Automotive Engineering
Module Handbook

- Courses in English* -

- Introduction to body in white design
- Introduction to commercial vehicle design
- Introduction to vehicle dynamics
- Drive train design
- Finite element method (FEM)
- Engineering design team project
- Automotive Engineering research project

* courses are offered in the summer semester (March – July) only
Department of Aeronautical & Automotive Engineering (September 2014)
Course Name: Introduction to Body in White Design

Degree programme:
Automotive Engineering (Bachelor)

Responsible Lecturer: Prof. Piskun

Work load: 150 hours
Lecture hours per week: 4
ECTS Credits: 5

Course objectives:
Students will
- know the most important car body requirements (functional, legal and consumer-driven)
- understand and can apply legal requirements in order to validate the car body design.
- know the basic car body modules / assemblies and their functions
- know automotive product development phases.

Contents:
- Car body representation in the drawing
- Specialties of car body parts in comparison to machine components in other industries
- Overview of most important car body requirements
- Application of representative legal requirements for design validation
- Fundamentals of car body design; arts of car body structure (steel-stamping, monocoque and space frame), overview of important modules and assemblies (doors and closures, front structure, wiper systems, windshield, etc.)
- Dimensional variation in steel stampings and basic methods to design for precision.
- Design classes on car cabin development (different windshield / side part combinations, development of an A-Pillar accordingly to cross-sections specified etc.)

About didactics and work load distribution:
interactive lectures with exercises; 72 hours classes, 78 hours personal study

Requirements for participation:
Good knowledge of CAD Catia V5 or NX and methods of descriptive geometry.

Course language:
English

Type of exam:
written examination, 120 min., paper

Requirements for credit point allocation:
Active participation in group work and lessons

Literature:
- Burandt, U.: Ergonomics for Styling and Design. Dr. Otto Schmidt
- Piskun, A.: Car Body Development Scripts online
- Further Information from industry as lecture scripts from the professor
<table>
<thead>
<tr>
<th>Course Name: Introduction to Commercial Vehicle Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree programme:</td>
</tr>
<tr>
<td>Automotive Engineering (Bachelor)</td>
</tr>
<tr>
<td>Work load: 150 hours</td>
</tr>
<tr>
<td>Lecture hours per week: 4</td>
</tr>
<tr>
<td>ECTS Credits: 5</td>
</tr>
<tr>
<td>Responsible Lecturer: Prof. Dipl.-Ing. Peter Seyfried</td>
</tr>
</tbody>
</table>

Course objectives:
Students will
- know commercial and legal requirements for commercial road vehicle concepts
- be able to design a load optimized frame structure of a commercial road vehicle
- know different variants of superstructures and auxiliary frames which are suitable for different types of freight
- be able to develop concepts for load securing and load curves

Contents:

Introduction and overview
- Historical development
- Road vehicles of today

Conceptual Design of commercial vehicle frame structures
- Standards and Specifications
- Choice of Materials and semi-finished parts
- Production and Joining methods
- Profile and node design
- Load Assumptions and Calculations
- Coupling Systems
- Axle systems

Load curves and load securing
- Load and loading equipment
- Legal requirements and testing procedures
- Load curve calculation
- Dynamic forces

About didactics and work load distribution:
- Interactive lectures with exercises; 72 hours classes, 78 hours personal study

Requirements for participation:
- Completion of courses containing statics, steel material properties and welding

Type of exam:
- Written examination

Requirements for credit point allocation:
- Active participation in group work and lectures

Literature:
- Hoepke, Breuer (Hrsg.): Nutzfahrzeugtechnik. Springer Vieweg Verlag.
- Lecture slides

Course language:
- English
Course Name: Introduction to Vehicle Dynamics

Degree programme:
Automotive Engineering (Bachelor)
Responsible Lecturer: Prof. Dr. Fervers

<table>
<thead>
<tr>
<th>Work load: 150 hours</th>
<th>Lecture hours per week: 4</th>
<th>ECTS Credits: 5</th>
</tr>
</thead>
</table>

Course objectives:
The students
- will know the basic terms in vehicle dynamics
- will be able to set the basic effects of tyres, handling and suspension into the right context
- will be able to judge about conflicting goals in the setup of vehicle suspension

Contents:
- mechanical structure of an air filled tyre
- force transmission in vertical, longitudinal and lateral direction of tyres
- spring stiffness, damping and rolling resistance of tyres
- longitudinal slip, sideslip angle, pneumatic trail, camber
- basic ideas of rubber to road contact and force transmission
- basic diagrams to characterize tyre behaviour
- one track (bicycle) – model
- basic equations of handling
- steering angle, yaw-angle, side slip angle
- oversteer / understeer
- road holding, limit handling, transition Region
- yaw-gain, critical speed, characteristic speed
- lateral load transfer, anti roll bar, camber, toe
- examples of electronic means to influence driving dynamics
- quarter-vehicle model
- basic equations of ride dynamics
- basic layout of springs and shockabsorbers

About didactics and work load distribution:
interactive lectures; 72 hours classes, 48 hours personal study

Requirements for participation:
Recommended: Good knowledge in mechanics (statics and dynamics).

Type of exam:
Written examination; term paper

Requirements for credit point allocation:
Active participation in lectures

Course language:
English

Literature:
- Dixon, J. C.: Tires, Suspension, Handling. SAE International
- Gillespie, T.: Fundamentals of Vehicle Dynamics. SAE International
Drive Train Design

Course Name:
Drive Train Design

Degree programme:
Automotive Engineering (Bachelor)

Responsible Lecturer:
Prof. Dr. Christoph Grossmann

Work load:
150 hours

Lecture hours per week:
4

ECTS Credits:
5

Course objectives:
- Students will know the impact relationships of engine, power transmission and vehicle regarding traction power and fuel consumption
- Students will get an introduction to drive train elements and conventional and hybridized drive train architectures of passenger cars, commercial vehicles and mobile machines
- Students will be able to configure and develop drive trains for customer needs

Contents:
1. Overview on vehicle drive trains
2. Combustion engines, tractive power supply and demand
3. Drive train ratio calculation, tractive force chart
4. Gear calculation, tractive power chart, fuel consumption
5. Start-up elements, clutches and torque converter
6. Manual, automated and dual-clutch transmissions, synchronizers and power shift clutches
7. Planetary gear sets – kinematics
8. Planetary gear sets – kinetics and coupled sets
9. Automatic transmissions for passenger cars and commercial vehicles
10. Shift transmissions for commercial vehicles
11. Hydrostatic and continuously variable transmissions
12. Final drive, transfer gear box, differentials, all-wheel drive
13. Hybrid and electric drive trains
14. Drive trains of mobile machines

About didactics and work load distribution:
Interactive lectures with exercises; 72 hours classes, 78 hours personal study

Requirements for participation:
Recommended: Basic knowledge of machine elements and vehicle architecture

Course language:
English

Type of exam:
Written examination

Requirements for credit point allocation:
Active participation in group work, lessons and homework assignment

Literature:
- Kirchner, E.: Leistungsübertragung in Fahrzeuggetrieben. Springer 2007
- VDI: Proceedings of the annual conferences "Drivetrain for Vehicles"
Course Name: Finite Element Method (FEM)

Degree programme:
Automotive Engineering (Bachelor)

Responsible Lecturer: Prof. Dr. Wilfried Dehmel

<table>
<thead>
<tr>
<th>Work load: 150 hours</th>
<th>Lecture hours per week: 4</th>
<th>ECTS Credits: 5</th>
</tr>
</thead>
</table>

Course objectives:
The students will have the ability to
- analyse automotive structures (car body, chassis, motor) considering static and dynamic loads.
- analyse deformations, stresses, strength, and stability of structures.
- determine normal modes and dynamic responses in frequency domain and in time domain.

Contents:
- Linear Statics, Buckling, Nonlinear Statics
- Normal Modes Analysis, Frequency Response, Transient Response
- Thermal Analysis
- Rod and Beam Elements
- Plate and Shell Elements
- Solid Elements
- Isotropic, Orthotropic, and Laminated Fiber Material

About didactics and work load distribution:
36 hours theoretical lectures, 36 hours FEM lab,
40 hours personal studies, 38 hours personal homework task

Requirements for participation:
Successful completion of the first year of an undergraduate degree programme in mechanical or automotive engineering; completion of second year recommended.

Course language:
English

Type of exam:
Written examination

Requirements for credit point allocation:
Active participation in lectures and FEM lab exercises and preparation of a FEM term paper: Analysis of a Shell Structure (Statics and Buckling)

Literature:
- Klaus-Jürgen Bathe: Finite Element Procedures, Prentice Hall
- FEM software handbooks
Course Name: Engineering Design Team Project

<table>
<thead>
<tr>
<th>Degree programme:</th>
<th>Responsible Lecturer: *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive Engineering (Bachelor)</td>
<td></td>
</tr>
</tbody>
</table>

Work load: 150 hours
Lecture hours per week: –
ECTS Credits: 5

Course objectives:
Students will work in a team of 3-5 students on a constructional design project in the area of automotive engineering, using their knowledge in mechanics, machine elements and technical drawing.

Contents:
Introduction to the concept-finding and evaluation methods as well as ongoing methodological support will be provided by the lecturer. The solution is worked out by the team.

Team work includes:
- (Self-)Organization and project management
- The definition and illustration of the project task
- The description of the solution
- The necessary analyses and calculations as well as their results
- CAD models and Technical drawings
- A detailed presentation (written report) of the work

About didactics and work load distribution:
150 hours of individual study and project work. The project team will regularly discuss their progress with the lecturer as part of set classes.

Requirements for participation:
Successful completion of year 1 of an undergraduate degree programme in automotive or mechanical engineering.

Type of exam:
Completion and presentation of project as a team, with individual presentations by students.

Requirements for credit point allocation:
–

Course language: English

Literature:
–

Notes:
* Students will be coached by the professor responsible for the course.
<table>
<thead>
<tr>
<th>Course Name: Automotive Engineering Research Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree programme:</td>
</tr>
<tr>
<td>Responsible Lecturer:</td>
</tr>
<tr>
<td>Work load:</td>
</tr>
<tr>
<td>Lecture hours per week:</td>
</tr>
<tr>
<td>ECTS Credits:</td>
</tr>
</tbody>
</table>

Course objectives:
Students will work independently on a constructional, experimental or theoretical project in the area of automotive engineering, using scientific methodology and findings.

Contents:
Instruction in the independent completion of a constructional, experimental or theoretical project

A constructional project includes:
- The illustration of the project task
- The description of the solution
- The necessary analyses and calculations as well as their results
- A detailed presentation (written report) of the work

A constructional project also includes:
- The constructional solution

An experimental project also includes:
- The description of the experimental implementation as well as the instrumentation

A theoretical project also includes:
- The explanation of the theoretical analyses and calculations as well as the developed models

About didactics and work load distribution:
240 hours of individual study and project work. Students can choose to complete a project in one of the research areas in the department. This has to be arranged individually with the help of the Departmental Coordinator.

Requirements for participation:
Successful completion of year 1 of an undergraduate degree programme in automotive or mechanical engineering.

Course language:
English

Type of exam:
Completion and presentation of project

Requirements for credit point allocation:
–

Literature:
–

Notes:
* Students will be coached by the professor responsible for the research area.
** The workload of this project can be increased to 12 credits, so that together with the other modules it makes up a total semester workload of 30 ECTS.
Join our Formula Student Racing Team, HAWKS Racing, and get hands-on experience building and racing a racing car. www.hawksracing.de