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1 The importance of measure in sequence analysis

Longitudinal data relating to the lifecourse, in a wide variety of domains, is increas-
ingly common. A range of different approaches are used to analyse such data, including
hazard-rate modelling, panel models, Markov chain models, latent growth-curve mod-
els, and sequence analysis. By sequence analysis is meant the holistic treatment of life-
course trajectories by calculating similarities or distances between pairs of trajectories,
viewed as whole units. Sequence analysis of lifecourse trajectories is a niche technique,
of real (if bounded) value, particularly but not only for exploratory and descriptive pur-
poses, and is discussed in a growing literature.

In this literature, one of the dominant streams focuses on “optimal matching analysis”
(e.g., Kruskal, 1983; Abbott and Forrest, 1986; Abbott and Hrycak, 1990; Abbott, 1995;
Chan, 1995; Halpin and Chan, 1998; Abbott and Tsay, 2000; Scherer, 2001; McVicar and
Anyadike-Danes, 2002; Pollock, 2007; Müller et al., 2008; Piccarreta and Lior, 2010), using
the optimal matching algorithm (OM) to define distances between sequences. OM has
been the object of a range of criticisms, some more and some less deserved, bearing on
the extent to which it can be expected to detect sociologically meaningful patterns (e.g.,
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1.1. Describing the distance measures

Wu, 2000; Levine, 2000; McVicar and Anyadike-Danes, 2010; Pollock and Roberts, 2012).
While a range of alternative distance measures has been proposed (e.g., Elzinga, 2003;
Hollister, 2009; Halpin, 2010; Lesnard, 2010; Elzinga and Wang, 2012), the use of OM
(followed often by cluster analysis or multi-dimensional scaling) is predominant.

The purpose of this paper is to compare OM with a range of competing definitions
of inter-sequence distance. How do the alternative distance measures operate? How do
they differ in the patterns they expose? How do they relate to sociologically meaningful
differences between sequences?

The paper examines seven competing measures:

• Hamming distance

• Optimal Matching

• Hollister’s localised OM

• Halpin’s duration-weighted OMv

• Lesnard’s dynamic Hamming distance

• Marteau’s time-warp edit distance

• Elzinga’s duration weighted combinatorial similarity index

The performance of the measures is compared in a number of ways:

• by simulation, testing their ability to detect differences in the processes generation
the sequences, under a number of scenarios

• using real data sets, testing the ability to differentiate between real data and data
simulated from the time-dependent transition structure of the data

• using real data sets, examining the association between the cluster solutions and
non-sequence covariates

• by examination of the correlation structure between measures using real and simu-
lated data, to understand how and why they differ in comparing sequences.

1.1 Describing the distance measures

The standard measures: Hamming and OM

The simplest way of mapping information about differences in a state space to differences
between trajectories in the state space, is the Hamming distance. For two sequences of
equal length (perhaps truncating the longer), the distance between the sequences is the
sum of the period-by-period distance between the states. If the time things happen is par-
ticularly important, this is the appropriate and uncontroversial measure to use. However,
if similarity is defined not as “the same or similar things happening at the same time”
but as “the same or similar things happening at the same or similar time”, Hamming dis-
tance can fail to observe strong similarity that is slightly out of phase. For instance, the
intuitively evident similarity between ABCD and DABC will be invisible to Hamming. The
Optimal Matching Algorithm improves on the Hamming distance by allowing “align-
ment”, that is, sliding parts on one sequence along the other if this improves matching.
This is done in terms of “edits”, insertions and deletions to shift parts of sequences. One
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1.1. Describing the distance measures

way of looking at OM is to say that the aligned sequences are compared in Hamming dis-
tance terms, with an additional penalty based on how much editing was required. OM
is “optimal” because the dynamic programming algorithm that calculates the distance is
guaranteed to identify the shortest distance between sequence pairs, and to do so very
efficiently.

OM is clearly an improvement on Hamming distance, but we must ask how impor-
tant this is for life-course data. Where spells are much longer than the time-units repre-
sented by the tokens in the sequences, misalignment will matter less. Thus, the Hamming
distance recognises that AAABBBCCCD and DAAABBBCCC are quite similar (though OM will
see them as even more similar). In practice, as we will see, there is a very high correla-
tion between Hamming and OM distances for life course data: we must ask if the added
conceptual complexity of OM has any real benefit for analysis.

A second question to raise is whether token-sequence focused measures like Ham-
ming and OM are appropriate for life course data, where transitions are rare. In other
contexts it can be advantageous to consider life-course trajectories as sequences of spells,
with durations, bounded by transition events. Hamming and OM treat each token in
the context of the whole sequence, but without reference to its local context or the spell
within which it is embedded. Four more distance measures are considered, each of which
tries in different ways to improve on OM in this respect.

Modified OM: Hollister’s local OM and Halpin’s duration adjusted OM

“Localised OM” (Hollister, 2009) and “duration-adjusted OM” (Halpin, 2010) (hereafter
LOM and OMv) are variants on OM that were developed independently but have sub-
stantial conceptual similarity. Both focus on the fact that OM’s “elementary operations”
of insertion, deletion and substitution take no account of the local context in which
they operate (apart from that imposed by working through the joint structure of the se-
quences). Both approaches object to the fact that, for instance, the cost of deleting the
second element, B, from both ABA and BBB, will be the same, despite the fact that the op-
eration on the former sequence makes for a much bigger sociological change than that on
the latter. In the former case it completely alters the spell structure of the sequence, while
in the latter is simply shortens a spell.

LOM deals with this by adapting the OM algorithm to take account of the values
of adjacent tokens in costing the elementary operations. To insert element k between
elements i and j the indel cost is:

ι = α
δi,k + δj,k

2
+ β

where α and β are chosen by the analyst.1

OMv’s solution to this issue is to weight operations on a token less, the longer is the
spell in which it is located:

ι =
ι1√

l
where ι1 is the indelcost for a spell of length 1, and l is the spell length. In OMv, this logic
is also applied to substitutions, on the grounds that substitutions can be considered as
sequential deletion–insertion operations (with a “discounted” cost).

While the specifics of the motivation and implementation (in both cases, relatively
simple adaptations of the OM dynamic programming algorithm) differ, the underlying

1To insert at an end of a sequence, ι = αδi,k + β.
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1.1. Describing the distance measures

concern and (potentially) the consequences for which sequence pairs are seen as more or
less similar, are closely related. In particular, operations that change spell length will be
relatively cheaper than those that change spell structure.

However, neither measure generates metric distances. This casts a shadow on their
use in further processing such as cluster analysis using conventional methods, but more
importantly puts in question their claim to represent a true distance in the trajectory
space. They violate the triangle inequality, which demands that for points A, B and C,
the A-C distance must be less than or equal to the sum of the A-B and B-C distances.
Non-metric measures arise, for instance, in situations where A may be similar to B due
to shared characteristics, and B similar to C due to shared characteristics that are not
shared with A, such that A and C are very dissimilar. Non-metric measures are effective
in determining whether two objects are similar or not, but not necessarily in placing all
objects in a coherent mutual space. However, because it is not clear how much of a
problem this is in practice, both measures are retained in the subsequent analysis.

LOM and the triangle inequality

Hollister’s measure violates the triangle inequality for the following trio:

1. BBBBAB

2. CCCACC

3. BBBACC

If the substitution cost between non-identical states is 1, and the insertion cost is half
the “adjacent substitution cost” plus 0.5 (i.e., ι = 0.5 δi,k+δj,k

2 + 0.5), the direct distance
between sequences 1 and 2 is 6 units. However, the indirect distance passing through
sequence 3 is 5.5 (2.5 plus 3):

Distance

LOM OM

Pair δ = 1, α = β = 0.5 ι = 1.0 ι = 0.75
1, 2 6 6 5.5
1, 3 2.5 3 2.5
2, 3 3 3 3

Hollister’s measure deviates from OM (with indelcost of 1.0) only in one respect: the
1–3 distance is lower, because we can change s3 into s1 by inserting a B between Bs, at
a reduced insertion cost of 0.5*subs(B,B)+0.5 = 0.5 and carrying out two substitutions.
The reduced indelcost doesn’t come into play for the other two comparisons because a
substitution-only route is cheaper. For OM with an indelcost of 1.0, the s1–s3 distance
is 3. If we reduce the indelcost to 0.75, the s1–s3 distance falls to 2.5, as for LOM (the
reduced indelcost is greater than that effective under LOM, but it applies throughout the
sequence and is triggered more than once). However, since this reduced indelcost applies
to all sequences, this results in the s1–s2 distance falling also. LOM’s primary advantage,
the fact that its elementary operations take local context into account, turns out to be a
problem: two sequences can be closer to each other because of their joint characteristics,
while their distances to other sequences (where the combination of characteristics does
not apply) are not reduced, resulting in violations of the triangle inequality.

4



1.1. Describing the distance measures

OMv is also non-metric

The same problem applies to OMv: sequences with longer spells have lower indelcosts,
with the result that their distance to any other sequence is systematically lower. If s2
is such a long-spell sequence, the combined distance from s1 through s2 to s3 will be
smaller than under OM, even if s2 and s3 are not long-spell sequences. If s2 and s3 have
many short spells, their direct distance can exceed the indirect distance, thus violating
the triangle inequality.

Moreover, having uneven spell length can exacerbate this. Consider ABCCCCCCC and
AAABBBCCC: the average spell length is the same but the indelcost is ι√

7
for seven of the

former sequence’s nine elements, but ι√
3

for all nine of the latter’s.
For example, the distance between BBBBAB and CCAAAC is 3. However, going through

BBBBBB the distance is 0.41 + 2.45 = 2.86. While it is normal that the distance between
BBBBAB and BBBBBB should be low, the fact that BBBBBB consists of a single spell means
that its distance even from a spell with no shared elements such as CCAAAC is reduced. In
fact, it is substantively undesirable that the distance between BBBBAB and CCAAAC (which
are very different but share an A spell in the middle) is greater than that between BBBBBB

and CCAAAC.2

Time-warping

Marteau proposes a modified time-warping distance measure which he calls the time-
warp edit distance (TWED) (Marteau, 2008, 2007). This is quite similar to OM in its op-
eration, as it uses a substitution matrix, and has operations analagous to substitution,
insertion and deletion (though the latter two are better thought of as compression and
expansion, or even better as compress-A and compress-B). It has a stiffness paramater ν
and a gap-penalty, λ.

Formally, time warping is a family of algorithms that do “continuous time-series to
time-series correction” while OM et al do “string to string correction” (Marteau, 2007).
That is, conceptually time-warping uses continuous time, but it can be shown to work
well in discrete time (Kruskal and Liberman, 1983). Marteau shows that there is a low
bound to the discrepancy caused by such discretisation for this measure. While TWED
can accommodate any sort of state space, and is usually described in terms of Rn, a space
composed of many real dimensions, where distances between points can be calculated
in Euclidean or other terms, there is no difficulty in mapping to a discrete state space
where distances between states can be given in a table (or “substitution matrix”). TWED
is designed to accommodate irregular time-sampling, but is a little simpler to program
when we have fixed time steps, as is the case considered here, and as is typically the
case with lifecourse data.. TWED differs from other time-warping measures in that it
generates metric distances between sequences.

It differs strongly from OM in that the operations (i) consider consecutive pairs of
tokens in all three operations (ii) has a stiffness parameter that cumulates each time a
comparison is made where time is realigned, and (iii) doesn’t edit the content or order of
the sequence (insert or delete) but aligns by altering the time dimension

The compress operations are costed at d(si−1, si) + ν + λ. That is, compressing at
point i depends on the similarity of si to si−1, plus the stiffness parameter (ν) and the

2Attempts have been made to remedy this by scaling distances according to spell length, such that se-
quences with long spells have their distances increased. So far this has been without success. As for LOM,
the OMv variation applies only for certain pairs of sequences and is not global.
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1.1. Describing the distance measures

Table 1: Three example sequences, with their duration-weighted subsequences

S1 = (A/10, B/4, C/6) S2 = (A/10, B/7, C/3) S3 = (B/9, A/5, B/6)

ABC / 20 ABC / 20 BAB / 20
AB / 14 AB / 17 BA / 14
AC / 16 AC / 13 BB / 15
BC / 10 BC / 10 AB / 11
A / 10 A / 10 B / 9 (+ 6)
B / 4 B / 7 A / 5
C / 6 C / 3 (B / 6)

SXX: ∑ t2
1i = 1104 ∑ t2

2i = 1116 ∑ t2
2i = 1192

gap penalty λ.3 This operation is considered as time-warping, stretching or compress-
ing, depending on which sequence is being considered. Matching is TWED’s equivalent
of substitution: when we stop deleting or warping time, we consider the difference be-
tween the now-aligned tokens as a matching cost (with exactly the same effect as sub-
stitution). However, the comparison is between consecutive pairs of tokens, and has a
stiffness penalty of 2ν(|i − j|), i.e., twice the stiffness parameter times the time disloca-
tion between the two sequences.

TWED offers an alternative to OM that is very similar in terms of implementation, but
quite different in its motivation. By virtue of its stretching and compressing operations,
and its attention to successive pairs of tokens, it is likely to respect the spell structure of
the trajectory better than OM. In this respect, and since it generates metric distances, it
may well achieve what LOM and OMv attempted.

Duration weighted subsequence counting: Elzinga’s X/t

Elzinga (2005, 2003, 2006) proposes a set of measures for comparing sequences based on
enumerating common subsequences (where, for instance, AC is a subsequence of ABC)4.
Within this framework, time can be taken account of in two broad ways. We can repeat
elements according to the number of time-units a spell lasts (as is done in all the other
techniques used here; we can refer to these as calendar sequences, with one element
per time unit) or we can record sequences as lists of spells which have both a state and a
duration (referred to as spell sequences, or X/t for short). He discusses a number of ways
of generating a similarity measure: calculating the longest common prefix, the longest
common subsequence, the number of distinct common subsequences, and the count of
common subsequences, inter alia. He also discusses a number of ways of incorporating
the duration data. The implementation of his X/t approach used here counts all common
subsequences between pairs of spell sequences, weighting by the cumulative duration
of the subsequence (in Elzinga (2006) he proposes weighting by the sum of the product
of the durations of the subsequences; this approach is computationally a little simpler to
implement).

Table 1 shows three example sequences with their subsequences. All three have the
same number of elements, and thus the same number of subsequences. However, since S3

3More generally, ν should be multiplied by the time difference between t[i− 1] and ti, but that is always
1 in the sort of data we are using.

4More recent work, as described in Elzinga and Wang (2012), seems to generalise this approach in a
number of respects, not least of which is the introduction of variable distance between states.
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1.1. Describing the distance measures

Table 2: Enumerating common tuples, S1 and S2

S1 s3 Product of duration

ABC / 20 ABC / 20 20 × 20 400
AB / 14 AB / 17 14 × 17 238
AC / 16 AC / 13 16 × 13 208
BC / 10 BC / 10 10 × 10 100
A / 10 A / 10 10 × 10 100
B / 4 B / 7 4 × 7 28
C / 6 C / 3 6 × 3 18

SXY12 = ∑ t1it2i 1092

Table 3: Enumerating common tuples, S1 and S3

S1 S2 Product of duration

ABC / 20 — — 0
— BAB / 20 — 0

AB / 14 AB / 11 11 × 14 154
AC / 16 — — 0

— BA / 14 — 0
BC / 10 — — 0

— BB / 15 — 0
A / 10 A / 5 10 × 5 50
B / 4 B / 9 4 × 9 36
B / 4 B / 6 4 × 6 24
C / 6 — — 0

SXY13 = ∑ t1it3i 264

has a repeated element, it has a smaller number of distinct subsequences (the subsequence
B appears twice, with a total duration of 15). The SXX measure calculated in the final row
is the sum of the square of the cumulated duration in each distinct subsequence (so B in
S3 yields 15× 15 rather than 9× 9 + 6× 6).

The distance measure is defined as:

dX/t =
√

SXX + SYY− 2× SXY

where SXY is the sum of the product of the cumulated duration of each subsequence
shared between sequences X and Y. SXX and SYY represent the same measure for X com-
pared with X and Y with Y, respectively, that is, the sum of the square of the cumulated
duration of each subsequence. An alternative would be to weight shared subsequences
according to the sum of the product of the time in each state – this will yield greater
differences between sequences with similar spell order but different durations. For in-
stance, in the example above, S1 and S3 share an ABC subsequence, and this is weighted
at 202 = 400, the same as the subsequences’ contributions to SXX and SYY, rather than
10× 10 + 4× 7 + 6× 3 = 146 (compared to 152 to SXX and 158 to SYY). However, since
the differences in the state-specific durations will feature in the shorter subsequences (AB,
AC, BC, A, B and C) this does not compromise the measures’ ability to distinguish between
similar sequences. Indeed, it is possible to argue that the other approach is deficient in

7



1.1. Describing the distance measures

Table 4: Calculating the distances from the sums of products of duration

SXY Distance

S1 S2 S3 S1 S2 S3
S1 1104 1092 264 S1 0 6.0 42.0
S2 1092 1116 342 S2 6.0 0 40.3
S3 264 342 1192 S3 42.0 40.3 0

multiply counting the differences. The primary reason for using the subsequence cu-
mulated duration is computational convenience: it requires storing a single datum per
subsequence, rather than a vector as long as the number of elements. Where sequences
are long, the number of subsequences can be extremely large.

Elzinga has proposed an efficient algorithm for enumerating subsequences common
to a pair of sequences. My approach is slightly different: I enumerate all subsequences
of all sequences in a first pass, and then do a pairwise identification of common subse-
quences for all pairs of sequences. Since the enumeration of subsequences happens only
once per sequence, this is also efficient (at least in processing terms: it requires ample
memory). For the sorts of sequences considered in this paper (that is to say, with a max-
imum number of spells rarely above 10 or 12), the X/t measure can be calculated quite
quickly, but since the processing time and memory requirements of the enumeration pass
are approximately O(2l)5 there are sharp limits as the number of spells rises.

Elzinga has implemented many of his proposed measures in his own software, CHESA.
A number are also implemented in the R package for sequence analysis, TraMineR (Gabad-
inho et al., 2011), and this X/t implementation will shortly be available in SADI.

Dynamic Hamming

The final measure is Lesnard’s dynamic Hamming distance (Lesnard, 2006; Lesnard and
de Saint Pol, 2009; Lesnard, 2010). This starts from the insight that transition rates can
be used to calculate inter-state distances, but goes further in recognising that a signifi-
cant part of the longitudinal structure of sequences lies in the changing transition matrix
over time. It therefore uses transition-derived inter-state distances in an element-wise
(Hamming-style) sequence comparison, where the distances change over time. It has a
big advantage over strict Hamming in that the state-distances evolve dynamically. In
particular, when transitions are more common, states are more similar, which means that
differences in the timing of a transition are discounted where transitions are common and
accentuated where they are rare. Correspondingly, because it does not allow alignment
in the OM fashion, it respects the time dimension more: it identifies similarity at the same
time, while being less sensitive to difference at busy times. It is most appropriate where
there is a clear “calendar”, such as a 24-hour day, seven-day week, or seasons of a year
– where everyone experiences the same “clock” though they may respond to it differ-
ently. Where time is less constrained, or is “developmental” (where people go through
the same or similar sequences of states, but at different speeds) it is less appropriate. Its
greatest use has been in analysis of time-diary data.

Lesnard has written software to implement dynamic Hamming, available for Stata
and SAS at http://laurent.lesnard.free.fr/. It is also available in the R package for se-

5That is, are roughly proportional to 2l , where l is the number of spells.
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quence analysis, TraMineR (Gabadinho et al., 2011), and will shortly be available in SADI.

2 Sequence analysis of simulated data

This section compares the performance of the measures with simulated data, under a
number of scenarios. In each scenario there are two processes generating the sequences,
which differ in simple ways. We test the measures in terms of how sensitive they are to
the difference, when cluster analysis is carried out the resulting pairwise differences. The
point is not necessarily to recover the distinction in the cluster analysis, but to see how
the seven measures compare in their sensitivity to the six different contrasts.

2.1 Multiple simulation scenarios

The simulation regimes use a 3-state space over 40 time points. The six patterns are as
follows:

• the subsets have different transition matrices

• the subsets have different baseline transition probabilities, but the same pattern

• one subset has a forced transition to a given state at a random time in mid-sequence

• one subset has a change in the baseline transition probability, at a random time in
mid-sequence

• the two subsets have transition rates that are weighted averages of two regimes,
where the weight oscillates over time at different rates

• again two different weighted averages of two transition regimes, but where the
weight oscillates over time at the same rate but out of synch.

These patterns are intended to approximate the sorts of differences between lifecourse
sequences that analysts might be interested in picking up.

2.2 The basic test

The simulation test consists of generating 1,000 40-unit-long sequences, and generat-
ing pairwise distance matrices for the seven distance measures. This is done for five
transition-rate thresholds, generating sequences with lower and higher numbers of spells.
Basic characteristics of the simulations are presented in Appendix Table 7. Cluster anal-
yses are run on the distance matrices, generating solutions of 2, 4, 8, 16 and 32 groups.
The association between the cluster grouping and the binary simulation type (each sim-
ulation scenario has two types of mechanism) is then subjected to a χ2 test. While it is
not thought that any distance measure should unambiguously recover the mechanism
type (not least because any given sequence could in most cases be generated by either
mechanism, though the likelihood will be higher under one than another), a higher χ2 is
evidence that cluster analysis based on this distance measure is better at responding to
the input information.

The basic run of five threshold values by five cluster group sizes by six simulation
regimes by seven distance measures is repeated 200 times, yielding 210,000 distinct re-
sults. Even with the relatively fast Stata plugins, this takes a substantial amount of time

9



2.2. The basic test

(of the order of two days per simulation regime). Two hundred runs may be more than
is strictly necessary, but it gives confidence that the results are consistent.
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2.2. The basic test

We are effectively judging how well the distance measures can detect the “signal” that
is the difference programmed into each simulation regime. As noted we do not expect
to be able to reproduce the difference, but we want to see how much association there
is between it and the cluster solutions. The distance measures are compared with each
other, rather than against the task of recovering the difference. How they fare across the
regimes, with different transition rates and different numbers of groups in the cluster
solution, is informative. We judge this performance in terms of the χ2 statistic (both its
value and the area under the right tail; this latter is not to considered a p-value in the con-
ventional sense but rather a metric for comparison). Figure 1 summarises the distribution
of the area under the right tail, across five transition rates and six simulation regimes, for
the 16-cluster solution (see Figure 2 to 6 for all five cluster solutions, and Figure 7 to 12
for the same information organised by simulation rather than cluster solution size).

Clearly, the number of groups in the cluster solution will have a big impact in the
ability of the process to “detect” the signal. If the simulation regime creates two very
distinct types of sequences, two groups may well pick up the difference well, but it is
likely that most simulation regimes will create sequences that overlap substantially in
characteristics. Insofar as that is true, the few-groups clustering may be responding to
characteristics that are not diagnostic of the hidden difference (e.g., such as the average
distribution of state), and in that case discrimination may not emerge until we consider
more disaggregated groupings. It may also be the case that too-disaggregated solutions
lose their discriminating power, as the clusters become small and idiosyncratic. In this
respect Figure 1 represents a fairly high number of clusters (given we have a three-state
space, 40 units and between approximately two and eight spells on average) – we see that
for many runs, for most of the distance measures and simulation regimes, the association
between the cluster solution and the hidden difference is large. Consider the “plain”
simulation first (column 1). For the threshold values of 0.1 and 0.25 (corresponding to
less than two and about three spells on average, respectively, typical of a lot of lifecourse
sequence data – see Table 7 for details), most measures provide low right-tail values.
However, it is clear that X/t, TWED and, to a lesser extent, OMv, are doing somewhat
better than the others. This is also true of the higher transition rates too, but there the
other measures perform less well, particularly the Hamming and Dynamic Hamming.
The plain simulation regime is carefully set up to differ only in the transition pattern:
average time spent in each state and average transition rate is the same, but while Type
1 has unpatterned transitions, Type 2 favours A to B over A to C, B to C over A, C to A
over B. Where transition rates get high, sequences from of the same type will have no
particular tendency to be in the same state at the same time, whereas when transitions
are rare, the coincidence of having a transition from, say, state A, at approximately the
same time, will make two sequences more similar. Thus the Hamming measures will
have some success at low rates of transition but less at high. However, since the type
difference here is strongly related to spell sequence (i.e., ABC versus ABA) the measures
that pay attention to spell order have more discrimination.

The second simulation regime, the “switch” simulation, has a single base transition
rate, but type 2 experience a forced transition to state 3 at an individual-specific point
at random between period 15 and period 35. Thus is reflects an “event” that happens
to a subset of cases, rather than persistent difference. For all measures, this is an easier
distinction to detect at the 16-group cluster solution, more so at lower base transition
rates. At higher transition rates TWED and X/t seem to do slightly worse, a pattern
which is repeated if we look at cluster solutions with fewer groups: if anything, there
OMA has the advantage, though it is not marked. Since the design feature of the regime is
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2.2. The basic test

being in a given state at a given (approximate) point, it makes sense that at low transition
rates this is easier to detect than at high (where it is easier for sequences to exit the state).
For the same reason one would expect that measures closer to Hamming will do well,
with the ability to align (to detect similarity at approximately the same place) also quite
important. X/t does relatively poorly here because it is less attached to location and more
to sequence than other measures. While TWED is an aligning measure, however, with a
cost to recognising similarity out of alignment, it seems to be closer to X/t in this case.

The “slow–fast” regime types differ in the rate of transition, but the pattern is the same
and the rates are steady through time. Figure 1 shows that X/t, TWED and to a lesser
extent OMA are the strongest here (all measures lose out at the highest transition rate,
but this may be due to distinction between the faster transition regime and the slower
declining as the base rate rises). The Hamming measures and the adapted OM measures
do less well. The difference between the sequences should largely take the form of shorter
spells and more frequent transitions in type 2 – X/t’s focus on spells will be strongly
affected by number of spells, TWED will also pick up common spell patterns.

The “slow-down” regime is similar. Here type 2 switches from accelerated transi-
tions to a below-average rate at a random time in mid-sequence. Rather than a many-
spells/few-spells contrast between types as in the previous regime, we have short-then-
long versus a stable transition pattern. At 16 clusters, and low to medium base transition
rates, all measures (except OMv) pick up this feature fairly well, but X/t and TWED
do better (especially at the 0.75 transition threshold). Again, the defining feature of the
regime being focused on spell patterns rather than states, the spell-oriented measures do
well.

The “plain-cycle” and “plain-step” regimes are designed to test the dynamic Ham-
ming measure, and have types with transition rates that change in different ways over
time. “Plain-cycle” has two underlying transition matrices, and each type uses a time-
dependent weighted average of them. Type 1 goes from 100% matrix A at t0 to 100%
matrix B at t20 and back to matrix A by the end. Type 2 goes through this cycle twice,
at twice the speed. “Plain-step” has both types going through the cycle twice, but out of
sync, as if in a time-diary data set one subsample is on an 8–4 cycle and the other 9–5.

The “plain-cycle” difference is very easily picked up by all measures, for all cluster
solution sizes and at all base transition rates. This is probably due to a systematic differ-
ence in the distribution across the three states of the two types. While Figure 1 is not very
informative, viewing the raw figures for the mean χ2 suggests that X/t and TWED are
systematically (but not very far) ahead of the other measures. X/t’s bad showing in the
0.1-threshold, 2-cluster plot (Figure 2) reflects an odd distribution, with some very low
χ2 values but a high mean.)

The “plain-step” is clearly in the Dynamic Hamming spirit, and indeed the two Ham-
ming measures do best here (but the dynamic version not clearly better than the basic
one). X/t and TWED do distinctly badly however: because the two types are only a little
out of sync, they do not tend to have different spell patterns.

Winners and losers

We can get an overall view of how the seven measures fare across the six simulation
regimes in a number of ways. A simple one is to identify for each run, for each cluster
solution, which measure does best and which worse. A more complicated way is to use a
regression model to estimate simulation/measure specific averages. The results are fairly
consistent. From Table 5 we see that for the “plain” regime, TWED is by far the most
common “best” measure while the two Hamming measures are worst. For the “SW”

13



2.2. The basic test

Table 5: Winners and losers: best and worst measures by simulation regime (percentages)

Simulation regime Distance measure

dyn ham hol oma omv twd xtd
Plain best 2.2 2.3 3.3 3.04 4.96 62.2 22.24

worst 26.96 25.62 13.72 15.52 9.46 3.74 5.2
SW best 9.76 11.32 14.5 21.1 11.02 16.72 15.64

worst 12.34 12.5 8.4 6.46 15.6 20.5 24.3
SF best 2.72 2.86 3.34 5.12 2.76 22.68 60.54

worst 17.1 18.56 13.48 9.7 34.6 4.8 1.86
SD best 4.12 4.02 3.52 4.82 3.74 31.54 48.26

worst 15.1 17.92 13.58 10.18 35.22 4.82 3.3
PC best .9 .92 2.42 1.22 1.08 47.1 46.4

worst 17.56 17.64 7.32 10.26 42.16 2.36 2.82
PS best 34.26 43.96 5.58 4.26 6.8 2.86 2.38

worst 2.48 2.56 5.1 11.64 5.2 36.72 36.34

regime, OMA most commonly does best, while X/t does worst most often (however, the
honours are widely distributed for this regime). For the “SF” or slow–fast simulation, X/t
is a clear winner, being the best measure in 60% of the runs, with TWED a distant second.
For the “SD” or slow-down simulation, X/t wins nearly half the time, with TWED not
too far behind. There is a similar pattern for the “PC” simulation, with TWED slightly
ahead of X/t, and the other measures a long way behind (note that for this simulation,
all the measures did absolutely well). The “PS” simulation, though structurally similar
to “PC”, yields the opposite result, with Hamming (and then dynamic Hamming) doing
clearly best, with TWED and X/t doing worst.

While counting winners and losers gives a clear picture, it throws away some infor-
mation. If we look at the effect of measure on the average χ2 or on the average log χ2, we
retain much of this information. We can do this in the framework of a regression model,
with terms for the interaction of cluster-solution size and transition threshold (as factors)
and for the interaction between simulation regime and distance measure. In Stata terms
we fit the following model:

xtreg chi i.sim##i.measure i.ngroups##i.threshold, i(id)

The id variable identifies cluster solutions within simulation runs. The xtreg random
effects model thus generates properly conservative standard errors; however, the param-
eter estimates are the same (or almost so) as those from a conventional regression model.
Table 6 summarises these models, by reporting the net effect of measure, separately for
each simulation, setting the effect of TWED to zero (these effects simply combine the
parameter estimates for measure and the measure/simulation interaction).

From the regression models we get almost exactly the same picture as from the win-
ner/loser analysis:
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Table 6: Modelling χ2 and log χ2 by simulation regime and distance measure: average
differences to TWED by simulation regime

Additive effect on χ2

Simulation regime Distance measure

dyn ham hol oma omv twd xtd
Plain -56.363 -56.327 -52.439 -53.250 -49.451 0.000 -34.124
SW -0.329 0.867 2.474 2.571 -1.074 0.000 -1.350
SF -15.803 -15.728 -14.179 -12.055 -17.840 0.000 10.362
SD -18.856 -19.005 -17.079 -15.847 -21.533 0.000 4.245
PC -88.214 -87.501 -59.669 -66.936 -96.961 0.000 17.779
PS 75.676 81.090 30.208 13.067 28.438 0.000 13.115

Additive effect on log χ2

Simulation regime Distance measure

dyn ham hol oma omv twd xtd
Plain -1.525 -1.515 -1.312 -1.355 -1.168 0.000 -0.771
SW 0.163 0.190 0.287 0.496 0.237 0.000 -0.042
SF -0.793 -0.818 -0.706 -0.548 -0.939 0.000 0.469
SD -0.764 -0.764 -0.674 -0.562 -0.915 0.000 0.308
PC -0.227 -0.228 -0.153 -0.163 -0.249 0.000 0.016
PS 1.474 1.544 0.771 0.365 0.767 0.000 -0.135

Simulation Winner Average χ2 Average log χ2

Plain TWED TWED TWED
SW OMA OMA OMA
SF X/t X/t X/t
SD X/t X/t X/t
PC TWED X/t X/t
PS Hamming Hamming Hamming

The only difference is for the “PC” simulation where in the regression models X/t
does better than TWED, but we see that the difference is small.

Overall the exercise suggests that no one measure is dominant. Hamming, OMA,
TWED and X/t all do well, with dynamic Hamming often close to Hamming. Hollister’s
LOM is generally in the middle, often not too far from OMA. Halpin’s OMv is also often
close to OMA but is also often the weakest measure.

A Appendix
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Table 7: Summary characteristics of the simulations

Simulation
type

Rate factor N spells Duration

State 1 State 2 State 3

T1 T2 T1 T2 T1 T2 T1 T2
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.9 8.02 8.79 0.33 0.33 0.33 0.33 0.33 0.33
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