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Abstract

The MICT package provides a method for multiple imputation for cat-
egorical time-series data such as lifecourse or employment-status histories
that preserves longitudinal consistency, using a monotonic series of imputa-
tions. It allows flexible imputation specifications, with a model appropriate
to the target variable (mlogit, ologit etc.). Where transitions are substan-
tially less frequent than once per time-unit, and where missingness tends
to be consecutive (as is typical of lifecourse data), it produces imputations
with better longitudinal consistency than mi impute or ice.

1 Missingness in longitudinal data

This paper describes an approach to multiple imputation for categorical cross-
sectional time-series data, such as labour market or other life course histories.
The approach focuses on filling gaps from their edges, using a monotonic series
of imputations. It uses mi impute mlogit to carry out single imputations, but
manages the sequencing of imputations independently of the mi impute infras-
trucure. It respects the longitudinal consistency of the data in a way that is diffi-
cult or impossible to achieve with standard mi impute or ice approaches, while
allowing flexible imputation models and full access to the power of Stata’s mi

post-imputation infrastructure. The method is implemented in the MICT pack-
age.

The typical application of this method is to imputing gaps in lifecourse data
such as employment or fertility histories, where the state changes substantially
less often than once per time-unit, and where missingness also tends to be con-
secutive. However, it is relevant for any categorical time-series data with rela-
tively low transition rates and consecutive missingness.

1.1 Longitudinal data and missingness

The availability of longitudinal data such as labour market, family formation, or
residential histories, is ever increasing, and methods for its analysis are becom-
ing ever more common and widely used. However, longitudinal data is subject
to missingness, often to a greater degree than cross-sectional data. While some
methods can deal with missingness (e.g., duration models can “censor” data
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from the first occurrence of missing observations onwards), others cannot, and
require full data. Throwing away individual histories because of a small propor-
tion of missingness is wasteful (even for duration models), and if missingness
is not “completely at random” (MCAR), to use Rubin’s term (1987), such dele-
tion of cases may cause bias. Indeed, it is particularly likely that missingness is
not random, in that volatile histories are disproportionately likely to result in
missingness. This is not only because people who experience volatility will be
more likely to miss data-recording opportunities (e.g., annual interviews) but
also because volatile histories have more opportunity for incompleteness. For
instance, if you are in the same job for ten years, missing an occasional inter-
view will not impact the record, whereas if you have changed job 5 times since
the last interview, there are far more opportunities for error to enter and for
information to be lost.

2 Imputation as a solution

2.1 Multiple imputation as the state-of-the-art

Introduced by Rubin (1987), multiple imputation has become a standard way
of dealing with missing data. Regression models predict incompletely observed
variables using fully observed variables, and are used to impute values to re-
place the missing, drawn at random from the prediction distribution. Rubin’s
key insight is that if multiple imputations are drawn, creating multiple imputed
data sets, and if the results of analyses on the multiple data sets are averaged,
unbiased estimates of the desired quantity (such as a regression coefficient) can
be made.1 Stata has implemented a package of commands for creating, manag-
ing and analysing such imputations (see mi impute).

However, cross-sectional time-series data such as life-histories put a sub-
stantial strain on standard imputation. If in wide format (with one variable per
time-unit), there are very many, very similar variables, all likely to be subject
to missingness. Consider the example of five years of monthly employment sta-
tuses, yielding 60 very similar observations. Imputing each on the basis of all
others will be computationally challenging, if not impossible, and it is (at best)
difficult to define selective imputation models for each time-unit observation.
Moreover, as will be shown below, while standard approaches perform well in
terms of the distribution of individual variables, consecutive imputed variables
will tend to vary too much relative to each other, and thus from a longitudinal
point of view the imputed data will have transition rates that are significantly
biased upwards.

Where a single variable is subject to missingness, imputation is straightfor-
ward. When multiple variables have missing values, the complication may arise
that cases to be imputed have missing values in the predictor variables. It may
be the case that variables to be imputed can be arranged in an order such that
the first has no missing predictors, that the next has missing predictors only on
the first, the next only on the first and second, and so on. If such a “mono-
tonic” pattern of missingness is present, imputation can proceed following the
same order, such that at each predictive step, all the predictors are either fully

1More strictly, parameter estimates are averaged across the multiple imputed data sets, and the
variance depends both on the variance within and between analyses.
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observed or already imputed. If so, imputation with multiple variables to be im-
puted becomes a simple extension of imputation of a single variable. However,
such a monotonic pattern is not likely to emerge without there being a structural
reason for it (attrition in longitudinal data is a typical example). In its absence,
there are two approaches to multiple imputation with multiple variables subject
to missingness, either modelling the joint distribution of the variables directly
(JM), or multiple imputation by chained equations, MICE.

JM is attractive where the variables are, or can be transformed, such that the
joint distribution is multivariate-normal. It is efficient and has good theoretical
foundations. Where some variables are categorical, conventional practice is
to use linear predictions of dummy variables. However, this has been shown
to produce poor results (Allison, 2005; van Buuren, 2007). The alternative
is so-called Fully Conditional Specification (FCS) where rather than modelling
the joint distribution, the conditional distributions are modelled. This allows
variable-specific imputation models to be used (including models appropriate
to categorical data) and is thus more flexible. MICE implements FCS.

Monotonic imputation, where applicable, is also flexible, allowing variable-
specific imputation models, and permitting forms such as logistic regression
(van Buuren, 2007, p.224ff).

MICE works as follows: In the first round, all missing values are imputed
with a minimal model (hot-decking, or regressions using fully observed predic-
tors only). Then the imputations are replaced by better imputations based on
a full model using observed and imputed values. This process is repeated for
a number of cycles, with the effect that the influence of the poor-quality first-
round imputations is diluted. It has been implemented for R by Van Buuren et
al (1999; 2007; 2011) and for Stata by Royston (2004; 2009)

More recent versions of Stata have incorporated equivalent functionality in
the core mi impute infrastructure. These are excellent implementations, pro-
viding both good imputations and tools that make MI easy to use, but they do
not suit time-series data, in neither wide nor long format. In wide format, there
are very many poorly distinguished variables with wide incidence of missing: it
is hard to write adequate imputation models, and they will tend to have severe
problems in estimation. In long format, the relevant predictors are lags and
leads, and the infrastructure is not adapted to using and updating lagged and
leading variables.

One other package (for R and Stata) addresses imputation of longitudinal
data: Amelia (Honaker and King, 2010). This is explicitly written with a view to
respecting the longitudinal logic of time-series. However, it implements the JM
approach to imputation, so while its authors make passing reference to imputing
categorical variables, it is likely to generate poorer imputations for categorical
data than packages that can use appropriate forms of model, such as binary or
multinomial logistic.

3 Filling gaps in life course data

The approach presented is well adapted for the sort of data typically seen in
lifecourse histories: a categorical state space observed on a regular basis (e.g.,
monthly) over a reasonably extended period (e.g., a small number of years),
with transitions occuring at a relatively low rate. Hence we observe spells in
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states that are significantly longer than one observation. Similarly, missing val-
ues will also tend to occur in runs (as gaps), due to a mixture of data collection
problems (respondent absence at consecutive data collection points) and data
structure (e.g., part or complete spells being non-reported or mis-reported). In
effect, this data is typified by having a discrete state space, and conceptually
continuous time that is approximated by discrete observations (e.g., monthly),
and will usually be collected retrospectively at one or more well-separated time-
points, often in terms of start and end dates of spells. Such data contains a
relatively high amount of redundancy, such that information in the observed
proportion is a good predictor of the missing part, and the runs of missingness
mean missing observations tend to one or more missing neighbours.

Of course, forms of data other than lifecourse histories may well also have
these features, and the approach is equally valid for them. Data with higher
transition rates, or truly discrete time, will be harder to impute, because there
is more variation from observation to observation.

3.1 A gap-filling algorithm

When data contains multiple observations per individual, the long format (one
observation per person–time-unit) is natural, though (particularly when all in-
dividuals should be observed for the same time-span) the wide format is also
appropriate, if a little less natural. However Stata’s mi impute infrastructure is
not designed to deal with data in a long format, requiring imputation variables
to be in the same record. The method reported here exploits the mi impute

mlogit command, but it uses the long format, and handles the management of
predictor variables (in particular lags and leads of the target state), the storing
of imputated values, and the sequencing of the imputations independently of
Stata’s mi infrastructure.

Conceiving of the data as longitudinal in nature reduces the many variables
to a single state variable (indexed by time), and throws the focus on gaps, rather
than individual missing variables. We can use a single form of model to predict
all candidate observations. However, the presence of gaps means that no single
model can apply to all time-points (e.g., the state at t+1 will not be observed
for all cases). By focusing directly on gaps, we can nonetheless define a family
of models that can be estimated in a monotonic series. We start by imputing the
first (or, equally validly, the last) element of the longest gap using data from the
nearest observed points, before and after. That is, for the first element of a gap,
it is predicted by data from the immediately preceding element, and the first
observed element after the gap. If we restrict ourselves to internal gaps, the lag
and lead data are guaranteed not to be missing.

Once the first element of the longest gap has been filled, it holds that for the
next-longest gap, the lag and lead data are either observed or already imputed.
Thus we continue by imputing the last element of the next-longest gap, using
the last observed (or imputed) value before the gap, and the immediately subse-
quent value. The process continues (alternating between first and last elements
of the gaps) until all internal gaps are filled. Gaps at the start and end of the
series can be imputed using an analogous approach, that uses only information
from respectively after and before the gap.

We can illustrate it with the following example, with two sequences contain-
ing a six and three-element gap respectively (see Figure 1). We begin (in line
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Six unit gap Three unit gap
Observed data with gaps XX......XXX XXX...XXXXX

Impute first element of 6-unit gaps XXi.....XXX XXX...XXXXX

Impute last element of 5-unit gaps XXI....iXXX XXX...XXXXX

Impute first element of 4-unit gaps XXIi...IXXX XXX...XXXXX

Impute last element of 3-unit gaps XXII..iIXXX XXX..iXXXXX

Impute first element of 2-unit gaps XXIIi.IIXXX XXXi.IXXXXX

Impute only element of 1-unit gaps XXIIIiIIXXX XXXIiIXXXXX

X: observed data; .: missing data; i: data being imputed; X: observed data used
as predictor; I: imputed data used as predictor; I: previously imputed data.

Figure 1: Gap-filling sequence of imputation

2) by imputing the first element of six-unit gaps, using information pertaining
to the last (t− 1) and next observed (t+6) time points. Nothing happens to the
shorter sequence. Then we impute the fifth element of five-unit gaps, using t+1
and t − 5), and then the first element of four-unit gaps. The next step affects
both sequences since the six-unit gap has been reduced to three, and imputes
the third element of three-unit gaps. The process continues until all gaps are
filled.

The data that can be used to predict must at least include the state at the
prior and subsequent observed time-points. It should also include summaries of
the prior and subsequent experience, and it can contain any other data keyed to
these time-points (i.e., state in another time-dependent state space) and it can
include fixed individual-level information. All the considerations regarding the
requirements of a good imputation model in conventional circumstances apply
equally here (in particular the imputation model should be “congenial” (Allison,
2009, p.84) with the analysis model), but with the additional requirement that
longitudinal information in the imputed state must be included.

4 Demonstrations

To demonstrate how MICT works, and assess its performance, a number of ex-
amples will be presented:

1. Real data (school-to-work transitions) with simulated longitudinal miss-
ingness, allowing comparison between the true state and the imputations

2. Wholly simulated data using a simple structure, that permits comparison
between MICT and MICE

3. Real data (mothers’ labour market histories) with real missingness, using
a realistic model

4. The same data using an enhanced model that takes account of knowledge
about the data generation process to generate superior imputations
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4.1 Real data with simulated missing

The first demonstration of the algorithm uses data from McVicar and Anyadike-
Danes (2002), which reports six years of the lifecourse of Northern Irish young
people, starting at the completion of compulsory schooling, in a state space
concerned with education, training and the labour market. 712 individuals are
observed over 72 months. To demonstrate and assess the performance of the
algorithm, we impose missingness at random on this data, such that each month
has a 1.25% chance of being missing, but with a 66% chance if the previous
month is missing. This generates a pattern of runs of missingness, which are
missing completely at random with respect to the observed data. The simulated
data is stored in wide format (one variable per monthly observation: state1 to
state72; one row per individual).

4.1.1 Default imputation model

The default (excessively simple) imputation model in MICT is as follows, where
mct state is the internal copy of the state variable, and mct last and mct next

respectively the most recent and nearest future observation:

mi impute mlogit _mct_state i._mct_next i._mct_last, add(1) force augment

Initial and terminal gaps are imputed using only respectively subsequent and
prior information.

We carry out this imputation with the following Stata code:

use mvadmar
mict_prep state, id(id)
mict_impute

4.1.2 Defining better imputation models

This default imputation model is very simple: each state is predicted only by the
prior and next states. In effect, it assumes a zero-order Markov process where
the transition rates are constant over time and across individuals. This model
is built-in to the ado-files, and should in normal use be over-ridden by a more
adequate model, e.g., to relax the zero-order assumption, allow transition rates
to change over time, or incorporate other variables.

We can over-ride the built-in models by redefining the programs mict model gap,
mict model initial and mict model terminal, as follows:

capture program drop mict_model_gap
program define mict_model_gap
mi impute mlogit _mct_state ///

i._mct_next##c._mct_t i._mct_last##c._mct_t ///
_mct_before* _mct_after*, ///

add(1) force augment
end

capture program drop mict_model_initial
program define mict_model_initial
mi impute mlogit _mct_state i._mct_next _mct_after*, add(1) force augment
end

capture program drop mict_model_terminal
program define mict_model_terminal
mi impute mlogit _mct_state i._mct_last _mct_before, add(1) force augment
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end

Variable mct before1 to mct beforeC and mct after1 to mct afterC

(where C is the number of categories) are created by mict prep, and represent
the proportion of time before and after the gap spent in each of the C categories
of the state variable, and thus offer a means of including in the model “history”
prior to and after the nearest observed time units.

The interactions i. mct next##c. mct t i. mct last##c. mct t allow the
effect of prior and next state to vary in a linear fashion with time, relaxing the
assumption that transition rates are constant. Depending on the data, it may be
desirable to relax this constraint even further, perhaps with time as a quadratic.
Other variables can also be entered, including fixed individual variables and
variables indicating time-dependent state in another domain.

The options “add(1) force augment” to mi impute mlogit are required,
to make a single imputation, to force imputation even where the predictor vari-
ables are not fully observed, and to use augmented multinomial regression if
perfect prediction is encountered. Other options may be used as appropriate.

4.1.3 Capturing convergence issues

In practice, more complex models will be more likely to have convergence prob-
lems. Sometimes models that fit most of the time will fail to converge a small
proportion of the time, depending on the patterns of already imputed values.
We can define simpler fallback models as in this example:

capture program drop mict_model_gap
program define mict_model_gap
di "Attempt first gap model"
capture mi impute mlogit _mct_state ///

i._mct_next##c._mct_t i._mct_last##c._mct_t, ///
add(1) force augment iterate(40)

if (_rc==430) {
di as error "NO CONVERGENCE, fitting simplest gap model"
mi impute mlogit _mct_state i._mct_next i._mct_last, ///
add(1) force augment

}
else if _rc {

exit _rc
}
end

In this case, if the full model fails to converge, a simpler model is fitted in-
stead. If failure to converge is relatively rare, this will not affect the imputations
very materially.

4.1.4 Simulated missing on MVAD data: some results

Using this model we generate ten imputations. Figure 2 shows four typical
cases, with the fully observed data, the data with random runs of missingness
imposed, and the ten imputations, shown as horizontal lines.2 These display
features that are typical of the full data set: first, short gaps with the same state
before and after tend to get filled in with that state, which is often correct (e.g.,
case 33 and the first two gaps in case 62). When longer, such gaps show a

2The figure, an “indexplot”, is created using the sqindexplot command from the SQ package
(Kohler and Brzinsky-Fay, 2005; Brzinsky-Fay et al., 2006).
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Figure 2: Sample imputations. For three typical cases, the fully observed data
(first line), data with imposed missings (second line, missing is white), and ten
imputations are shown.
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quite small tendency to have other states interpolated (imputation 10 for case
85 shows an example). Where a gap has two different states as neighbours, the
majority of imputations show a single transition from one to the other, where
the timing of transition is randomly distributed in the gap (case 13). Such gaps
show a larger tendency to interpolate one or more other states, particularly as
the gaps get longer (more so than gaps bracketed by a single state). However, if
the run of missingness completely obliterates a spell in the original data (which
is something we can only know because we have the fully observed data; see
the third gap in case 62), the imputations are very unlikely to pick up that state
(though in this case one of the imputations does create such a state, if somewhat
different in timing and duration).

Thus we see how to use MICT to program imputations using a simple but
more-or-less realistic predictive model. We also see that in general, the imputa-
tions approximate the true data quite well, because there is a lot of redundancy
in data like this. However, it should be noted that where a gap envelopes a
complete spell, the redundancy is markedly less.

4.2 Simulated data with simulated missingness

We now move on to the second demonstration.
It is difficult to compare the performance of the gap-filling approach with

multiple imputation with chained equations, via either the official mi impute

or Royston’s ice, because it is very difficult to specify analogous models. To
facilitate comparison I present a simulation that permits much simpler models.
A zero-order Markov process with time-constant transition rates is used to cre-
ate 36-element long, 4-state sequences, with random gaps imposed. Since the
generating process is zero-order, only adjacent last and next observations carry
information with which to impute. Thus for the MICT approach the only mean-
ingful imputation model uses just mct last and mct next as predictors, while
for MICE, only the immediately adjactent states, st−1 and st+1, are used. 2,000
sequences are generated, and for each method, MICT, mi impute chained and
ice, 10 imputations are made.

In what follows I use both the mi impute chained and ice implementations
of MICE. In this more conventional framework, chained imputation takes care
of the fact that, given the data in a wide format, missingness is non-monotonic
(i.e., that predictors of missing values may well themselves be missing).

For ice the models are defined as follows:

ice m.m1 m.m2 m.m3 m.m4 m.m5 m.m6 m.m7 m.m8 m.m9 m.m10 ///
m.m11 m.m12 m.m13 m.m14 m.m15 m.m16 m.m17 m.m18 m.m19 m.m20 ///
m.m21 m.m22 m.m23 m.m24 m.m25 m.m26 m.m27 m.m28 m.m29 m.m30 ///
m.m31 m.m32 m.m33 m.m34 m.m35 m.m36, ///

saving(puresim_ice_cycles, replace) persist m(10) cycles(10) ///
eq(m1: i.m2 , ///

m36: i.m35 , ///
m2: i.m1 i.m3, ///
m3: i.m2 i.m4, ///

[ code omitted ]
m35: i.m34 i.m36)

For mi impute chained the following, rather verbose, code is used (note
elisions):

mi set flong
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mi register imputed m*
mi impute chained ///

(mlogit, omit( i.m3 i.m4 [ ... ] i.m34 i.m35 i.m36 )) m1 ///
(mlogit, omit( i.m4 [ ... ] i.m34 i.m35 i.m36 )) m2 ///
(mlogit, omit(i.m1 [ ... ] i.m34 i.m35 i.m36 )) m3 ///
(mlogit, omit(i.m1 i.m2 [ ... ] i.m34 i.m35 i.m36 )) m4 ///
(mlogit, omit(i.m1 i.m2 i.m3 [ ... ] i.m34 i.m35 i.m36 )) m5 ///

[ ... ]
(mlogit, omit(i.m1 i.m2 i.m3 i.m4 [ ... ] )) m35 ///
(mlogit, omit(i.m1 i.m2 i.m3 i.m4 [ ... ] i.m34 )) m36, ///
add(10) force augment

Given the way the data is simulated, each of the three imputations has the
best possible model in its framework.

Figure 3 shows some example imputations for a handful of cases across the
three strategies. As can be seen, mi impute and ice show somewhat more
transitions in the imputed sections. To test whether this is a systematic feature,
I compare the number of spells in the imputed sequences with the true num-
ber (in the simulated data, before imposition of missingness). We can use mi

estimate to test the null that the difference is zero, by running a null regression
and looking at the t-statistic for cons (this is a way of getting mi estimate to
run a t-test).

Method cons Std. Err. t p
MICT .01025 .0253 0.40 0.687
mi impute .2878 .0437 6.59 0.000
ice .31645 .0347 9.12 0.000

Over the ten imputations of 2000 sequences, MICT does not signficantly
increase the mean number of spells, while mi impute and ice do (by 0.29 and
0.32 respectively). Thus in this simple comparison, MICT retains longitudinal
consistency whereas MICE does not.3

4.3 Mothers’ labour market histories

Let us now consider how MICT performs with real missingness. Using data
drawn from the British Household Panel Survey (BHPS), I created six-year
monthly employment status histories, for women who have a birth at the end of
the second year (Taylor et al., 2010; Halpin, 1998). This data set contains 706
fully observed sequences, another 190 with gaps of up to 12 months, and 425
with longer gaps. I choose to impute gaps of up to 12 months, but use data from
sequences with longer gaps to provide information for the imputation models.
See Figure 4, which shows the overall picture of a retreat from paid work as the
birth approaches, and a qualified return afterwards, predominantly to part-time.

We use the following predictive model for imputing the internal gaps (anal-
ogous models are used for initial and terminal gaps):

capture program drop mict_model_gap
program define mict_model_gap
mi impute mlogit _mct_state ///

i._mct_next##c._mct_t##c._mct_t i._mct_last##c._mct_t##c._mct_t ///
_mct_before* _mct_after*

end

3Experiments with increasing the number of cycles in the MICE chains were attempted, to see
if greater consistency could be achieved with a longer burn-in, but there was no tendency to a
systematic improvement.
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This is a relatively simple model, implying that transition patterns vary in a
non-linear pattern, and using the prior and subsequent cumulative distributions
of states. That is, the effects of the last and next observed states vary in interac-
tion with a quadratic time term, and the mct before* and mct after* terms
represent the proportion of time spent in the various states before and after the
gap.

The following code runs the whole example, with the maxgap(12) and maxitgap(6)

options to mict impute limiting the imputations to cases with maximum inter-
nal gap lengths of 12 and initial/terminal gaps of 6 months. The nimp(10)

option causes it to generate 10 imputations.

mict_prep state, id(pid)

capture program drop mict_model_gap
program define mict_model_gap
mi impute mlogit _mct_state i._mct_next##c._mct_t##c._mct_t ///

i._mct_last##c._mct_t##c._mct_t ///
_mct_before* _mct_after*, ///

add(1) force augment noisily iterate(40)
end

capture program drop mict_model_initial
program define mict_model_initial
mi impute mlogit _mct_state i._mct_next##c._mct_t _mct_after*, ///

add(1) force augment iterate(40)
end

capture program drop mict_model_terminal
program define mict_model_terminal
mi impute mlogit _mct_state i._mct_last##c._mct_t _mct_before*, ///

add(1) force augment iterate(40)
end
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We can examine the performance of the imputation model in Figure 5. In
outline the performance is similar to the simulations: gaps bracketed by a single
state tend to be filled in by that state, with a certain amount of interpolation of
other states, that increases as the gap-length increases; gaps between different
states are often filled by the two states with a distribution of transition points,
but are also quite likely to feature extra transitions and third states, again more
so for longer gaps.

4.3.1 Which sequences get imputed?

In real life data, there tends to be a strong relationship between the nature of
a lifecourse sequence and its probability of having gaps. In particular, volatile
lifecourses will be more likely to be subject to interruptions in data collection,
and in being complex are more vulnerable to missed measurement opportuni-
ties. We can see this by looking at indicators of complexity such as the number
of spells, or the Shannon entropy.4

. table gap, c(n ent mean ent mean nsp) format(%5.2f)

gap N(ent) mean(ent) mean(nsp)

0 7,060 0.53 2.39
1 1,900 1.03 3.80

4Utilities to calculate the number of spells, and the Shannon Entropy, are available in the SADI
package (Halpin, 2014)
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Fully observed sequences have a mean of 2.39 spells, compared to 3.80 for
sequences that have been imputed. Similarly, fully observed sequences have
a mean entropy of 0.53 compared to 1.03 for imputed. The number of spells
tracks how transition-prone sequences are, and the entropy additionally indi-
cates how diverse the states visited are. Clearly, on average gappy sequences
that are imputed have more transitions and are more diverse.5 This is impor-
tant, in that complex sequences are often substantively interesting, and their
exclusion reduces the useful information in the data set, as well as potentially
introducing bias.

4.4 Refining models

The model used above is relatively simple. Various ways to improve its quality as
an imputation model are available, most readily the inclusion of fixed individual
level variables, and the incorporation of more interactions. Fully observed time-
dependent variables in another domain can also be included, such as residential
or marital histories. Where that variable is also subject to missing, a simple
imputation strategy such as carry forward may be adequate.6

To add a completely observed (or filled-in) time-series in another domain,
add that variable name (as a reshape-style stub) to the mict prep statement.
If the variable to be imputed is state1 to stateN and the second variable is
resid1 to residN, the command would take this form:

mict_prep state resid, id(pid)

The resid variable is then available to be used in the model statement. More
than one extra time-series variable can be added in this fashion.

4.4.1 Picking up the missingness process

In what follows we demonstrate the inclusion of an extra time-dependent vari-
able, and address a substantive issue raised above, by the simulations. It was
observed that in general there tends to be a high degree of redundancy in gappy
lifecourse data like this, such that imputations resemble the observed data well,
except where the gap overlaps a complete spell. If this happens at random it
is not a serious problem for the imputation/estimation process, but if the oc-
currence of gaps is somehow associated with the spell structure of the history
represented by the data, then the imputations will understate the true variabil-
ity. Depending on the domain, and on how data is collected, this is quite likely
to occur.

The mothers’ labour market histories are drawn from the BHPS, whose data
collection is annual, with retrospective accounts covering the period between
the interview and the start-date of the last year’s fieldwork (Halpin, 1998). This
assures continuity if no interviews are missed, and the retrospective accounts

5This is not an artifact of the imputation process: if instead we mechanically carry forward the
previous state to fill gaps, thus not increasing the number of spells or the diversity, we get very
similar results.

6In the typical case where data in the other domain is missing at the same time as the main
variable, MICT could in principle draw information in that domain from the prior and subsequent
time points determined by the current gap-length, but that would require updating (imputing) the
observations for the other domain as the process fills in the gaps. This would add another layer of
complexity to the package, so simpler imputations are preferred.
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are without measurement error (assumptions that are frequently violated). In
the BHPS worklife histories, gaps may occur because of omitted spells, of spells
whose start- or end-date is mis-reported, and of missed data collection points. In
the first case the gap may be exactly coterminous with the spell, in the second,
the gap will start at the beginning of the spell if the misreported date is late, and
in the third the gap will begin just after the previous data collection point, and
end at the start of the account at the next data collection point. This means that
the process of missingness is quite structured. However, we have data relating
to this process, on which we can draw. If the previously observed state was
reported explicitly as a spell-end in the retrospective account, we know that
there is a much greater probability that the current state is different, since a
transition is indicated (it could however be a transition to the same state). It
is the same case if the next observed state is reported as a start-of-spell. If the
previous observation was the date of an interview, it is logically the case that the
current state is more likely to be the same as the state at the interview, since no
transition is reported. However, in the observed data there is a distinct pattern
of seam effects, where the account from the following interview clashes with
the prior data, often by backdating a spell start such that it precedes the earlier
interview. In the data used, this is represented as a transition immediately after
the interview, on the logic that the current state reported at time t-1 is more
authoratitative than the retrospective report from time t (Halpin, 1998): thus
whether months of interview tend to be followed by elevated transition risk is
an empirical question.

To account for these effects, a variable is created which distinguishes be-
tween “neutral” months, explicitly reported spell starts from the inter-wave job
history (where a start may be a reported start from a spell with missing state in-
formation but valid dates, or one month after the end of a fully reported spell),
explicitly reported spell starts of the spell current at interview, and months in
which the annual interview fell. Where no information is available, it is allowed
default to neutral. This variable, obstype, is incorporated in the imputation
model as follows:

program define mict_model_gap
capture drop _mct_n2 _mct_l2
recode _mct_last 3=2, generate(_mct_l2)
recode _mct_next 3=2, generate(_mct_n2)
mi impute mlogit _mct_state i._mct_next##c._mct_t##c._mct_t ///

i._mct_last##c._mct_t##c._mct_t ///
_mct_before* _mct_after* ///
i.obstype##i._mct_n2 ///
i.obstype##i._mct_l2, ///

add(1) force augment
end

It is modelled in interaction with the next and prior states, since its effect is
via the transition pattern. However, in this data there are relatively few tran-
sitions to and from unemployment, which causes problems in estimation, so
obstype is interacted with recoded versions of these variables, which are re-
created each iteration.7

Sample imputations are shown for the models with and without the obser-
vation structure variable in Figure 6. In each panel the first row indicates the

7In general, creation of any sort of transformed variable can be carried out within the
mict model gap, mict model initial and mict model terminal programs.
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sturcture (black is the month of interview, dark grey a start of spell in the inter-
wave job history, and light grey the start of a spell current at the interview). As
can be seen, taking account of the meta-information regarding spell structure
has a systematic effect: first, the imputations are more likely to contain tran-
sitions at the key points, and second, they are more likely to interpolate spells
in third states. Both of these are desirable since the model without the meta-
information understates not only the transition rates around these key points,
but also the variability of the imputations.

This illustration is guided by the particular data collection structure of the
BHPS, but it is likely that many longitudinal data sets will contain meta-information
that could inform the imputation model in an analogous way.

5 Conclusion

MICT offers a flexible and longitudinally consistent means of multiply imputing
categorical time-series data, particularly when it is characterised by relatively
long spells in states, and consecutive runs of missingness, as is typically the
case in lifecourse data. As the second simulation (section 4.2) shows, it pro-
duces imputations with largely plausible patterns of transitions, while MICE (as
either mi impute chained or ice) generates unrealistically elevated rates of
transition.

The key advantage is that MICT structures the imputations as a series of
monotonic imputations, focusing on filling gaps. This allows a good deal of
flexibility, including the use of binary, multinomial or ordinal logistic regression
models as appropriate. It offers a reasonably user-friendly interface to defining
models for mi impute, such that it is relatively easy to define good imputation
models, incorporating fixed and time-dependent effects. It produces imputa-
tions that can be used by the mi impute post-imputation infrastructure.

It has a number of disadvantages, not least that it presents yet another in-
terface to imputation, a compatible but separate solution to mi impute. It can
deal only with a single target variable for imputation. It does not update created
variables such as mct before*, nor does it update other time-series variables
that may be used in the model (thus effectively falling back on carry-forward im-
putation for these variables). Extending the package to cope with these would
be relatively complicated. However, it presents a relatively lightweight and ef-
fective solution for imputing single categorical time-series variables.

5.1 Existing applications

This approach has already been used in practice (based on the functionally
equivalent but less user-friendly approach described in Halpin (2012, 2013)).
Fuller and Stecy-Hildebrandt (2015) apply it to the Canadian Survey of Labour
and Income Dynamics, and McMunn et al. (2015) and Lacey et al. (2015) apply
it to the British cohort study data sets (the MRC National Survey of Health and
Development 1946 birth cohort, the National Child Development Study 1958
birth cohort, and the British Cohort Study 1970 birth cohort).
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