
sociology
AT UNIVERSITY OF LIMERICK

UNIVERSITY OF LIMERICK
sociology

sociology
AT UNIVERSITY OF LIMERICK

sociology
AT UNIVERSITY OF LIMERICK

UNIVERSITY OF LIMERICK
sociology

University of Limerick
Department of Sociology Working Paper Series

Working Paper WP2014-03
April 2014

Brendan Halpin

Department of Sociology, University of Limerick

SADI: Sequence Analysis Tools for Stata

Available at http://www.ul.ie/sociology/pubs/wp2014-03.pdf

http://www.ul.ie/sociology/pubs/wp2014-03.pdf

SADI: Sequence Analysis Tools for Stata

Brendan Halpin

3rd April 2014*

Contents

1 Introduction 2
1.1 Referring to SADI . 2

2 Installation 2

3 Data requirements 3

4 Worked example 3
4.1 Quick start . 3
4.2 Data . 3
4.3 Pairwise distances . 3

4.3.1 X/t . 4
4.3.2 Data-driven substitution matrix . 4

4.4 Examining distance matrices . 5
4.4.1 Comparing distances . 5
4.4.2 The triangle inequality . 5

4.5 Cluster analysis . 6
4.5.1 Comparing cluster solutions . 6
4.5.2 Discrepancy . 7

4.6 Summarising sequences and clusters . 8
4.6.1 String representations of sequences . 8
4.6.2 Medoids: typical sequences . 8
4.6.3 Cumulated duration . 9
4.6.4 Entropy . 9
4.6.5 Number of spells . 10

4.7 Graphics . 10
4.7.1 Chronogram . 10
4.7.2 Indexplot . 10
4.7.3 Transition pattern graph . 11
4.7.4 maketrpr . 11

5 Compiling plugins 13

6 Appendix: Help pages 15

*documentation.org,v 1.2 2014/04/03 15:07:39 brendan Exp

1

1 Introduction

SADI is a suite of Stata tools for sequence analysis, with a particular focus on holistic comparisons
of sequences using measures such as optimal matching distance. It provides a number of distance
measures, including

• Optimal matching distance

• Hamming distance

• Dynamic Hamming distance

• Elzinga’s combinatorial X/t measure and

• TWED, a time-warping distance measure.

It provides a number of utilities for graphing sequence-related data, for summarising se-
quences, and for handling sequences in general.

The main alternatives to SADI are the Stata SQ package (Brzinsky-Fay, Kohler & Luniak, 2006),
and the R package TraMineR (Gabadinho, Ritschard, Studer & Müller, 2009). SADI provides some
tools that are not in SQ, and is much faster for some important functions. TraMineR is pretty
attractive for those working in R, but SADI makes it possible to do a lot in a Stata environment,
and has distance measures that are not in TraMineR.

Since some of the distance measures are relatively intensive to calculate, they are implemented
as C plugins, rather than pure Stata or Mata code. This means that they are available only for
Windows and Linux, 32- and 64-bit. If you would like to compile them for another platform,
please contact Brendan Halpin, brendan.halpin@ul.ie, or see section 5.

This document summarises the functionality offered by SADI, with worked examples, and
reproduces the help files (see section 6).

Many of the measures in SADI are discussed in detail in Halpin (2014) and Halpin (2012).

1.1 Referring to SADI

If you use SADI and would like to acknowledge it, please refer to this document, as follows:

Brendan Halpin (2014), SADI: Sequence analysis tools for Stata, Working Paper
WP2014-03, Department of Sociology, University of Limerick, http://www.ul.ie/
sociology/pubs/wp2014-03.pdf.

2 Installation

The SADI package is hosted at http://teaching.sociology.ul.ie/sadi and can be installed as fol-
lows:

net from http://teaching.sociology.ul.ie/sadi
net install sadi

Several commands in the package depend on the mm_expand() Mata function in the moremata
package, so you must also do:

ssc install moremata

I also recommend looking at the SQ package for sequence analysis, not least for its effective
implementation of indexplots:

ssc install sq

2

http://www.ul.ie/sociology/pubs/wp2014-03.pdf
http://www.ul.ie/sociology/pubs/wp2014-03.pdf
http://teaching.sociology.ul.ie/sadi

3 Data requirements

Sequence analysis works with linear structures, usually longitudinal in time, that are discrete in
both the time dimension and the state space. Typically, each element represents a time period
or event in sequential order, and contains an observation in a categorical state space. A typical
example is monthly labour market status.

SADI expects sequences to be represented by a consecutive run of variables, where the cat-
egories are numbered from 1 up to the number of categories. Thus each case contains a complete
sequence, in wide format. Missing values are not accommodated, unless missing is treated as
a category in its own right. Sequences of different length should start at element 1, and have a
variable indicating their length.

4 Worked example

In this section, the functionality of SADI is presented. All the steps presented are included in a
Stata do-file available at http://teaching.sociology.ul.ie/sadi/distances.do.

4.1 Quick start

The following Stata commands will set up and run the example described in the following pages:

net from http://teaching.sociology.ul.ie/sadi
net install sadi
ssc install moremata
ssc install sq
do http://teaching.sociology.ul.ie/sadi/distances.do

4.2 Data

We use data from McVicar and Anyadike-Danes (2002), and set up a substitution matrix (i.e.,
a description of distances within the state space). The data consist of 72 monthly observations
(state1 to state72) in a six-element state space, to do with the transition from school to work.

set matsize 1000
use http://teaching.sociology.ul.ie/bhalpin/mvad
sort id

matrix mvdanes = (0,1,1,2,1,3 \ ///
1,0,1,2,1,3 \ ///
1,1,0,2,1,2 \ ///
2,2,2,0,1,1 \ ///
1,1,1,1,0,2 \ ///
3,3,2,1,2,0)

4.3 Pairwise distances

Sequence analysis proceeds by calculation distances between pairs of sequences, typically gener-
ating matrices of distances between all pairs.

Most distance measures work with the sequences as strings of state-variables, and have a
relatively consistent format. This code creates six pairwise distance matrices, using six different
distance measures:

oma state1-state72, subsmat(mvdanes) pwd(omd) length(72) indel(1.5)
omav state1-state72, subsmat(mvdanes) pwd(omv) length(72) indel(1.5)
hollister state1-state72, subsmat(mvdanes) pwd(hol) length(72) timecost(0.5) localcost(0.5)
twed state1-state72, subsmat(mvdanes) pwd(twd) length(72) lambda(0.5) nu(0.04)

3

http://teaching.sociology.ul.ie/sadi/distances.do

hamming state1-state72, subsmat(mvdanes) pwd(ham)
dynhamming state1-state72, pwd(dyn)

The commands start with a variable list which defines the sequence, and then have differ-
ent options. Where relevant, subsmat() provides the substitution cost or state-space distance
information. The mandatory pwd() options names the matrix in which the pairwise distances are
returned. Where it is possible to compare sequences of different length, length() specifies the
length either as a constant or a variable. Other options are command-specific.

The measure omav is described in Halpin (2010), hol in Hollister (2009), dynhamming in Lesnard
(2008), and twed in Marteau (2007, 2008) and Halpin (2014).

4.3.1 X/t

The X/t measure, a duration-weighted, spell-oriented version of Elzinga’s "number of matching
subsequences" (NMS) similarity measure, is calculated with combinadd. It is described in Elzinga
(2006) and discussed in Halpin (2014). It works with spells (consecutive runs of periods in the
same state) weighted by duration, so we need to restructure the data (one observation per spell,
with a state variable, and a length variable) . The combinprep command does the restructuring,
and combinadd calculates the distances. We need to know the maximum number of spells in the
data, which is returned as r(maxspells) by combinprep.

preserve
combinprep, state(state) length(len) idvar(id) nsp(nspells)
local spmax = r(maxspells)
combinadd state1-len‘spmax’, pwsim(xts) nspells(nspells) nstates(6) rtype(d)
restore

4.3.2 Data-driven substitution matrix

Sometimes researchers use theory or prior information to generate the substitution matrix. Other
times they prefer to use the data to generate it, from transition rates (note that dynhamming does
this automatically, but using time-varying transition rates). This may or may not be a good idea.

The command trans2subs creates a matrix of the transition-rate based distances. Typically
transitions will occur much less often than once per time-unit, so the diagonal will be heavily
populated. Thus the off-diagonal transition rates will be low, and distances will have low variab-
ility. If we exclude the diagonal, we get distances with greater variability.

Distances are defined as 2 − pij − pji where pij =
nij
ni+

.
To calculate the transition rates, the data has to be in long format:

preserve
reshape long state, i(id) j(m)
trans2subs state, id(id) subs(tpr1)
trans2subs state, id(id) subs(tpr2) diag
restore

This yields:

. matrix list tpr1

symmetric tpr1[6,6]
c1 c2 c3 c4 c5 c6

r1 0
r2 1.147539 0
r3 1.064734 1.849958 0
r4 1.643575 1.757525 1.671111 0
r5 1.182927 1.844291 1.96 1.90181 0
r6 1.207729 1.525335 1.831594 1.803575 1.608297 0

4

. matrix list tpr2

symmetric tpr2[6,6]
c1 c2 c3 c4 c5 c6

r1 0
r2 1.967601 0
r3 1.98727 1.993341 0
r4 1.984684 1.987531 1.982969 0
r5 1.959993 1.992045 1.999488 1.994867 0
r6 1.951231 1.96336 1.996033 1.985649 1.972029 0

We can then calculate OMA distances using the transition-derived substitution costs, exclud-
ing the diagonal:

oma state1-state72, subsmat(tpr1) pwd(tpr) length(72) indel(1.5)

4.4 Examining distance matrices

4.4.1 Comparing distances

Between different distance measures and different parameterisations (substitution costs) we have
now eight pairwise distance matrices. The simplest way to compare them is correlation. The
command corrsqm reports the Pearson correlation between the lower triangles of two square
(symmetric) matrices, optionally excluding the diagonal (which, for distance matrices, is filled
with zeros for all measures).

foreach dist in dyn ham twd hol omv xts tpr {
corrsqm omd ‘dist’, nodiag

}

This yields:

VECH correlation between omd and dyn: 0.7915
VECH correlation between omd and ham: 0.9856
VECH correlation between omd and twd: 0.8065
VECH correlation between omd and hol: 0.9898
VECH correlation between omd and omv: 0.9197
VECH correlation between omd and xts: 0.1135
VECH correlation between omd and tpr: 0.7701

Note the very high correlation with OMA of the Hamming and Hollister measure, the very
low correlation of the combinatorial X/t measure, and the relatively big difference between OMA
with the original substitution cost matrix and OMA with the transition-rate based matrix.

4.4.2 The triangle inequality

For many of the uses to which these measures will be put, it is necessary that they imply a metric
space. This requires, inter alia, that the distances obey the triangle inequality: for all A and B,
there is no C such that d(A, B) > d(A, C) + d(C, B). The omav and hollister distances do not
fulfill this requirement (see Halpin, 2014).

foreach dist in dyn ham twd hol omv xts tpr {
metricp ‘dist’

}

This results in the following output:

5

Matrix dyn is consistent with a metric space
Matrix ham is consistent with a metric space
Matrix twd is consistent with a metric space
Shorter route exists between seq 1 and seq 210 -- 2.056 > 2.042
Shorter route exists between seq 2 and seq 12 -- 1.556 > 1.542
Shorter route exists between seq 2 and seq 28 -- 1.528 > 1.521
Shorter route exists between seq 2 and seq 56 -- 0.931 > 0.924
Shorter route exists between seq 2 and seq 64 -- 0.701 > 0.694
Shorter route exists between seq 2 and seq 71 -- 1.361 > 1.347
Shorter route exists between seq 2 and seq 77 -- 0.889 > 0.882
Shorter route exists between seq 2 and seq 81 -- 0.903 > 0.896
Shorter route exists between seq 2 and seq 113 -- 2.389 > 2.375
Shorter route exists between seq 2 and seq 142 -- 0.486 > 0.472
Matrix hol is NOT consistent with a metric space
Shorter route exists between seq 1 and seq 2 -- 0.161 > 0.131
Shorter route exists between seq 1 and seq 3 -- 0.143 > 0.121
Shorter route exists between seq 1 and seq 5 -- 0.165 > 0.131
Shorter route exists between seq 1 and seq 6 -- 0.097 > 0.072
Shorter route exists between seq 1 and seq 7 -- 0.093 > 0.065
Shorter route exists between seq 1 and seq 8 -- 0.065 > 0.043
Shorter route exists between seq 1 and seq 9 -- 0.069 > 0.049
Shorter route exists between seq 1 and seq 10 -- 0.150 > 0.108
Shorter route exists between seq 1 and seq 11 -- 0.132 > 0.106
Shorter route exists between seq 1 and seq 12 -- 0.163 > 0.139
Matrix omv is NOT consistent with a metric space
Matrix xts is consistent with a metric space
Matrix tpr is consistent with a metric space

The hol and omv distance matrices are not metric, and are hence of limited value. Only the
first ten exceptions are printed, unless the option detailed is given.

4.5 Cluster analysis

Very often, sequence analysis proceeds by conducting cluster analysis on the pairwise distance
matrix. Here we do it for the oma and twed distances, generating cluster solutions with 8 and 12
clusters in each case.

clustermat wards omd, name(oma) add
cluster generate o=groups(8 12)

clustermat wards twd, name(twd) add
cluster generate t=groups(8 12)

4.5.1 Comparing cluster solutions

We can compare the cluster solutions for the two measures in a number of ways. The Adjusted
Rand Index (Hubert & Arabie, 1985; Vinh, Epps & Bailey, 2009) reflects agreement defined as the
extent to which the members of a pair of cases, if in the same cluster in one solution, are in the
same cluster in the other:

. ari o8 t8
Adjusted Rand Index: 0.5977

Clusterings are "unlabelled classifications", in that clusters can only be identified by reference
to the cases they contain. In this sense, a cluster in a clustering based on one distance matrix is
"the same" or similar to a cluster in a clustering based on another matrix only to the extent that
they contain (mostly) the same cases. The permtab command crosstabulates two (equal-sized)

6

solutions, permuting the values of one to maximise the agreement. The permuted classification
can be saved as a new variable:

permtab o8 t8, gen(pt8)
tab o8 pt8

The permutation seeks to maximise Cohen’s κ as an index of agreement (Reilly, Wang &
Rutherford, 2005), and reports the κmax to be 0.7346.

. tab o8 pt8

| pt8
o8 | 1 2 3 4 5 6 7 8 | Total

-------+--+--------
1 | 92 1 0 0 0 0 0 0 | 93
2 | 41 96 0 2 0 0 0 0 | 139
3 | 0 0 57 4 0 0 0 1 | 62
4 | 0 4 2 123 0 0 16 1 | 146
5 | 11 19 0 2 39 13 9 0 | 93
6 | 0 0 0 0 2 28 0 0 | 30
7 | 2 5 0 1 4 0 28 7 | 47
8 | 0 0 0 0 1 0 14 87 | 102

-------+--+--------
Total | 146 125 59 132 46 41 67 96 | 712

Permutation is simple but expensive if there are many categories. For 12 clusters, permutation
takes 9 × 10 × 11 × 12 = 11880 times as long as for 8. To deal with this, permtabga yields an
approximate-best permutation using a genetic algorithm:

permtabga o12 t12, gen(pt18)

4.5.2 Discrepancy

Studer et al’s discrepancy measure brings a pseudo-ANOVA perspective to distance matrices
(Studer, Ritschard, Gabadinho & Müller, 2011). If we partition the matrix using a cluster solution,
or a pre-existing observed characteristic, we can compare the average distance to the centre of the
partition to the average distance to the overall centre, and generate a pseudo-R2 measure. The
approach uses bootstrapping to generate p-values, and increasing the niter() option from the
default 100 increases precision.

. discrepancy o8, dist(omd) id(id)

Discrepancy based R2 and F, 100 permutations for p-value

| pseudo R2 pseudo F p-value
-------------+---------------------------------

o8 | .5310534 113.891 .01

. discrepancy o12, dist(omd) id(id)

Discrepancy based R2 and F, 100 permutations for p-value

| pseudo R2 pseudo F p-value
-------------+---------------------------------

o12 | .5990087 95.06125 .01

. discrepancy grammar, dist(omd) id(id)

7

Discrepancy based R2 and F, 100 permutations for p-value

| pseudo R2 pseudo F p-value
-------------+---------------------------------

grammar | .0272244 19.87031 .01

. discrepancy grammar, dist(omd) id(id) niter(1000)

Discrepancy based R2 and F, 1000 permutations for p-value

| pseudo R2 pseudo F p-value
-------------+---------------------------------

grammar | .0272244 19.87031 .001

4.6 Summarising sequences and clusters

4.6.1 String representations of sequences

We can create string representations of sequences, which makes it much easier to get a visual
overview of the data, and allows searching for patterns:

. stripe state1-state72, gen(seqstr) symbols("EFHSTU")

. list seqstr in 1/5, clean

seqstr
1. TTEEEETTEE
2. UUFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
3. UUTTTTTTTTTTTTTTTTTTTTTTTTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEEEEEEEEEEUU
4. TTTEEEEEEEEEEEEEEUUUUUUUUU
5. UUFFFFFFFFFFFFFFFFFFFFFFFFFHHH

Stata’s regex system makes it easy to search for patterns in these representations. For instance,
count if regexm(seqstr, "^E+$") will count sequences 100% in employment, while count if
regexm(seqstr, "U[^U]") will count sequences where we observe an exit from unemployment.

4.6.2 Medoids: typical sequences

We can characterise clusters in many ways (see below for graphics, chronogram and sqindexplot).
One way is to pick a "medoid", the sequence nearest the centre of the cluster. The discrepancy
command has an option to save this distance as a variable, which allows us to identify the medoid:

discrepancy o8, dist(omd) id(id) dcg(dx)
sort o8 dx
by o8: gen medoid = _n==1

The medoids are all pretty simple, and quite distinct:

. list o8 seqstr if medoid, clean

o8 seqstr
1. 1 EE

94. 2 TTTTTTTTTTTTTTTTTTTTTTTTEE
233. 3 FFFFFFFFFFFFFFFFFFFFFFFFFFFHHH
295. 4 SSFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
441. 5 TTTEEEEEEEEEEEEEEUUUUUUUUU
534. 6 TTTTTTTTTTTTTTTTTTTTUU
564. 7 SSSSSSSSSSSSSSSSSSSSSSSSSSEE
611. 8 SSSSSSSSSSSSSSSSSSSSSSSSSSHH

8

4.6.3 Cumulated duration

The sequence-wise total duration in each state is also an interesting summary:

cumuldur state1-state72, cd(dur) nstates(6)

Even though cumulated duration discards all order information, it differentiates the clusters
very strongly:

. table o8, c(mean dur1 mean dur2 mean dur3) format(%5.2f)

--
o8 | mean(dur1) mean(dur2) mean(dur3)

----------+-----------------------------------
1 | 67.99 2.74 0.00
2 | 43.86 2.58 0.00
3 | 6.34 27.34 36.35
4 | 34.22 31.15 1.08
5 | 27.55 9.23 0.00
6 | 5.30 3.57 0.00
7 | 32.94 4.79 3.79
8 | 4.59 4.35 33.24

--

. table o8, c(mean dur4 mean dur5 mean dur6) format(%5.2f)

--
o8 | mean(dur4) mean(dur5) mean(dur6)

----------+-----------------------------------
1 | 0.04 0.52 0.71
2 | 1.25 22.50 1.82
3 | 0.77 0.00 1.19
4 | 0.95 2.25 2.35
5 | 1.14 11.00 23.07
6 | 4.47 7.93 50.73
7 | 21.64 3.51 5.34
8 | 26.68 0.66 2.49

--

4.6.4 Entropy

We can look at the entropy of cumulated duration. The entropy command calculates a simple
measure of Shannon entropy (maximal if all states are equally likely, minimal if only one state is
visited):

// first drop the cumulated duration variables as the
// entropy command will recreate these
drop dur1-dur6

entropy state1-state72, gen(ent) cd(dur) nstates(6)

Because it completely ignores order, this is not an entirely appropriate measure of sequence
complexity. However, entropy levels differ greatly by cluster:

. table o8, c(mean ent) format(%5.2f)

o8 | mean(ent)

9

----------+-----------
1 | 0.26
2 | 1.02
3 | 1.30
4 | 1.18
5 | 1.39
6 | 0.94
7 | 1.38
8 | 1.32

4.6.5 Number of spells

The total number of spells in a sequence is a measure of its volatility:

. nspells state1-state72, gen(nsp)

. table o8, c(mean nsp) format(%5.2f)

o8 | mean(nsp)

----------+-----------
1 | 2.14
2 | 3.39
3 | 3.73
4 | 3.99
5 | 4.97
6 | 3.00
7 | 3.94
8 | 3.37

4.7 Graphics

There are two key graphics associated with sequence analysis, the state-distribution plot (or chro-
nogram) and the indexplot. I also present a representation of the time-structure of transition rates.

4.7.1 Chronogram

The chronogram represents the distribution of states at each time unit, hiding individual continu-
ity but yielding a more digestible summary:

chronogram state*, id(id) by(o8, legend(off)) name(chronogram, replace)

See Figure 1.

4.7.2 Indexplot

The indexplot plots each sequence as a line, and thus reproduces the sequence data in full. The
sqindexplot command from the SQ package makes a good job of this task, so I haven’t re-
implemented it for SADI.

Do ssc install sq if necessary.
To make the full sequence data visually digestible, it needs to be grouped and ordered care-

fully. If we plot by cluster, the order within cluster is critical. My preference is to generate a
maximal clustering (as many clusters as distinct sequences). This allows us to order sequences
within clusters such that subcluster-structure is preserved (such that the sequences are in dendro-
gram order). It makes clustered indexplots more readable, and less dependent on cutting at an
arbitrary number of clusters.

10

0
5

0
1

0
0

1
5

0
0

5
0

1
0

0
1

5
0

0
5

0
1

0
0

1
5

0

0 20 40 60 80

0 20 40 60 80 0 20 40 60 80

1 2 3

4 5 6

7 8

Time
Graphs by o8

Figure 1: Chronogram, by 8-cluster OMA solution

cluster generate o999 = groups(750), name(oma) ties(fewer)

SQ wants sequence data in long format, and sqset:

preserve
reshape long state, i(id) j(m)
sqset state id m
sqindexplot, by(o8, note("") legend(off)) order(o999) name(indexplot, replace)
restore

See Figure 2.

4.7.3 Transition pattern graph

The trprgr command creates a composite graphic, with a column of graphs (chronograms) rep-
resenting the 6 states over time, and a 6x6 grid representing the transition rates between states
over time.

trprgr state*, id(id) gmax(485)

By design, this command shows transition rates on the diagonal on the range 0.9-1.0, and
those off the diagonal on the range 0.0-0.1, but in practice these ranges are often exceeded. See
the ceiling and floor options.

See Figure 3.

4.7.4 maketrpr

The maketrpr generates the matrix of transition rates that is used by dynhamming and trprgr,
using tssmooth to average over a moving window of successive transitions. It may be of interest
to inspect this data in matrix form as much as in the trprgr graph.

11

0

50

100

150

0

50

100

150

0

50

100

150

0 20 40 60 80

0 20 40 60 80 0 20 40 60 80

1 2 3

4 5 6

7 8

Figure 2: Indexplot, by 8-cluster OMA solution

maketrpr state*, mat(mkt) ma(5)

For m categories and t time points, this creates a (t − 1)m × m matrix, where each successive
m × m panel represents a time-specific pattern of transitions (smoothed). In this example there
are no early observations in state 3 (higher education) so its exit rate is undefined:

. matlist mkt[1..6,.]

| __0000071 __0000072 __0000073 __0000074 __0000075
-------------+---

r1 | .8853028 .0684874 0 .0297906 .0101547
r2 | .0054704 .9890236 0 0 .0024511
r3 |
r4 | .0050338 .0228499 0 .9606053 .009611
r5 | .0129851 .0049919 0 .0026247 .9770244
r6 | .0473975 .1041914 0 .0354406 .0490166

| __0000076
-------------+-----------

r1 | .0062645
r2 | .0030549
r3 | .
r4 | .0019001
r5 | .0023739
r6 | .7639539

. matlist mkt[25..30,.]

| __0000071 __0000072 __0000073 __0000074 __0000075
-------------+---

12

0
1
0
0

2
0
0

3
0
0

4
0

0
5
0
0

E

0 20 40 60 80

Time

.9
.9

2
5
.9

5
.9

7
5

1

E

0 20 40 60 80

E

0
.0

2
5

.0
5

.0
7
5

.1

E

0 20 40 60 80

F

0
.0

2
5

.0
5

.0
7
5

.1

E

0 20 40 60 80

H

0
.0

2
5

.0
5

.0
7
5

.1

E

0 20 40 60 80

S

0
.0

2
5

.0
5

.0
7
5

.1

E

0 20 40 60 80

T

0
.0

2
5

.0
5

.0
7
5

.1

E

0 20 40 60 80

U

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0

0

F

0 20 40 60 80

Time
0

.0
2
5

.0
5

.0
7
5

.1

F
0 20 40 60 80

E

.9
.9

2
5
.9

5
.9

7
5

1

F

0 20 40 60 80

F

0
.0

2
5

.0
5

.0
7
5

.1

F

0 20 40 60 80

H

0
.0

2
5

.0
5

.0
7
5

.1

F

0 20 40 60 80

S

0
.0

2
5

.0
5

.0
7
5

.1

F

0 20 40 60 80

T

0
.0

2
5

.0
5

.0
7
5

.1

F

0 20 40 60 80

U

0
1
0
0

2
0
0

3
0

0
4
0
0

5
0
0

H

0 20 40 60 80

Time

0
.0

2
5

.0
5

.0
7
5

.1

H

0 20 40 60 80

E

0
.0

2
5

.0
5

.0
7
5

.1

H

0 20 40 60 80

F

.9
.9

2
5

.9
5

.9
7
5

1

H

0 20 40 60 80

H

0
.0

2
5

.0
5

.0
7
5

.1

H

0 20 40 60 80

S

0
.0

2
5

.0
5

.0
7
5

.1

H

0 20 40 60 80

T

0
.0

2
5

.0
5

.0
7
5

.1

H

0 20 40 60 80

U

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

S

0 20 40 60 80

Time

0
.0

2
5

.0
5

.0
7
5

.1

S

0 20 40 60 80

E

0
.0

2
5

.0
5

.0
7
5

.1

S

0 20 40 60 80

F

0
.0

2
5

.0
5

.0
7
5

.1

S

0 20 40 60 80

H

.9.9
2
5

.9
5

.9
7
5

1

S

0 20 40 60 80

S

0
.0

2
5

.0
5

.0
7
5

.1

S

0 20 40 60 80

T

0
.0

2
5

.0
5

.0
7
5

.1

S

0 20 40 60 80

U

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

T

0 20 40 60 80

Time

0
.0

2
5

.0
5

.0
7
5

.1

T

0 20 40 60 80

E

0
.0

2
5

.0
5

.0
7
5

.1

T

0 20 40 60 80

F

0
.0

2
5

.0
5

.0
7
5

.1

T

0 20 40 60 80

H

0
.0

2
5

.0
5

.0
7
5

.1

T

0 20 40 60 80

S

.9
.9

2
5

.9
5

.9
7
5

1

T

0 20 40 60 80

T

0
.0

2
5

.0
5

.0
7
5

.1

T

0 20 40 60 80

U

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

U

0 20 40 60 80

Time

0
.0

2
5

.0
5

.0
7
5

.1

U

0 20 40 60 80

E

0
.0

2
5
.0

5
.0

7
5

.1

U

0 20 40 60 80

F

0
.0

2
5

.0
5

.0
7
5

.1

U

0 20 40 60 80

H

0
.0

2
5

.0
5

.0
7
5

.1

U

0 20 40 60 80

S

0
.0

2
5

.0
5

.0
7
5

.1

U

0 20 40 60 80

T

.9.
9
2

5.9
5.9
7

51

U

0 20 40 60 80

U

Figure 3: Transition pattern

r25 | .9244586 .0410925 0 .0188743 .0070362
r26 | .0071804 .9871928 0 0 .0026261
r27 |
r28 | .0030203 .0137099 0 .975197 .0057666
r29 | .0136273 .0029951 0 .0015748 .9771932
r30 | .0481792 .0625148 0 .0212644 .0368173

| __0000076
-------------+-----------

r25 | .0085383
r26 | .0030007
r27 | .
r28 | .0023062
r29 | .0046096
r30 | .8312242

5 Compiling plugins

The C code for the distance measures resides in two main files, omamatv3.c and elzspelladd.c,
both available at http://teaching.sociology.ul.ie/sadi. These need to be compiled with uthash.h,
by Troy D. Hanson (http://uthash.sourceforge.net), which provides hash functions used in
elzspelladd.c, and with stplugin.c and stplugin.h. The latter two files are provided by Stata.
See Stata Corp’s instructions for compiling plugins at http://www.stata.com/plugins/.

All five files are available at http://teaching.sociology.ul.ie/sadi:

• omamatv3.c: http://teaching.sociology.ul.ie/sadi/omamatv3.c

• elzspellad.c: http://teaching.sociology.ul.ie/sadi/elzspellad.c

• uthash.h: http://teaching.sociology.ul.ie/sadi/uthash.h

13

http://teaching.sociology.ul.ie/sadi
http://uthash.sourceforge.net
http://www.stata.com/plugins/
http://teaching.sociology.ul.ie/sadi
http://teaching.sociology.ul.ie/sadi/omamatv3.c
http://teaching.sociology.ul.ie/sadi/elzspellad.c
http://teaching.sociology.ul.ie/sadi/uthash.h

• stplugin.c: http://teaching.sociology.ul.ie/sadi/stplugin.c

• stplugin.h: http://teaching.sociology.ul.ie/sadi/stplugin.h

You may find updated versions of stplugin.c and stplugin.h at the Stata site, and of
uthash.h at http://uthash.sourceforge.net, but these are the versions used to create the published
SADI plugins.

The published plugins are compiled for Windows and Linux, 32- and 64-bit, by cross-
compilation on a 64-bit Linux system.

References

Brzinsky-Fay, C., Kohler, U. & Luniak, M. (2006). Sequence analysis with Stata. Stata Journal, 6(4),
435–460.

Elzinga, C. H. (2006). Sequence analysis: metric representations of categorical time series. Amsterdam:
Free University of Amsterdam.

Gabadinho, A., Ritschard, G., Studer, M. & Müller, N. S. (2009). Mining sequence data in R with the
TraMineR package: a user’s guide for version 1.2. University of Geneva.

Halpin, B. (2010). Optimal matching analysis and life course data: the importance of duration.
Sociological Methods and Research, 38(3), 365–388.

Halpin, B. (2012). Sequence analysis of life-course data: a comparison of distance measures (Working
Paper No. WP2012-02). Dept of Sociology, University of Limerick. Ireland. Retrieved from
http://www.ul.ie/sociology/pubs/wp2012-02.pdf

Halpin, B. (2014). Three narratives of sequence analysis. In P. Blanchard, F. Bühlmann & J.-A.
Gauthier (Eds.), Advances in sequence analysis: theory, method, applications. Berlin: Springer.

Hollister, M. (2009). Is optimal matching suboptimal? Sociological Methods and Research, 38(2), 235–
264.

Hubert, L. & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218. Re-
trieved from http://www.springerlink.com/index/x64124718341j1j0.pdf

Lesnard, L. (2008). Off-scheduling within dual-earner couples: an unequal and negative external-
ity for family time. American Journal of Sociology, 114(2), 447–90.

Marteau, P.-F. (2007). Time Warp Edit Distance with Stiffness Adjustment for Time Series Match-
ing. ArXiv Computer Science e-prints. eprint: cs/0703033. Retrieved January 26, 2008, from
http://arxiv.org/abs/cs/0703033

Marteau, P.-F. (2008). Time Warp Edit Distance. ArXiv e-prints. Retrieved June 8, 2008, from http:
//arxiv.org/abs/0802.3522

McVicar, D. & Anyadike-Danes, M. (2002). Predicting successful and unsuccessful transitions
from school to work using sequence methods. Journal of the Royal Statistical Society (Series
A), 165, 317–334.

Reilly, C., Wang, C. & Rutherford, M. (2005). A rapid method for the comparison of cluster ana-
lyses. Statistica Sinica, 15(1), 19–33.

Studer, M., Ritschard, G., Gabadinho, A. & Müller, N. S. (2011). Discrepancy analysis of state
sequences. Sociological Methods and Research, 40(3), 471–510.

Vinh, N. X., Epps, J. & Bailey, J. (2009). Information theoretic measures for clusterings compar-
ison: is a correction for chance necessary? In Proceedings of the 26th international conference on
machine learning. Montreal, Canada.

14

http://teaching.sociology.ul.ie/sadi/stplugin.c
http://teaching.sociology.ul.ie/sadi/stplugin.h
http://uthash.sourceforge.net
http://www.ul.ie/sociology/pubs/wp2012-02.pdf
http://www.springerlink.com/index/x64124718341j1j0.pdf
cs/0703033
http://arxiv.org/abs/cs/0703033
http://arxiv.org/abs/0802.3522
http://arxiv.org/abs/0802.3522

6 Appendix: Help pages

The following pages reproduce the Stata help files for this list of commands:

• ari

• chronogram

• combinadd

• combinprep

• corrsqm

• cumuldur

• discrepancy

• dynhamming

• entropy

• hamming

• hollister

• maketrpr

• metricp

• nspells

• oma

• omav

• permtab

• stripe

• trans2subs

• trprgr

• twed

15

help ari

Title

 ari Calculate the Adjuted Rand Index for a pair of
 unlabelled classifications

Syntax

 ari var1 var2 [if] [in]

Description

 ari takes a pair of unlabelled classifications (e.g., two cluster
 solutions) and returns the Adjusted Rand Index, which has a
 maximum of 1 for perfect agreement, and where zero means no
 relationship. Returns r(ari).

References

 N Xuan Vinh, J Epps and J Bailey (2009), Information Theoretic
 Measures for Clusterings Comparison: Is a Correction for Chance
 Necessary?, Proceedings of the 26th International Conference on
 Machine Learning, Montreal, Canada

 L. Hubert and P Arabie (1985), Comparing Partitions, Journal of
 Classification 2(1), pp 193−218

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . ari a8 b8

help chronogram

Title

 chronogram
 Graph the time−dependent state distribution

Syntax

 chronogram varlist (min=2) [if] [in] , options [options]

 options Description

 ID
 id(varname) A unique case−id variable. Required.
 Optional
 by(string) Graph by varlist, allows options.
 tex tsize(string) Text size of labels.
 prop ortional Graph proportional distribution (useful
 with by).
 * Accepts many graph options.

Description

 chronogram takes a set of sequences described by varlist in wide
 format and graphs the time−dependent distribution of the state
 variable. This is sometimes called a chronogram, or the
 transversal state distribution.

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . chronogram mon1−mon36, id(id) by(sex, legend(off))

help combinadd

Title

 combinadd
 Calculate inter−sequence distances using
 Elzinga’s duration−weighted subsequence counting

Syntax

 combinadd varlist , options [option]

 options Description

 Required
 nsp ells(string) Name the variable which stores the number
 of spells
 nst ates(string) Name the variable which stores the number
 of states
 pwsim(string) Name the matrix which will store the
 similarities or distances

 Optional
 rt ype(string) Generate similarities or distances: "s"
 for similarities, "d" for distances, "r"
 for raw SXY values. Defaults to
 similarities.
 wor kspace Show workings
 maxt uples(integer) Maximum number of tuples (subsequences)
 to count in one sequence (default 40000)

Description

 combinadd calculates a version of Elzinga’s duration−weighted
 number of common subsequences measure for spell−structured data.
 The variable list must identify the spell structure in the form
 state−1, duration−1, state−2, duration−2, ... state−X, duration−X
 where X is the maximum number of spells observed. The nspells
 option identifies the variable that stores the case−specific
 number of spells.

 States must be numbered as integers from 1 up.

 The measure counts the number of spell sub−sequences common to
 each pair of sequences, weighted by the combined duration of the
 subsequence. The number of subsequences in a sequence increases
 very rapidly with the length of the sequence, with major
 consequences for memory demands. This implementation can handle
 sequences with of the order of 15 spells without too much
 difficulty. The maxtuples limit causes the command to stop if too
 many subsequences are observed, in order to avoid running out of
 memory. The maxtuples option can be used to judiciously raise this
 limit.

 It uses a Stata plugin implementation.

 See combinprep for a way of converting calendar representations to
 spell representations.

References

 Elzinga, C. H. (2003). Sequence similarity: A non−aligning
 technique. Sociological Methods and Research, 32(1):3−−29.

 Elzinga, C. H. (2005). Combinatorial representations of token
 sequences. Journal of Classification, 22(1):87−−118.

 Elzinga, C. H. (2006). Sequence analysis: Metric representations
 of categorical time series. Technical report, Free University of
 Amsterdam.

 Halpin, Brendan. (2014). Three narratives of sequence analysis,
 Bühlmann et al (eds), {it: Advances in Sequence Analysis. Beyond
 the Core Program}, Springer

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . combinprep, state(m) length(l) idvar(id) nsp(nspells)

 . local nsp = r(maxspells)
 . local nel = r(nels)

 . combinadd m1−l‘nsp’, pwsim(xtd) nspells(nspells) nstates(‘nel’)
 rtype(d)

help combinprep

Title

 combinprep
 Transform sequences from wide calendar format to
 wide spell format

Syntax

 combinprep, options

 options Description

 Options
 state(string) Stub of state variable name, in reshape
 fashion
 length(string) Stub of spell−length variable name (will
 be created)
 idvar(varname) ID variable
 nspells(varname) number−of−spells variable (will be
 created)

Description

 combinprep takes sequence data in wide calendar format (i.e., a
 consecutive string of numbered state variables representing state
 in each time unit, with one case per sequence) and turns it into
 wide spell format (consecutive pairs of numbered state and
 duration variables) with a separate variable indicating the number
 of spells.

 It returns the maximum number of spells observed in r(maxspells)
 and the range of the state variable in r(nels).

 This can be used to prepare the data for {help:combinadd} and
 other techniques that focus on spell history rather than state
 history.

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 Given sequences represented as consecutive variables s1−s40:

 . combinprep, state(s) length(dur) nspells(nsp)

 will generate a new structures with variable pairs s1, dur1 to sX,
 durX where X is the maximum number of spells observed. The spells
 are defined as consecutive runs in the same state, and their
 duration is recorded in the dur variable. The observed number of
 spells in each case is recorded in nsp.

help corrsqm

Title

 corrsqm Calculate the correlation between the lower triangle
 of two symmetric matrices

Syntax

 corrsqm var1 var2 [if] [in] [,NODiag]

Description

 corrsqm takes two symmetric matrices of the same dimension (e.g.,
 distance matrices) and returns their correlation. More
 specifically, it returns the correlation between their lower
 triangles, including the diagonal by default. It fails if one or
 both matrix is not symmetric, or if the matrices are not the same
 size. It prints the correlation but also returns it in r(rho).

 The option nodiag suppresses the diagonal, so that the correlation
 is between the lower triangles excluding the main diagonal.

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . corrsqm dist1 dist2

help cumuldur

Title

 cumuldur Calculate cumulated duration in states of a sequence

Syntax

 cumuldur varlist , cd stub(string) nst ates(int)

Description

 cumuldur creates variables holding the cumulative duration in each
 state in a sequence described by the varlist. The cdstub option
 gives the prefix of the new variables, and nstates enumerates how
 many states there are. States must be numbered from 1 up. A
 warning is issued if the total duration is less than the sequence
 length (e.g., if the number of states is actually larger than that
 given in the option, or if there are missing values or values less
 than or equal to zero).

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . cumuldur m1−m40, cd(dur) nstates(3)

help discrepancy

Title

 discrepancy Calculate Studer et al’s discrepancy measure

Syntax

 discrepancy groupvar , DISTmat(string) IDvar(varname)
 [NITer(integer 100) DCG(string)]

 options Description

 Required
 distmat(matname) names the distance matrix
 idvar(varname) identifies the variable that links the
 sort−order of the distance matrix to the
 sort−order of the data
 Optional
 niter(interger) number of permutations used to calculate
 p−value, defaults to 100
 dcg(string) variable in which to store the distance
 to the group centre

Description

 discrepancy calculates Studer et al’s measure of the discrepancy
 of a distance matrix, grouped by a categorical variable groupvar.
 The pseudo−R−squared and pseudo−F statistic are based on the
 extent to which the average distance to the centres of the groups
 are less than the average distance to the centre of the ungrouped
 distance matrix. The p−value is based on permutations (100 by
 default, but Studer et al recommend 1000 to 5000; set it to 1 for
 speed if you are not interested in the p−value).

 The distance to the centre of the group can optionally be saved in
 a variable. This can be used to identify group medoids.

 Returns:
 r(p_perm)
 r(pseudoF)
 r(pseudoR2)

References

 M Studer, G Ritschard, A Gabadinho and NS Müller, Discrepancy
 analysis of state sequences, Sociological Methods and Research,
 40(3):471−510

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . discrepancy sex, dist(d) id(id) dcg(dsex)
 . bysort sex: egen mindist = min(dsex)
 . gen medoid = mindist == min(dsex)

help dynhamming

Title

 dynhamming
 Calculate inter−sequence distances using dynamic
 Hamming distance

Syntax

 dynhamming varlist , options [option]

 options Description

 Distances
 pwdist(matname) store the pairwise distances in matname,
 as a symmetric matrix. Will be created
 or overwritten.

Description

 dynhamming calculates Lesnard’s dynamic Hamming distances between
 all pairs of sequences in the data, where varlist is a consecutive
 set of variables describing the elements of the sequence. Dynamic
 Hamming distances compare sequences element by element such that
 the inter−sequence distance is the sum of the element−wise
 distances. The element−wise distances are dynamic, based on the
 time−dependent structure of transition rates. The procedure uses
 maketrpr to calculate the transition rates, smoothing over a
 rolling seven (3+1+3) observations. See also trprgr which uses
 maketrpr to graph the time−dependent transition structure.

 States must be numbered as integers from 1 up.

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . dynhamming mon1−mon36, pwdist(dist)
 . matrix list dist

help entropy

Title

 entropy Calculate the Shannon entropy of a sequence

Syntax

 entropy varlist , generate(string) cd stub(string) nst ates(int)

Description

 entropy creates a new variable holding the Shannon entropy of the
 sequence, given by the generate() option. As a side effect, it
 creates variables containing the relative cumulated duration
 (named by the cd stub() option, as in cumuldur). nstates tells
 Stata how many states there are. States must be numbered from 1
 up.

 Shannon entropy takes no account of sequence order, and is just
 based on the relative cumulated duration in the different states,
 with the formula:

 − Sum [p_i * log_2(p_i)]

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . entropy m1−m40, gen(ent) cd(dur) nstates(3)

help hamming

Title

 hamming Calculate inter−sequence distances using Hamming
 distance

Syntax

 hamming varlist , options [option]

 options Description

 Cost structure
 subs mat(matname) use matname as the substitution cost
 matrix

 Distances
 pwdist(matname) store the pairwise distances in matname,
 as a symmetric matrix. Will be created
 or overwritten.

Description

 hamming calculates Hamming distances between all pairs of
 sequences in the data, where varlist is a consecutive set of
 variables describing the elements of the sequence. Hamming
 distances compare sequences element by element such that the
 inter−sequence distance is the sum of the element−wise distances.
 The element−wise distances are given in the subsmat() substitution
 matrix.

 States must be numbered as consecutive integers from 1 up, and the
 substitution cost matrix must be square, with dimension equal to
 the number of states. States must not be missing.

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . matrix scost = (0,1,2,3\1,0,1,2\2,1,0,1\3,2,1,0)
 . hamming mon1−mon36, subsmat(scost) pwdist(dist)
 . matrix list dist

 . hamming mon1−mon72, subsmat(scost) pwdist(dist)
 . matrix list dist

help hollister

Title

 hollister
 Calculate inter−sequence distances using
 Hollister’s Localized OM

Syntax

 hollister varlist , options [option]

 options Description

 Cost structure
 subs mat(matname) use matname as the substitution cost
 matrix
 TIMEcost(#) use # as the time cost
 LOCalcost(#) use # as the local cost

 Sequence length

 len gth(var) sequence length, a variable or a constant
 if sequence length is fixed

 Distances

 pwdist(matname) store the pairwise distances in matname,
 as a symmetric matrix. Will be created
 or overwritten.

 Work−space

 wor kspace (Optional) Causes the internal workspace
 matrices to be shown for each sequence
 comparison.

 Normalisation

 STAndard (Optional) If "longer", normalise by the
 length of the longer sequence, if "none"
 do no normalisation. Defaults to
 "longer".

Description

 hollister calculates localised Optimal Matching distances between
 all pairs of sequences in the data, where varlist is a consecutive
 set of variables describing the elements of the sequence. It uses
 a Stata plugin implementation of Mattissa Hollister’s adaptation
 of the Needleman−−Wunsch algorithm. Thanks to Mattissa for help in
 figuring out to code it, but if I have introduced any errors they
 are my own.

 Hollister’s measure differs from conventional OM by taking account
 of the neighbours of tokens involved in OM’s elementary
 operations. While this is attractive from a sociological point of
 view, it means the dissimilarity measure is not guaranteed to be
 metric. This is also true of omav .

 States must be numbered as consecutive integers from 1 up, and the
 substitution cost matrix must be square, with dimension equal to
 the number of states. States must not be missing.

References

 Halpin, Brendan. (2014). Three narratives of sequence analysis,
 Bühlmann et al (eds), {it: Advances in Sequence Analysis. Beyond
 the Core Program}, Springer

 Hollister, M. (2009). Is optimal matching suboptimal?
 Sociological Methods and Research, 38(2):235−−264.

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . matrix scost = (0,1,2,3\1,0,1,2\2,1,0,1\3,2,1,0)
 . hollister mon1−mon36, subsmat(scost) time(0.5) local(0.5)
 pwdist(dist) len(36)
 . matrix list dist

 . hollister mon1−mon36, subsmat(scost) time(0.5) local(0.5)
 pwdist(dist) len(dur)
 . matrix list dist

help dynhamming

Title

 maketrpr Create a matrix containing transition rates from
 sequences

Syntax

 maketrpr varlist (min=2) , options [option]

 options Description

 Matrix
 MATrix(matname) store the transition rates in matname.
 Will be created or overwritten.
 Moving average
 MA(int) Calculate a moving average over int+1+int
 periods. Defaults to 3.

Description

 maketrpr takes a set of sequences described by varlist in wide
 format and creates an n by (n times t) matrix where each n by n
 section contains the smoothed transition rates for the
 corresponding time period. It uses tssmooth to create the smoothed
 rates, defaulting to a 3−unit look−head and look−back (i.e., a
 7−wide moving average). If the number of states is 4 and there
 are 10 periods, it generates a (4x(10−1))x4 or 36x4 matrix, where
 T[1..4,1..4] contains the transition rates for time 1−2,
 T[5..8,1..4] for time 2−3 and so on.

 This is essentially a utility program, and is used by dynhamming
 and trprgr .

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . maketrpr mon1−mon36, mat(trp)
 . matrix list trp

help metricp

Title

 metricp Test a symmetric matrix of pairwise distances for the
 triangle inequality

Syntax

 metricp matname [, countlimit(int) detailed]

 Options Description

 Count limit
countlimit(int) Number of triangle−inequality
 infringements to report (defaults to
 10, 0 means no limit)
detailed Slowly identify the problem cases, not
 just the fact they exist.

Description

 metricp takes a matrix of pairwise distances and tests that the
 triangle inequality is observed. If it finds triads infringing on
 the inequality it reports at most 10 before stopping (this is
 changed with the option countlimit; set that to zero for no
 limit). If there are no infringing cases and the matrix is large,
 it can be a little slow (tens of seconds). It is even slower with
 the detailed option (minutes), which identifies the infringing
 trio of sequences; without this option only the fact that there is
 a shorter route between sequence i and sequence j is reported.

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . metricp pwd

Version

help nspells

Title

 nspells Calculate number of spells in a sequence

Syntax

 nspells varlist , generate(string)

Description

 nspells creates a variable holding the number of spells in a
 sequence described by the varlist. The generate option names the
 variable, which will be created. Spells are defined as consecutive
 runs of the same value. Runs of missing values are counted as
 spells.

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . nspells m1−m40, gen(nsp)

help oma

Title

 oma Calculate inter−sequence distances using
 Needleman−−Wunsch algorithm

Syntax

 oma varlist , options [option]

 options Description

 Cost structure
 subs mat(matname) use matname as the substitution cost
 matrix
 ind el(#) use # as the indel cost

 Sequence length

 len gth(var) sequence length, a variable or a constant
 if sequence length is fixed

 Distances

 pwdist(matname) store the pairwise distances in matname,
 as a symmetric matrix. Will be created
 or overwritten.

 Work−space

 wor kspace (Optional) Causes the internal workspace
 matrices to be shown for each sequence
 comparison.

 Duplicates

 DUps (Optional) Force calculation of duplicate
 distances.

 Normalisation

 STAndard (Optional) If "longer", normalise by the
 length of the longer sequence, if "none"
 do no normalisation. Defaults to
 "longer".

Description

 oma calculates Optimal Matching distances between all pairs of
 sequences in the data, where varlist is a consecutive set of
 variables describing the elements of the sequence. It uses a Stata
 plugin implementation of the Needleman−−Wunsch algorithm.

 States must be numbered as consecutive integers from 1 up, and the
 substitution cost matrix must be square, with dimension equal to
 the number of states. States must not be missing.

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . matrix scost = (0,1,2,3\1,0,1,2\2,1,0,1\3,2,1,0)
 . oma mon1−mon36, subsmat(scost) indel(2) pwdist(dist) len(36)
 . matrix list dist

 . oma mon1−mon72, subsmat(scost) indel(2) pwdist(dist) len(dur)
 . matrix list dist

help omav

Title

 omav Calculate inter−sequence distances using
 duration−compensated Needleman−−Wunsch algorithm

Syntax

 omav varlist , options [option]

 options Description

 Cost structure
 subs mat(matname) use matname as the substitution cost
 matrix
 ind el(#) use # as the cost for
 insertions/deletions
 Sequence length

 len gth(var) sequence length, a variable or a constant
 if sequence length is fixed
 Distances

 pwdist(matname) store the pairwise distances in matname,
 as a symmetric matrix. Will be created
 or overwritten.
 Duration adjustment

 fac exp(real) (Optional) Exponent by which to adjust
 costs for duration (defaults to 0.5)

 Work−space

 wor kspace (Optional) Causes the internal workspace
 matrices to be shown for each sequence
 comparison.

Description

 omav calculates duration−adjusted Optimal Matching distances
 between all pairs of sequences in the data, where varlist is a
 consecutive set of variables describing the elements of the
 sequence. It uses a Stata plugin implementation of an adapted
 Needleman Wunsch algorithm. It differs from the standard oma
 command in that the costs of elementary operations are reduced for
 tokens that are elements of runs of the same value. By default,
 the cost of an operation on an element of an n−element sequence is
 changed by a factor of 1/n^f where f is given by the {opt:fac:exp}
 option. The value of f defaults to 0.5. A value of f of zero
 produces the same result as oma and a value of f of 1.0 weights
 all spells the same regardless of length.

 Note: this measure is not guaranteed to be metric.

 States must be numbered as consecutive integers from 1 up, and the
 substitution cost matrix must be square, with dimension equal to
 the number of states. States must not be missing.

References

 Halpin, Brendan. (2010). Optimal Matching Analysis and Life
 Course Data: the importance of duration Sociological Methods and
 Research, 38(3)

 Halpin, Brendan. (2014). Three narratives of sequence analysis,
 Bühlmann et al (eds), {it: Advances in Sequence Analysis. Beyond
 the Core Program}, Springer

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . matrix scost = (0,1,2,3\1,0,1,2\2,1,0,1\3,2,1,0)
 . omav mon1−mon36, subsmat(scost) indel(2) pwdist(dist) len(36)
 . matrix list dist

 . omav mon1−mon72, subsmat(scost) indel(2) pwdist(dist) len(dur)
 facexp(0.75)
 . matrix list dist

help permtab, permtabga

Title

 permtab Rearrange columns of square table to maximise kappa

Syntax

 permtab rowvar colvar [if] [in] [, gen(newvarname)]

 permtabga rowvar colvar [if] [in] [, gen(newvarname)]

Description

 permtab permutes the columns of the square crosstabulation of
 rowvar by colvar to maximise kappa. It is intended for use in
 comparing cluster solutions where the identity of categories from
 one solution to the other is only defined in terms of membership.
 Kappa measures the excess of observed over expected on the
 diagonal. Kappa_max is the Kappa of the best solution, and is
 reported.

 A permuted version of colvar is created by the gen option.

 Returns kappa_max as r(kappa).

 Note: For numbers of categories much above 8 this procedure is
 slow and inefficient. For such cases permtabga uses a genetic
 algorithm approach to find an approximate solution.

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . permtab a8 b8

help stripe

Title

 stripe Create a single string variable representing the
 sequence

Syntax

 stripe varlist, GENerate(newvarname) [SYMbols(string)]

Description

 stripe Create a single string variable representing a sequence.
 Option symbols allows replacement of the default symbol series
 (the uppercase alphabet). This makes sequences easier to view, and
 enables one to use regular expressions to group sequences [M−5]
 regexm() .

 Note : Assumes sequences are represented by consecutive variables
 containing numeric values.

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . stripe state1−state40, gen(seqstr)
 . stripe state1−state40, gen(seqstr) symbols("FPun")
 . list seqstr if regexm(seqstr,"FFFF+.+nnnn")
 . list seqstr if regexm(seqstr,"^F+n+$")

help trans2subs

Title

 trans2subs
 Create substitution matrix based on observed
 transitions

Syntax

 trans2subs state [if] [in], IDvar(id) SUBSmat(subsmat)
 [DIAGincl]

Description

 trans2subs calculates a substitution matrix based on observed
 transitions in the state variable, and puts it in the subsmat
 matrix. The data must be in long format, with idvar identifying
 the groups, and must be sorted.

 Transitions are tabulated from period to period, and the
 substitution cost is defined as 2 − p_{a,b} − p{b,a} for
 off−diagonal cells, and 0 for diagonal cells. p_{a,b} is defined
 as the proportion of transitions from a in t which are to b in
 t+1. Note that, by default, cases which do not have a transition
 from one period to the next do not enter the calculation.

Options

IDvar(idvar) specifies the ID variable.

SUBSmat(mat) specifies the Stata matrix to which to write the
 substitution costs.

DIAGincl causes the cells on the diagonal to be used in the calculation.

Comments

One way to define substition costs for optimal matching is to use
observed transition rates between states. Higher probabilities of
transition imply greater similarity. This may often be a good idea, but
it is not always the case. It is plausible that in some domains we will
see high probabilities of transition between states which are
substantively quite dissimilar, for instance between never−married and
married.

The procedure expects the data in long calendar format, that is with
each record representing a person−−month or case−−time−unit, sorted in
temporal order within IDvar, the variable identifying the person or
case. The resulting matrix is based on a cross−tabulation of state at t
and t−1.

In this format only off−diagonal cases represent transitions: the
diagonal represents months where the state is the same as the previous
month. In the default, the diagonal cases are excluded, but the option
DIAGincl causes them to be included in the calculation. Including them
reduces the range of the substitution costs.

The strategy is based in part on that described in Rowher and Potter’s
TDA manual, section 6.7.2.5,
http://www.stat.ruhr−uni−bochum.de/pub/tda/doc/tman63/d06070205.zip

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 If your sequences are represented by consecutive variables s1−s50
 with ID id , first reshape long :

 . reshape long s, i(id) j(m)
 . trans2subs s, id(id) subs(smat)
 . matrix list smat
 . trans2subs s, id(id) subs(smat) diag
 . matrix list smat2

help trprgr

Title

 trprgr Graphically present transition rates from sequences

Syntax

 trprgr varlist (min=2) , options [option]

 options Description

 ID
 ID(varname) A unique case−id variable. Required.
 Optional
 FLoor(real) Lowest transition rate for diagonal
 graphs.
 CEI ling(real) Highest transition rate for off−diagonal
 graphs.
 GMax(int) Highest number of cases in any state at
 any time.
 MOVingaverage(int) Look−back and look−ahead for moving
 average, default 3.
 TEXtsize(string) Text size of labels.

Description

 trprgr takes a set of sequences described by varlist in wide
 format and graphs the time−dependent transition rate structure.
 The graphic consists of m rows and m+1 columns, where m is the
 number of states. The first column displays the time−dependent
 distribution of states, and the remaining m by m structure
 reproduces an m by m transition table but with graphs of
 time−series of transition rates instead of single values.

 Time series on the diagonal are plotted on the y−axis with a range
 of FLOOR to 1, those off the diagonal on the range 0 to CEILING.
 This assumes that retention in a state is more common than
 transitions between states, but setting FLOOR and CEILING
 respectively to 0 and 1 will give a common y−axis. The option GMAX
 sets the range for the state−distribution graphs, and should be
 set slightly greater than the maximum to make the state
 distribution graphs comparable.

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . trprgr mon1−mon36, id(id)

help twed

Title

 twed Calculate inter−sequence distances using Time−Warp
 Edit Distance

Syntax

 twed varlist , options [option]

 options Description

 Cost structure
 subs mat(matname) use matname as the substitution cost
 matrix
 lam bda(#) use # as the lambda parameter
 nu(#) use # as the nu parameter

 Sequence length

 len gth(var) sequence length, a variable or a constant
 if sequence length is fixed

 Distances

 pwdist(matname) store the pairwise distances in matname,
 as a symmetric matrix. Will be created
 or overwritten.

 Work−space

 wor kspace (Optional) Causes the internal workspace
 matrices to be shown for each sequence
 comparison.

 Normalisation

 STAndard (Optional) If "longer", normalise by the
 length of the longer sequence, if "none"
 do no normalisation. Defaults to
 "longer".

Description

 twed calculates Marteau’s Time−Warp Edit Distance (TWED) between
 all pairs of sequences in the data, where varlist is a consecutive
 set of variables describing the elements of the sequence.
 Time−warping stretches and compresses the time dimension to
 achieve alignment in a manner similar but not identical to oma ’s
 insertion and deletion. Marteau (2007) describes a time−warping
 algorithm with a stiffness parameter (nu) and a gap penalty
 (lambda) which is metric as long as nu>0 (many time−warping
 distances are not metric). Because it uses compression instead of
 deletion, it respects the spell structure of the trajectory more
 than oma does. It uses a matching cost operation that is very
 close to OMA’s substitution operation. The algorithm also differs
 by comparing adjacent pairs of elements in each sequence, rather
 than single elements.

 It uses a Stata plugin implementation.

 States must be numbered as consecutive integers from 1 up, and the
 substitution cost matrix must be square, with dimension equal to
 the number of states. States must not be missing.

References

 Halpin, Brendan. (2014). Three narratives of sequence analysis,
 Bühlmann et al (eds), {it: Advances in Sequence Analysis. Beyond
 the Core Program}, Springer

 Marteau, P.−F. (2007). Time Warp Edit Distance with Stiffness
 Adjustment for Time Series Matching. ArXiv Computer Science
 e−prints .

 Marteau, P.−F. (2008). Time Warp Edit Distance. ArXiv e−prints ,
 802.

Author

 Brendan Halpin, brendan.halpin@ul.ie

Examples

 . matrix scost = (0,1,2,3\1,0,1,2\2,1,0,1\3,2,1,0)
 . twed m1−m36, subsmat(scost) lambda(0.5) nu(0.15) pwdist(dist)
 len(36)
 . matrix list dist

 . twed m1−m72, subsmat(scost) lambda(0.5) nu(0.15) pwdist(dist)
 len(dur)
 . matrix list dist

