd) id(id)

Discrepancy based R2 and F, 100 permutations for p-value

| pseudo R2 pseudo F p-value
-------------+---------------------------------

o8 | .5310534 113.891 .01

. discrepancy o12, dist(omd) id(id)

Discrepancy based R2 and F, 100 permutations for p-value

| pseudo R2 pseudo F p-value
-------------+---------------------------------

o12 | .5990087 95.06125 .01

. discrepancy grammar, dist(omd) id(id)
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Discrepancy based R2 and F, 100 permutations for p-value

| pseudo R2 pseudo F p-value
-------------+---------------------------------

grammar | .0272244 19.87031 .01

. discrepancy grammar, dist(omd) id(id) niter(1000)

Discrepancy based R2 and F, 1000 permutations for p-value

| pseudo R2 pseudo F p-value
-------------+---------------------------------

grammar | .0272244 19.87031 .001

4.6 Summarising sequences and clusters

4.6.1 String representations of sequences

We can create string representations of sequences, which makes it much easier to get a visual
overview of the data, and allows searching for patterns:

. stripe state1-state72, gen(seqstr) symbols("EFHSTU")

. list seqstr in 1/5, clean

seqstr
1. TTEEEETTEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
2. UUFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
3. UUTTTTTTTTTTTTTTTTTTTTTTTTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEEEEEEEEEEUU
4. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTEEEEEEEEEEEEEEUUUUUUUUU
5. UUFFFFFFFFFFFFFFFFFFFFFFFFFHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

Stata’s regex system makes it easy to search for patterns in these representations. For instance,
count if regexm(seqstr, "^E+$") will count sequences 100% in employment, while count if
regexm(seqstr, "U[^U]") will count sequences where we observe an exit from unemployment.

4.6.2 Medoids: typical sequences

We can characterise clusters in many ways (see below for graphics, chronogram and sqindexplot).
One way is to pick a "medoid", the sequence nearest the centre of the cluster. The discrepancy
command has an option to save this distance as a variable, which allows us to identify the medoid:

discrepancy o8, dist(omd) id(id) dcg(dx)
sort o8 dx
by o8: gen medoid = _n==1

The medoids are all pretty simple, and quite distinct:

. list o8 seqstr if medoid, clean

o8 seqstr
1. 1 EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

94. 2 TTTTTTTTTTTTTTTTTTTTTTTTEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
233. 3 FFFFFFFFFFFFFFFFFFFFFFFFFFFHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
295. 4 SSFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
441. 5 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTEEEEEEEEEEEEEEUUUUUUUUU
534. 6 TTTTTTTTTTTTTTTTTTTTUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
564. 7 SSSSSSSSSSSSSSSSSSSSSSSSSSEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
611. 8 SSSSSSSSSSSSSSSSSSSSSSSSSSHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
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4.6.3 Cumulated duration

The sequence-wise total duration in each state is also an interesting summary:

cumuldur state1-state72, cd(dur) nstates(6)

Even though cumulated duration discards all order information, it differentiates the clusters
very strongly:

. table o8, c(mean dur1 mean dur2 mean dur3) format(%5.2f)

----------------------------------------------
o8 | mean(dur1) mean(dur2) mean(dur3)

----------+-----------------------------------
1 | 67.99 2.74 0.00
2 | 43.86 2.58 0.00
3 | 6.34 27.34 36.35
4 | 34.22 31.15 1.08
5 | 27.55 9.23 0.00
6 | 5.30 3.57 0.00
7 | 32.94 4.79 3.79
8 | 4.59 4.35 33.24

----------------------------------------------

. table o8, c(mean dur4 mean dur5 mean dur6) format(%5.2f)

----------------------------------------------
o8 | mean(dur4) mean(dur5) mean(dur6)

----------+-----------------------------------
1 | 0.04 0.52 0.71
2 | 1.25 22.50 1.82
3 | 0.77 0.00 1.19
4 | 0.95 2.25 2.35
5 | 1.14 11.00 23.07
6 | 4.47 7.93 50.73
7 | 21.64 3.51 5.34
8 | 26.68 0.66 2.49

----------------------------------------------

4.6.4 Entropy

We can look at the entropy of cumulated duration. The entropy command calculates a simple
measure of Shannon entropy (maximal if all states are equally likely, minimal if only one state is
visited):

// first drop the cumulated duration variables as the
// entropy command will recreate these
drop dur1-dur6

entropy state1-state72, gen(ent) cd(dur) nstates(6)

Because it completely ignores order, this is not an entirely appropriate measure of sequence
complexity. However, entropy levels differ greatly by cluster:

. table o8, c(mean ent) format(%5.2f)

----------------------
o8 | mean(ent)
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----------+-----------
1 | 0.26
2 | 1.02
3 | 1.30
4 | 1.18
5 | 1.39
6 | 0.94
7 | 1.38
8 | 1.32

----------------------

4.6.5 Number of spells

The total number of spells in a sequence is a measure of its volatility:

. nspells state1-state72, gen(nsp)

. table o8, c(mean nsp) format(%5.2f)

----------------------
o8 | mean(nsp)

----------+-----------
1 | 2.14
2 | 3.39
3 | 3.73
4 | 3.99
5 | 4.97
6 | 3.00
7 | 3.94
8 | 3.37

----------------------

4.7 Graphics

There are two key graphics associated with sequence analysis, the state-distribution plot (or chro-
nogram) and the indexplot. I also present a representation of the time-structure of transition rates.

4.7.1 Chronogram

The chronogram represents the distribution of states at each time unit, hiding individual continu-
ity but yielding a more digestible summary:

chronogram state*, id(id) by(o8, legend(off)) name(chronogram, replace)

See Figure 1.

4.7.2 Indexplot

The indexplot plots each sequence as a line, and thus reproduces the sequence data in full. The
sqindexplot command from the SQ package makes a good job of this task, so I haven’t re-
implemented it for SADI.

Do ssc install sq if necessary.
To make the full sequence data visually digestible, it needs to be grouped and ordered care-

fully. If we plot by cluster, the order within cluster is critical. My preference is to generate a
maximal clustering (as many clusters as distinct sequences). This allows us to order sequences
within clusters such that subcluster-structure is preserved (such that the sequences are in dendro-
gram order). It makes clustered indexplots more readable, and less dependent on cutting at an
arbitrary number of clusters.
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Figure 1: Chronogram, by 8-cluster OMA solution

cluster generate o999 = groups(750), name(oma) ties(fewer)

SQ wants sequence data in long format, and sqset:

preserve
reshape long state, i(id) j(m)
sqset state id m
sqindexplot, by(o8, note("") legend(off)) order(o999) name(indexplot, replace)
restore

See Figure 2.

4.7.3 Transition pattern graph

The trprgr command creates a composite graphic, with a column of graphs (chronograms) rep-
resenting the 6 states over time, and a 6x6 grid representing the transition rates between states
over time.

trprgr state*, id(id) gmax(485)

By design, this command shows transition rates on the diagonal on the range 0.9-1.0, and
those off the diagonal on the range 0.0-0.1, but in practice these ranges are often exceeded. See
the ceiling and floor options.

See Figure 3.

4.7.4 maketrpr

The maketrpr generates the matrix of transition rates that is used by dynhamming and trprgr,
using tssmooth to average over a moving window of successive transitions. It may be of interest
to inspect this data in matrix form as much as in the trprgr graph.
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Figure 2: Indexplot, by 8-cluster OMA solution

maketrpr state*, mat(mkt) ma(5)

For m categories and t time points, this creates a (t − 1)m × m matrix, where each successive
m × m panel represents a time-specific pattern of transitions (smoothed). In this example there
are no early observations in state 3 (higher education) so its exit rate is undefined:

. matlist mkt[1..6,.]

| __0000071 __0000072 __0000073 __0000074 __0000075
-------------+-------------------------------------------------------

r1 | .8853028 .0684874 0 .0297906 .0101547
r2 | .0054704 .9890236 0 0 .0024511
r3 | . . . . .
r4 | .0050338 .0228499 0 .9606053 .009611
r5 | .0129851 .0049919 0 .0026247 .9770244
r6 | .0473975 .1041914 0 .0354406 .0490166

| __0000076
-------------+-----------

r1 | .0062645
r2 | .0030549
r3 | .
r4 | .0019001
r5 | .0023739
r6 | .7639539

. matlist mkt[25..30,.]

| __0000071 __0000072 __0000073 __0000074 __0000075
-------------+-------------------------------------------------------
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Figure 3: Transition pattern

r25 | .9244586 .0410925 0 .0188743 .0070362
r26 | .0071804 .9871928 0 0 .0026261
r27 | . . . . .
r28 | .0030203 .0137099 0 .975197 .0057666
r29 | .0136273 .0029951 0 .0015748 .9771932
r30 | .0481792 .0625148 0 .0212644 .0368173

| __0000076
-------------+-----------

r25 | .0085383
r26 | .0030007
r27 | .
r28 | .0023062
r29 | .0046096
r30 | .8312242

5 Compiling plugins

The C code for the distance measures resides in two main files, omamatv3.c and elzspelladd.c,
both available at http://teaching.sociology.ul.ie/sadi. These need to be compiled with uthash.h,
by Troy D. Hanson (http://uthash.sourceforge.net), which provides hash functions used in
elzspelladd.c, and with stplugin.c and stplugin.h. The latter two files are provided by Stata.
See Stata Corp’s instructions for compiling plugins at http://www.stata.com/plugins/.

All five files are available at http://teaching.sociology.ul.ie/sadi:

• omamatv3.c: http://teaching.sociology.ul.ie/sadi/omamatv3.c

• elzspellad.c: http://teaching.sociology.ul.ie/sadi/elzspellad.c

• uthash.h: http://teaching.sociology.ul.ie/sadi/uthash.h
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• stplugin.c: http://teaching.sociology.ul.ie/sadi/stplugin.c

• stplugin.h: http://teaching.sociology.ul.ie/sadi/stplugin.h

You may find updated versions of stplugin.c and stplugin.h at the Stata site, and of
uthash.h at http://uthash.sourceforge.net, but these are the versions used to create the published
SADI plugins.

The published plugins are compiled for Windows and Linux, 32- and 64-bit, by cross-
compilation on a 64-bit Linux system.
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6 Appendix: Help pages

The following pages reproduce the Stata help files for this list of commands:

• ari

• chronogram

• combinadd

• combinprep

• corrsqm

• cumuldur

• discrepancy

• dynhamming

• entropy

• hamming

• hollister

• maketrpr

• metricp

• nspells

• oma

• omav

• permtab

• stripe

• trans2subs

• trprgr

• twed

15



help ari

Title

    ari       Calculate the Adjuted Rand Index for a pair of
                      unlabelled classifications

Syntax

        ari var1 var2 [if] [in]

Description

    ari takes a pair of unlabelled classifications (e.g., two cluster
    solutions) and returns the Adjusted Rand Index, which has a
    maximum of 1 for perfect agreement, and where zero means no
    relationship. Returns r(ari).

References

    N Xuan Vinh, J Epps and J Bailey (2009), Information Theoretic
    Measures for Clusterings Comparison: Is a Correction for Chance
    Necessary?, Proceedings of the 26th International Conference on
    Machine Learning, Montreal, Canada

    L. Hubert and P Arabie (1985), Comparing Partitions, Journal of
    Classification 2(1), pp 193−218

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . ari a8 b8



help chronogram

Title

    chronogram  
                      Graph the time−dependent state distribution

Syntax

        chronogram  varlist (min=2) [if] [in] ,  options [options]

    options                 Description
    
    ID
      id( varname)             A unique case−id variable. Required.
    Optional
      by( string)              Graph by varlist, allows options.
      tex tsize( string)        Text size of labels.
      prop ortional            Graph proportional distribution (useful
                              with by).
      *                       Accepts many graph options.
     

Description

    chronogram  takes a set of sequences described by varlist in wide
    format and graphs the time−dependent distribution of the state
    variable. This is sometimes called a chronogram, or the
    transversal state distribution.

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . chronogram mon1−mon36, id(id) by(sex, legend(off))



help combinadd

Title

    combinadd  
                      Calculate inter−sequence distances using
                      Elzinga’s duration−weighted subsequence counting

Syntax

        combinadd  varlist ,  options [option]

    options                 Description
    
    Required
      nsp ells( string)         Name the variable which stores the number
                              of spells
      nst ates( string)         Name the variable which stores the number
                              of states
      pwsim( string)           Name the matrix which will store the
                              similarities or distances

    Optional
      rt ype( string)           Generate similarities or distances: "s"
                              for similarities, "d" for distances, "r"
                              for raw SXY values. Defaults to
                              similarities.
      wor kspace               Show workings
      maxt uples( integer)      Maximum number of tuples (subsequences)
                              to count in one sequence (default 40000)

     

Description

    combinadd  calculates a version of Elzinga’s duration−weighted
    number of common subsequences measure for spell−structured data.
    The variable list must identify the spell structure in the form
    state−1, duration−1, state−2, duration−2, ...  state−X, duration−X
    where X is the maximum number of spells observed.  The nspells
    option identifies the variable that stores the case−specific
    number of spells.

    States must be numbered as integers from 1 up.

    The measure counts the number of spell sub−sequences common to
    each pair of sequences, weighted by the combined duration of the
    subsequence. The number of subsequences in a sequence increases
    very rapidly with the length of the sequence, with major
    consequences for memory demands. This implementation can handle
    sequences with of the order of 15 spells without too much
    difficulty. The maxtuples limit causes the command to stop if too
    many subsequences are observed, in order to avoid running out of
    memory. The maxtuples option can be used to judiciously raise this
    limit.

    It uses a Stata plugin implementation.

    See combinprep  for a way of converting calendar representations to
    spell representations.

References

    Elzinga, C. H. (2003).  Sequence similarity: A non−aligning
    technique.  Sociological Methods and Research, 32(1):3−−29.

    Elzinga, C. H. (2005).  Combinatorial representations of token
    sequences.  Journal of Classification, 22(1):87−−118.



    Elzinga, C. H. (2006).  Sequence analysis: Metric representations
    of categorical time series.  Technical report, Free University of
    Amsterdam.

    Halpin, Brendan. (2014). Three narratives of sequence analysis,
    Bühlmann et al (eds), {it: Advances in Sequence Analysis.  Beyond
    the Core Program}, Springer

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . combinprep, state(m) length(l) idvar(id) nsp(nspells)

    . local nsp = r(maxspells)
    . local nel = r(nels)

    . combinadd m1−l‘nsp’, pwsim(xtd) nspells(nspells) nstates(‘nel’)
        rtype(d)



help combinprep

Title

    combinprep 
                      Transform sequences from wide calendar format to
                      wide spell format

Syntax

        combinprep, options

    options                 Description
    
    Options
      state(string)          Stub of state variable name, in reshape
                              fashion
      length(string)         Stub of spell−length variable name (will
                              be created)
      idvar(varname)         ID variable
      nspells(varname)       number−of−spells variable (will be
                              created)

Description

    combinprep takes sequence data in wide calendar format (i.e., a
    consecutive string of numbered state variables representing state
    in each time unit, with one case per sequence) and turns it into
    wide spell format (consecutive pairs of numbered state and
    duration variables) with a separate variable indicating the number
    of spells.

    It returns the maximum number of spells observed in r(maxspells)
    and the range of the state variable in r(nels).

    This can be used to prepare the data for {help:combinadd} and
    other techniques that focus on spell history rather than state
    history.

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    Given sequences represented as consecutive variables s1−s40:

    . combinprep, state(s) length(dur) nspells(nsp)

    will generate a new structures with variable pairs s1, dur1 to sX,
    durX where X is the maximum number of spells observed. The spells
    are defined as consecutive runs in the same state, and their
    duration is recorded in the dur variable. The observed number of
    spells in each case is recorded in nsp.



help corrsqm

Title

    corrsqm   Calculate the correlation between the lower triangle
                      of two symmetric matrices

Syntax

        corrsqm var1 var2 [if] [in] [,NODiag]

Description

    corrsqm takes two symmetric matrices of the same dimension (e.g.,
    distance matrices) and returns their correlation. More
    specifically, it returns the correlation between their lower
    triangles, including the diagonal by default. It fails if one or
    both matrix is not symmetric, or if the matrices are not the same
    size. It prints the correlation but also returns it in r(rho).

    The option nodiag suppresses the diagonal, so that the correlation
    is between the lower triangles excluding the main diagonal.

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . corrsqm dist1 dist2



help cumuldur

Title

    cumuldur   Calculate cumulated duration in states of a sequence

Syntax

        cumuldur  varlist , cd stub( string)  nst ates( int)

Description

    cumuldur  creates variables holding the cumulative duration in each
    state in a sequence described by the varlist. The cdstub  option
    gives the prefix of the new variables, and nstates  enumerates how
    many states there are. States must be numbered from 1 up. A
    warning is issued if the total duration is less than the sequence
    length (e.g., if the number of states is actually larger than that
    given in the option, or if there are missing values or values less
    than or equal to zero).

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . cumuldur m1−m40, cd(dur) nstates(3)



help discrepancy

Title

    discrepancy  Calculate Studer et al’s discrepancy measure

Syntax

        discrepancy groupvar , DISTmat(string) IDvar(varname)
                 [NITer(integer 100) DCG(string)]

    options                 Description
    
    Required
      distmat(matname)       names the distance matrix
      idvar(varname)         identifies the variable that links the
                              sort−order of the distance matrix to the
                              sort−order of the data
    Optional
      niter(interger)        number of permutations used to calculate
                              p−value, defaults to 100
      dcg(string)            variable in which to store the distance
                              to the group centre

Description

    discrepancy calculates Studer et al’s measure of the discrepancy
    of a distance matrix, grouped by a categorical variable  groupvar.
    The pseudo−R−squared and pseudo−F statistic are based on the
    extent to which the average distance to the centres of the groups
    are less than the average distance to the centre of the ungrouped
    distance matrix. The p−value is based on permutations (100 by
    default, but Studer et al recommend 1000 to 5000; set it to 1 for
    speed if you are not interested in the p−value).

    The distance to the centre of the group can optionally be saved in
    a variable. This can be used to identify group medoids.

    Returns:
    r(p_perm)
    r(pseudoF)
    r(pseudoR2)

References

    M Studer, G Ritschard, A Gabadinho and NS Müller, Discrepancy
    analysis of state sequences, Sociological Methods and Research,
    40(3):471−510

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . discrepancy sex, dist(d) id(id) dcg(dsex)
    . bysort sex: egen mindist = min(dsex)
    . gen medoid = mindist == min(dsex)



help dynhamming

Title

    dynhamming  
                      Calculate inter−sequence distances using dynamic
                      Hamming distance

Syntax

        dynhamming  varlist ,  options [option]

    options                 Description
    
    Distances
      pwdist( matname)         store the pairwise distances in matname,
                              as a symmetric matrix. Will be created
                              or overwritten.
     

Description

    dynhamming  calculates Lesnard’s dynamic Hamming distances between
    all pairs of sequences in the data, where varlist is a consecutive
    set of variables describing the elements of the sequence.  Dynamic
    Hamming distances compare sequences element by element such that
    the inter−sequence distance is the sum of the element−wise
    distances.  The element−wise distances are dynamic, based on the
    time−dependent structure of transition rates. The procedure uses 
    maketrpr  to calculate the transition rates, smoothing over a
    rolling seven (3+1+3) observations. See also trprgr  which uses
    maketrpr  to graph the time−dependent transition structure.

    States must be numbered as integers from 1 up.

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . dynhamming mon1−mon36, pwdist(dist)
    . matrix list dist



help entropy

Title

    entropy    Calculate the Shannon entropy of a sequence

Syntax

        entropy  varlist , generate( string)  cd stub( string)  nst ates( int)

Description

    entropy  creates a new variable holding the Shannon entropy of the
    sequence, given by the generate()  option. As a side effect, it
    creates variables containing the relative cumulated duration
    (named by the cd stub()  option, as in cumuldur ).  nstates  tells
    Stata how many states there are. States must be numbered from 1
    up.

    Shannon entropy takes no account of sequence order, and is just
    based on the relative cumulated duration in the different states,
    with the formula:

    − Sum [ p_i * log_2(p_i) ]

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . entropy m1−m40, gen(ent) cd(dur) nstates(3)



help hamming

Title

    hamming    Calculate inter−sequence distances using Hamming
                      distance

Syntax

        hamming varlist ,  options [option]

    options                 Description
    
    Cost structure
      subs mat( matname)        use matname as the substitution cost
                              matrix

    Distances
      pwdist( matname)         store the pairwise distances in matname,
                              as a symmetric matrix. Will be created
                              or overwritten.
     

Description

    hamming  calculates Hamming distances between all pairs of
    sequences in the data, where varlist is a consecutive set of
    variables describing the elements of the sequence. Hamming
    distances compare sequences element by element such that the
    inter−sequence distance is the sum of the element−wise distances.
    The element−wise distances are given in the subsmat() substitution
    matrix.

    States must be numbered as consecutive integers from 1 up, and the
    substitution cost matrix must be square, with dimension equal to
    the number of states. States must not be missing.

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . matrix scost = (0,1,2,3\1,0,1,2\2,1,0,1\3,2,1,0)
    . hamming mon1−mon36, subsmat(scost) pwdist(dist)
    . matrix list dist

    . hamming mon1−mon72, subsmat(scost) pwdist(dist)
    . matrix list dist



help hollister

Title

    hollister  
                      Calculate inter−sequence distances using
                      Hollister’s Localized OM

Syntax

        hollister  varlist ,  options [option]

    options                 Description
    
    Cost structure
      subs mat( matname)        use matname as the substitution cost
                              matrix
      TIMEcost( #)             use # as the time cost
      LOCalcost( #)            use # as the local cost

    Sequence length
 
      len gth( var)             sequence length, a variable or a constant
                              if sequence length is fixed

    Distances
 
      pwdist( matname)         store the pairwise distances in matname,
                              as a symmetric matrix. Will be created
                              or overwritten.

    Work−space
 
      wor kspace               (Optional) Causes the internal workspace
                              matrices to be shown for each sequence
                              comparison.

    Normalisation
 
      STAndard                (Optional) If "longer", normalise by the
                              length of the longer sequence, if "none"
                              do no normalisation. Defaults to
                              "longer".

     

Description

    hollister  calculates localised Optimal Matching distances between
    all pairs of sequences in the data, where varlist is a consecutive
    set of variables describing the elements of the sequence. It uses
    a Stata plugin implementation of Mattissa Hollister’s adaptation
    of the Needleman−−Wunsch algorithm. Thanks to Mattissa for help in
    figuring out to code it, but if I have introduced any errors they
    are my own.

    Hollister’s measure differs from conventional OM by taking account
    of the neighbours of tokens involved in OM’s elementary
    operations.  While this is attractive from a sociological point of
    view, it means the dissimilarity measure is not guaranteed to be
    metric. This is also true of omav .

    States must be numbered as consecutive integers from 1 up, and the
    substitution cost matrix must be square, with dimension equal to
    the number of states. States must not be missing.

References

    Halpin, Brendan. (2014). Three narratives of sequence analysis,
    Bühlmann et al (eds), {it: Advances in Sequence Analysis.  Beyond
    the Core Program}, Springer



    Hollister, M. (2009).  Is optimal matching suboptimal?
    Sociological Methods and Research, 38(2):235−−264.

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . matrix scost = (0,1,2,3\1,0,1,2\2,1,0,1\3,2,1,0)
    . hollister mon1−mon36, subsmat(scost) time(0.5) local(0.5)
        pwdist(dist) len(36)
    . matrix list dist

    . hollister mon1−mon36, subsmat(scost) time(0.5) local(0.5)
        pwdist(dist) len(dur)
    . matrix list dist



help dynhamming

Title

    maketrpr   Create a matrix containing transition rates from
                      sequences

Syntax

        maketrpr  varlist (min=2) ,  options [option]

    options                 Description
    
    Matrix
      MATrix( matname)         store the transition rates in matname.
                              Will be created or overwritten.
    Moving average
      MA(int)                 Calculate a moving average over int+1+int
                              periods. Defaults to 3.
     

Description

    maketrpr  takes a set of sequences described by varlist in wide
    format and creates an n by (n times t) matrix where each n by n
    section contains the smoothed transition rates for the
    corresponding time period. It uses tssmooth  to create the smoothed
    rates, defaulting to a 3−unit look−head and look−back (i.e., a
    7−wide moving average).  If the number of states is 4 and there
    are 10 periods, it generates a (4x(10−1))x4 or 36x4 matrix, where
    T[1..4,1..4] contains the transition rates for time 1−2,
    T[5..8,1..4] for time 2−3 and so on.

    This is essentially a utility program, and is used by dynhamming
    and trprgr .

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . maketrpr mon1−mon36, mat(trp)
    . matrix list trp



help metricp

Title

    metricp   Test a symmetric matrix of pairwise distances for the
                      triangle inequality

Syntax

        metricp matname [, countlimit(int) detailed]

  Options                     Description
  
  Count limit
countlimit(int)                Number of triangle−inequality
                                  infringements to report (defaults to
                                  10, 0 means no limit)
detailed                       Slowly identify the problem cases, not
                                  just the fact they exist.

Description

    metricp takes a matrix of pairwise distances and tests that the
    triangle inequality is observed. If it finds triads infringing on
    the inequality it reports at most 10 before stopping (this is
    changed with the option countlimit; set that to zero for no
    limit). If there are no infringing cases and the matrix is large,
    it can be a little slow (tens of seconds). It is even slower with
    the detailed option (minutes), which identifies the infringing
    trio of sequences; without this option only the fact that there is
    a shorter route between sequence i and sequence j is reported.

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . metricp pwd

Version



help nspells

Title

    nspells    Calculate number of spells in a sequence

Syntax

        nspells  varlist , generate( string)

Description

    nspells  creates a variable holding the number of spells in a
    sequence described by the varlist. The generate  option names the
    variable, which will be created. Spells are defined as consecutive
    runs of the same value. Runs of missing values are counted as
    spells.

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . nspells m1−m40, gen(nsp)



help oma

Title

    oma       Calculate inter−sequence distances using
                      Needleman−−Wunsch algorithm

Syntax

        oma varlist ,  options [option]

    options                 Description
    
    Cost structure
      subs mat( matname)        use matname as the substitution cost
                              matrix
      ind el( #)                use # as the indel cost

    Sequence length
 
      len gth( var)             sequence length, a variable or a constant
                              if sequence length is fixed

    Distances
 
      pwdist( matname)         store the pairwise distances in matname,
                              as a symmetric matrix. Will be created
                              or overwritten.

    Work−space
 
      wor kspace               (Optional) Causes the internal workspace
                              matrices to be shown for each sequence
                              comparison.

    Duplicates
 
      DUps                    (Optional) Force calculation of duplicate
                              distances.

    Normalisation
 
      STAndard                (Optional) If "longer", normalise by the
                              length of the longer sequence, if "none"
                              do no normalisation. Defaults to
                              "longer".

     

Description

    oma calculates Optimal Matching distances between all pairs of
    sequences in the data, where varlist is a consecutive set of
    variables describing the elements of the sequence. It uses a Stata
    plugin implementation of the Needleman−−Wunsch algorithm.

    States must be numbered as consecutive integers from 1 up, and the
    substitution cost matrix must be square, with dimension equal to
    the number of states. States must not be missing.

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples



    . matrix scost = (0,1,2,3\1,0,1,2\2,1,0,1\3,2,1,0)
    . oma mon1−mon36, subsmat(scost) indel(2) pwdist(dist) len(36)
    . matrix list dist

    . oma mon1−mon72, subsmat(scost) indel(2) pwdist(dist) len(dur)
    . matrix list dist



help omav

Title

    omav      Calculate inter−sequence distances using
                      duration−compensated Needleman−−Wunsch algorithm

Syntax

        omav varlist ,  options [option]

    options                 Description
    
    Cost structure
      subs mat( matname)        use matname as the substitution cost
                              matrix
      ind el( #)                use # as the cost for
                              insertions/deletions
    Sequence length
 
      len gth( var)             sequence length, a variable or a constant
                              if sequence length is fixed
    Distances
 
      pwdist( matname)         store the pairwise distances in matname,
                              as a symmetric matrix. Will be created
                              or overwritten.
    Duration adjustment
 
      fac exp( real)            (Optional) Exponent by which to adjust
                              costs for duration (defaults to 0.5)

    Work−space
 
      wor kspace               (Optional) Causes the internal workspace
                              matrices to be shown for each sequence
                              comparison.
     

Description

    omav calculates duration−adjusted Optimal Matching distances
    between all pairs of sequences in the data, where varlist is a
    consecutive set of variables describing the elements of the
    sequence. It uses a Stata plugin implementation of an adapted
    Needleman Wunsch algorithm. It differs from the standard oma
    command in that the costs of elementary operations are reduced for
    tokens that are elements of runs of the same value. By default,
    the cost of an operation on an element of an n−element sequence is
    changed by a factor of 1/n^f where f is given by the {opt:fac:exp}
    option. The value of f defaults to 0.5.  A value of f of zero
    produces the same result as oma and a value of f of 1.0 weights
    all spells the same regardless of length.

    Note: this measure is not guaranteed to be metric.

    States must be numbered as consecutive integers from 1 up, and the
    substitution cost matrix must be square, with dimension equal to
    the number of states. States must not be missing.

References

    Halpin, Brendan. (2010).  Optimal Matching Analysis and Life
    Course Data: the importance of duration Sociological Methods and
    Research, 38(3)

    Halpin, Brendan. (2014). Three narratives of sequence analysis,
    Bühlmann et al (eds), {it: Advances in Sequence Analysis.  Beyond
    the Core Program}, Springer



Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . matrix scost = (0,1,2,3\1,0,1,2\2,1,0,1\3,2,1,0)
    . omav mon1−mon36, subsmat(scost) indel(2) pwdist(dist) len(36)
    . matrix list dist

    . omav mon1−mon72, subsmat(scost) indel(2) pwdist(dist) len(dur)
        facexp(0.75)
    . matrix list dist



help permtab, permtabga

Title

    permtab   Rearrange columns of square table to maximise kappa

Syntax

        permtab rowvar colvar [if] [in] [, gen(newvarname)]

        permtabga rowvar colvar [if] [in] [, gen(newvarname)]

Description

    permtab permutes the columns of the square crosstabulation of
    rowvar by colvar to maximise kappa. It is intended for use in
    comparing cluster solutions where the identity of categories from
    one solution to the other is only defined in terms of membership.
    Kappa measures the excess of observed over expected on the
    diagonal. Kappa_max is the Kappa of the best solution, and is
    reported.

    A permuted version of colvar is created by the gen option.

    Returns kappa_max as r(kappa).

    Note: For numbers of categories much above 8 this procedure is
    slow and inefficient. For such cases permtabga uses a genetic
    algorithm approach to find an approximate solution.

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . permtab a8 b8



help stripe

Title

    stripe        Create a single string variable representing the
                     sequence

Syntax

        stripe  varlist, GENerate(newvarname) [SYMbols(string)]

Description

    stripe  Create a single string variable representing a sequence.
    Option symbols  allows replacement of the default symbol series
    (the uppercase alphabet). This makes sequences easier to view, and
    enables one to use regular expressions to group sequences [M−5]
    regexm() .

    Note : Assumes sequences are represented by consecutive variables
    containing numeric values.

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . stripe state1−state40, gen(seqstr)
    . stripe state1−state40, gen(seqstr) symbols("FPun")
    . list seqstr if regexm(seqstr,"FFFF+.+nnnn")
    . list seqstr if regexm(seqstr,"^F+n+$")



help trans2subs

Title

    trans2subs  
                      Create substitution matrix based on observed
                      transitions

Syntax

        trans2subs  state [if] [in], IDvar(id) SUBSmat(subsmat)
                 [DIAGincl]

Description

    trans2subs  calculates a substitution matrix based on observed
    transitions in the state variable, and puts it in the subsmat
    matrix. The data must be in long format, with idvar identifying
    the groups, and must be sorted.

    Transitions are tabulated from period to period, and the
    substitution cost is defined as 2 − p_{a,b} − p{b,a} for
    off−diagonal cells, and 0 for diagonal cells. p_{a,b} is defined
    as the proportion of transitions from a in t which are to b in
    t+1.  Note that, by default, cases which do not have a transition
    from one period to the next do not enter the calculation.

Options

IDvar( idvar)  specifies the ID variable.

SUBSmat(mat)  specifies the Stata matrix to which to write the
    substitution costs.

DIAGincl  causes the cells on the diagonal to be used in the calculation.

Comments

One way to define substition costs for optimal matching is to use
observed transition rates between states. Higher probabilities of
transition imply greater similarity. This may often be a good idea, but
it is not always the case. It is plausible that in some domains we will
see high probabilities of transition between states which are
substantively quite dissimilar, for instance between never−married and
married.

The procedure expects the data in long calendar format, that is with
each record representing a person−−month or case−−time−unit, sorted in
temporal order within IDvar, the variable identifying the person or
case. The resulting matrix is based on a cross−tabulation of state at t
and t−1.

In this format only off−diagonal cases represent transitions:  the
diagonal represents months where the state is the same as the previous
month. In the default, the diagonal cases are excluded, but the option
DIAGincl causes them to be included in the calculation. Including them
reduces the range of the substitution costs.

The strategy is based in part on that described in Rowher and Potter’s
TDA manual, section 6.7.2.5,
http://www.stat.ruhr−uni−bochum.de/pub/tda/doc/tman63/d06070205.zip

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples



    If your sequences are represented by consecutive variables s1−s50
        with ID id , first reshape long :

    . reshape long s, i(id) j(m)
    . trans2subs s, id(id) subs(smat)
    . matrix list smat
    . trans2subs s, id(id) subs(smat) diag
    . matrix list smat2



help trprgr

Title

    trprgr     Graphically present transition rates from sequences

Syntax

        trprgr  varlist (min=2) ,  options [option]

    options                 Description
    
    ID
      ID( varname)             A unique case−id variable. Required.
    Optional
      FLoor( real)             Lowest transition rate for diagonal
                              graphs.
      CEI ling( real)           Highest transition rate for off−diagonal
                              graphs.
      GMax( int)               Highest number of cases in any state at
                              any time.
      MOVingaverage( int)      Look−back and look−ahead for moving
                              average, default 3.
      TEXtsize( string)        Text size of labels.
     

Description

    trprgr  takes a set of sequences described by varlist in wide
    format and graphs the time−dependent transition rate structure.
    The graphic consists of m rows and m+1 columns, where m is the
    number of states. The first column displays the time−dependent
    distribution of states, and the remaining m by m structure
    reproduces an m by m transition table but with graphs of
    time−series of transition rates instead of single values.

    Time series on the diagonal are plotted on the y−axis with a range
    of FLOOR to 1, those off the diagonal on the range 0 to CEILING.
    This assumes that retention in a state is more common than
    transitions between states, but setting FLOOR and CEILING
    respectively to 0 and 1 will give a common y−axis. The option GMAX
    sets the range for the state−distribution graphs, and should be
    set slightly greater than the maximum to make the state
    distribution graphs comparable.

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . trprgr mon1−mon36, id(id)



help twed

Title

    twed       Calculate inter−sequence distances using Time−Warp
                      Edit Distance

Syntax

        twed  varlist  ,  options  [option]

    options                  Description
    
    Cost structure
      subs mat( matname)        use matname as the substitution cost
                              matrix
      lam bda( #)               use # as the lambda parameter
      nu( #)                   use # as the nu parameter

    Sequence length
 
      len gth( var )             sequence length, a variable or a constant
                              if sequence length is fixed

    Distances
 
      pwdist( matname)         store the pairwise distances in matname,
                              as a symmetric matrix. Will be created
                              or overwritten.

    Work−space
 
      wor kspace               (Optional) Causes the internal workspace
                              matrices to be shown for each sequence
                              comparison.

    Normalisation
 
      STAndard                (Optional) If "longer", normalise by the
                              length of the longer sequence, if "none"
                              do no normalisation. Defaults to
                              "longer".

     

Description

    twed  calculates Marteau’s Time−Warp Edit Distance (TWED) between
    all pairs of sequences in the data, where varlist  is a consecutive
    set of variables describing the elements of the sequence.
    Time−warping stretches and compresses the time dimension to
    achieve alignment in a manner similar but not identical to oma ’s
    insertion and deletion. Marteau (2007) describes a time−warping
    algorithm with a stiffness parameter (nu) and a gap penalty
    (lambda) which is metric as long as nu>0 (many time−warping
    distances are not metric). Because it uses compression instead of
    deletion, it respects the spell structure of the trajectory more
    than oma  does. It uses a matching cost operation that is very
    close to OMA’s substitution operation. The algorithm also differs
    by comparing adjacent pairs of elements in each sequence, rather
    than single elements.

    It uses a Stata plugin implementation.

    States must be numbered as consecutive integers from 1 up, and the
    substitution cost matrix must be square, with dimension equal to
    the number of states. States must not be missing.

References



    Halpin, Brendan. (2014). Three narratives of sequence analysis,
    Bühlmann et al (eds), {it: Advances in Sequence Analysis.  Beyond
    the Core Program}, Springer

    Marteau, P.−F. (2007).  Time Warp Edit Distance with Stiffness
    Adjustment for Time Series Matching.  ArXiv Computer Science
    e−prints .

    Marteau, P.−F. (2008).  Time Warp Edit Distance.  ArXiv e−prints ,
    802.

Author

    Brendan Halpin, brendan.halpin@ul.ie

Examples

    . matrix scost = (0,1,2,3\1,0,1,2\2,1,0,1\3,2,1,0)
    . twed m1−m36, subsmat(scost) lambda(0.5) nu(0.15) pwdist(dist)
        len(36)
    . matrix list dist

    . twed m1−m72, subsmat(scost) lambda(0.5) nu(0.15) pwdist(dist)
        len(dur)
    . matrix list dist


