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Halpin: Cluster Analysis stopping rules in Stata

Abstract

Analysts doing cluster analysis sometimes want the data to tell them the optimum num-

ber of clusters. Common "stopping rules" use the Calinski-Harabasz pseudo-F statistic

and Duda-Hart indices, which are based on squared Euclidean distances between cases.

Cluster analysis operates on a pairwise matrix of distances between the objects clusters,

which are usually created from the observed variables. However, approaches such as ex-

pert judgement or algorithmic pattern-recognition (as used for instance in sequence anal-

ysis) often output matrices of pairwise similarity or difference whose relationship to the

observed variables is much less direct. Built-in Stata utilities allow calculation of the CH

and DH indices when cluster analysis starts from variables, but not with cluster analysis

that starts from a pairwise distance matrix (unless the distances are squared Euclidean dis-

tances defined on variables which are still available). In this note I present two small Stata

utilities that will calculate the CH and DH statistics from the distance matrix, if the dis-

tances are squared Euclidean. If the distances have another metric, these utilities can be

seen as calculating a pseudo-CH pseudo-F or pseudo-DH statistic, potentially extending

their use to new applications.

1 Cluster analysis with variables and distance matrices

This paper discusses two utilities (downloadable from SSC) which extend Stata to calculate

cluster stopping-rule indices from distance matrices, rather than from variables.

Cluster analysis is a descriptive and exploratory technique that attempts to group objects

based on their similarity (Everitt et al., 2011). It operates on the matrix of pairwise distances

(or dissimilarities) between the objects to be clustered. This is usually calculated on the fly by

the cluster software, using observed variables to define distances between objects (depend-

ing on the cluster algorithm used, different distances are used, often but by no means always

Euclidean or squared Euclidean). Stata’s cluster command operates in this fashion. Some-

times analysts desire guidance in the number of clusters to create, and to this end there are

a number of stopping-rule indices. Stata’s cluster stop calculates some of these indices, in

effect using the observed variables to make a pairwise matrix of squared Euclidean distances

to do so.

However, cluster analysis does not always start from a set of observed variables. Some-

times we have pairwise similarity or dissimilarity data generated directly from other sources,

such as expert judgement, machine learning or pattern recognition. A typical example in

sociology is sequence analysis, which calculates dissimilarities between longitudinal series

such as lifecourse histories (see e.g., Halpin, 2013, 2014a; Cornwell, 2015). When working

with such approaches, we use Stata’s clustermat command to carry out cluster analysis on

the pairwise distance matrix, rather than on variables (for which we would use cluster).
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Halpin: Cluster Analysis stopping rules in Stata

However, Stata’s built-in cluster commands do not allow calculation of stopping-rule indices

when working directly from distance matrices. The existence of a clustermat stop com-

mand is confusing, and regularly confuses analysts. It takes a mandatory variables() op-

tion or subcommand, which it uses to identify a set of variables that it understands as being

behind the distances, and then in effect calculates a pairwise matrix of squared Euclidean

distances based on them. That is, it does not use the original pairwise distances, if these

come from a different source.

2 Stopping rules

In hierarchical cluster analysis, the output of the analysis can be considered to be the den-

drogram (the hierarchical tree created by initially grouping individual cases, and then groups,

iteratively until you have only one group), but we often want to work with a particular cluster

solution. That is, we want to cut the dendrogram at a particular level and come up with a

single classification of our cases into a variable with a certain number of categories. We may

do this pragmatically, selecting a grouping that "works" for our analysis, but we may some-

times want to select a "best" solution, one suggested by the data. "How many latent classes

are there really?" is the question we might be thought to ask in that context.1

2.1 Calinski-Harabasz and Duda-Hart

There are a number of ways we can ask the data to tell us where to stop. These often start

at one cluster, and ask if splitting it to make two will improve some measure of fit, some loss

function, and continue, looking at each new solution in turn. The Calinski-Harabasz pseudo-

F is one such measure. This involves looking at the sum of squared distances within the

partitions, and comparing it to that in the unpartitioned data, taking account of the number

of clusters and number of cases (Caliński and Harabasz, 1974). The Duda-Hart index does the

same calculation, comparing the sum of squares in the next pair of clusters to be combined,

before and after combining (Duda et al., 2000). The Duda-Hart index itself is simply the sum

of the sum of squares in the two clusters, divided by the sum of squares in the combined

cluster, but there is also a Duda-Hart T-squared statistic, which takes account of the number

of cases (see Milligan and Cooper (1985) and Everitt et al. (2011) for discussion of cluster

stopping rules). It is interesting to note that the CH pseudo-F for two clusters coincides with

the DH T-squared for one, since they are making the same comparison, that is, one cluster

(i.e., all the cases) versus two (the F distribution with df1=1 and df2=ν is equal to the square

1Sometimes, there in no clear structure of latent classes, which raises its own problems.
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of the t-distribution with df=ν2). For later comparisons, CH compares N clusters with one,

using the whole data set, whereas DH compares 2 with 1 looking only at cases in the cluster

that is to be split and its two subclusters.

2.2 How Stata calculates these measures

When it has access to the underlying variables, Stata calculates the CH index for each cluster

solution (by default from 2 to 15 clusters) by regressing each variable on the cluster solution

(i.e., carrying out an ANOVA) and cumulating the model sum of squares and residual sum of

squares, to generate the pseudo-F statistic as follows:

pF =

∑
MSS/(g − 1)∑
RSS/(N − g)

(1)

where N is the number of cases and g the number of groups.

The correspondence between ANOVA and summed squared distances within clusters

arises because the sum of squared distances between the cases is directly proportional to

the variable-wise sum of squares about the mean, and thus also to the sum of squared dis-

tances to the centre of the partition or cluster (see Appendix for a demonstration, and sec 4.1

of Studer et al. (2011) for fuller discussion).

Note that whatever linkage or algorithm is used to create the cluster solution, this involves

assessing the fit in terms of squared Euclidean distances.

The DH statistic and T-squared are estimated in a similar fashion from the variables.

3 Calculating CH from the distance matrix

Clustering usually starts with variables, and creates a pairwise distance matrix from them.

However, sometimes the distance matrix is generated or acquired independently, and in Stata

we can do cluster analysis with the matrix directly, using the clustermat suite of commands.

While the suite includes a clustermat stop command, this will not work correctly for

analysts working with an independently derived pairwise data matrix. However, it is straight-

forward to use the matrix to carry out a strictly equivalent operation, calculating the sum

of squared distances within each partition and calculating a pseudo-F in the manner of the

discrepancy measure (Studer et al., 2011):

pF =
(SSt−

∑
SSg)/(g − 1)

(
∑
SSg)/(N − g)

(2)

2See for instance, https://en.wikipedia.org/wiki/Student's_t-distribution#Relation_to_

F-distribution.
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where SSt is the summed squared distance within the whole matrix, and the SSg-s are

summed squared distances within each partition.

The calinski and dudahart utilities described in this paper work directly on the distance

matrix in this fashion. They are both available on SSC (see appendix B).

4 Demonstrating calinski and dudahart

Here I demonstrate that (i) calinski and dudahart produce the same results as Stata’s built-

in cluster stop when working on squared Euclidean distances calculated on variables, and

(ii) that Stata’s clustermat stop produces incorrect results when clustering is based on an

external distance matrix.

4.1 Agreement between cluster stop and calinski and dudahart

I demonstrate the equivalence first on the NLSW88 data extract that comes with Stata. This

carries out a simple cluster analysis based on four variables, and runs cluster stop, and then

generates a squared-Euclidean matrix based on the same variables, and shows that calinski

and dudahart return the same results.

set matsize 2500

sysuse nlsw88

keep age grade wage ttl_exp

// Keep complete cases only

foreach var of varlist age-ttl_exp {

keep if !missing(`var')

}

// Generate and sort by an ID variable for calinski/dudahart commands

gen id = _n

sort id

// Carry out a conventional cluster analysis

cluster wards age-ttl_exp

// Create a matrix of squared Euclidean distances between the variables

matrix dissimilarity pwd2 = age-ttl_exp, L2squared
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// compare builtin with add-on stopping rules

cluster stop

calinski, dist(pwd2) id(id)

cluster stop, rule(duda)

dudahart, dist(pwd2) id(id)

The Calinski-Harabasz results are shown in panel A of table 1, and show strict equivalence.

The DH results are shown in panel B, and also match perfectly. Thus, the built-in Stata stop-

ping rules for cluster analysis from variables match perfectly with the calinski and dudahart

commands run on the matrix of pairwise squared-Euclidean distances between the variables,

created independently by the matrix dissim command.

4.2 Disagreement with clustermat stop

Where the pairwise distance matrix comes from another source, for instance an algorith-

mic measurement or expert judgement of similarity or dissimilarity between objects, Stata’s

clustermat stop approach is, contrary to appearances, not valid. The clustermat stop

command demands a variables() option, and Stata calculates the indices based on squared

Euclidean distances defined by the variables that the option specifies, not the distance matrix

used by clustermat. However, the original distance matrix does define the clusters used in

the calculations. That is, clustermat stop uses one distance matrix to carry out the clus-

tering and another to assess its fit. Many analysts are caught out by this; in fact, I don’t

think I have ever seen clustermat stop used correctly, as it would be very unusual to use

clustermat instead of cluster when the relevant variables are available.

Here I use an example from sequence analysis, where distances between cases are deter-

mined algorithmically, treating a set of variables as representing sequences and using an edit

distance to compare them. This edit distance (Optimal Matching distance) is often treated

as squared Euclidean (Studer and Ritschard, 2015) but is not calculated as the squared Eu-

clidean distance between the sequence state variables (it may be very different).3 The oma

command is provided by the SADI package, available on SSC and described in Halpin (2014a).

// First set up and run OM

// Substitution cost matrix

matrix sm1 = (0,1,1,2,1,3 \ ///

1,0,1,2,1,3 \ ///

3The reference describes OM distances as non-Euclidean, but in private communication Studer describes them
as "closer to squared Euclidean than Euclidean".
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Table 1: Calinski-Harabasz and Duda-Hart results from cluster stop compared with
calinski and dudahart using squared distances

(a) Calinski-Harabasz

. cluster stop . calinski, dist(pwd2) id(id)

+---------------------------+

| | Calinski/ | +---------------------------------+

| Number of | Harabasz | | Number of | Calinski-Harabasz |

| clusters | pseudo-F | | clusters | pseudo-F |

|-------------+-------------| |-------------+-------------------|

| 2 | 734.76 | | 2 | 734.76 |

| 3 | 955.45 | | 3 | 955.45 |

| 4 | 883.67 | | 4 | 883.67 |

| 5 | 844.84 | | 5 | 844.84 |

| 6 | 841.31 | | 6 | 841.31 |

| 7 | 777.69 | | 7 | 777.69 |

| 8 | 730.60 | | 8 | 730.60 |

| 9 | 697.26 | | 9 | 697.26 |

| 10 | 674.10 | | 10 | 674.10 |

| 11 | 652.76 | | 11 | 652.76 |

| 12 | 625.06 | | 12 | 625.06 |

| 13 | 603.08 | | 13 | 603.08 |

| 14 | 581.12 | | 14 | 581.12 |

| 15 | 563.83 | | 15 | 563.83 |

+---------------------------+ +---------------------------------+

(b) Duda-Hart

. cluster stop, rule(duda) . dudahart, dist(pwd2) id(id)

+--------------------------------------+ +--------------------------------------+

| | Duda/Hart | | | Duda/Hart on distances |

| Number of | | pseudo | | Number of | | pseudo |

| clusters | Je(2)/Je(1) | T-squared | | clusters | Je(2)/Je(1) | T-squared |

|-----------+-------------+------------| |-----------+-------------+------------|

| 1 | 0.7532 | 734.76 | | 1 | 0.7532 | 734.76 |

| 2 | 0.6183 | 795.86 | | 2 | 0.6183 | 795.86 |

| 3 | 0.7566 | 401.43 | | 3 | 0.7566 | 401.43 |

| 4 | 0.6936 | 420.06 | | 4 | 0.6936 | 420.06 |

| 5 | 0.7219 | 288.57 | | 5 | 0.7219 | 288.57 |

| 6 | 0.6682 | 246.82 | | 6 | 0.6682 | 246.82 |

| 7 | 0.7422 | 160.85 | | 7 | 0.7422 | 160.85 |

| 8 | 0.6852 | 223.26 | | 8 | 0.6852 | 223.26 |

| 9 | 0.8346 | 125.64 | | 9 | 0.8346 | 125.64 |

| 10 | 0.7957 | 117.62 | | 10 | 0.7957 | 117.62 |

| 11 | 0.7311 | 105.95 | | 11 | 0.7311 | 105.95 |

| 12 | 0.6190 | 112.62 | | 12 | 0.6190 | 112.62 |

| 13 | 0.7465 | 104.57 | | 13 | 0.7465 | 104.57 |

| 14 | 0.7484 | 37.99 | | 14 | 0.7484 | 37.99 |

| 15 | 0.7523 | 82.98 | | 15 | 0.7523 | 82.98 |

+--------------------------------------+ +--------------------------------------+
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1,1,0,2,1,2 \ ///

2,2,2,0,1,1 \ ///

1,1,1,1,0,2 \ ///

3,3,2,1,2,0 )

use mvad

sort id

oma state1-state72, subs(sm1) indel(1.5) pwd(omd) len(72)

// Generate clustering

clustermat wards omd, add

// Generate matrix of squared Euclidean distances based on variables

matrix dissim dd2 = state1-state72, L2squared

// Compare calinski.ado and clustermat stop

calinski, dist(omd) id(id)

clustermat stop, variables(state1-state72)

calinski, dist(dd2) id(id)

// Compare dudastop.ado and clustermat stop, rule(duda)

dudahart, dist(omd) id(id)

clustermat stop, variables(state1-state72) rule(duda)

dudahart, dist(dd2) id(id)

The indices are calculated first on the optimal matching distances, then using clustermat

stop, then on the squared Euclidean distances calculated using matrix dissim from the vari-

ables. Table 2 shows the results using calinski on the correct distance matrix, then naively

using clustermat stop and finally using calinski on the incorrect distance matrix, gen-

erated from the variables. The clustermat stop results coincide exactly with those using

calinski in the incorrect distance matrix.

We see exactly the same pattern with the Duda-Hart indices (table 3).

From this is should be clear that when using a distance matrix generated otherwise than

as squared Euclidean distances based on variables, clustermat stop should not be used.
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Table 2: Calculating the CH index using (a) calinski on the correct distance matrix, (b)
clustermat stop and (c)) calinski on the matrix of squared Euclidean distances between
the variables

. calinski, dist(omd) id(id) . clustermat stop, . calinski, dist(dd2) id(id)

variables(state1-state72)

+---------------------------+

+---------------------------------+ | | Calinski/ | +---------------------------------+

| Number of | Calinski-Harabasz | | Number of | Harabasz | | Number of | Calinski-Harabasz |

| clusters | pseudo-F | | clusters | pseudo-F | | clusters | pseudo-F |

|-------------+-------------------| |-------------+-------------| |-------------+-------------------|

| 2 | 180.15 | | 2 | 210.03 | | 2 | 210.03 |

| 3 | 152.75 | | 3 | 141.89 | | 3 | 141.89 |

| 4 | 149.02 | | 4 | 105.67 | | 4 | 105.67 |

| 5 | 135.61 | | 5 | 94.42 | | 5 | 94.42 |

| 6 | 127.91 | | 6 | 83.93 | | 6 | 83.93 |

| 7 | 119.32 | | 7 | 75.24 | | 7 | 75.24 |

| 8 | 113.89 | | 8 | 86.85 | | 8 | 86.85 |

| 9 | 108.54 | | 9 | 95.71 | | 9 | 95.71 |

| 10 | 103.86 | | 10 | 87.37 | | 10 | 87.37 |

| 11 | 100.15 | | 11 | 79.38 | | 11 | 79.38 |

| 12 | 95.06 | | 12 | 79.40 | | 12 | 79.40 |

| 13 | 90.72 | | 13 | 73.44 | | 13 | 73.44 |

| 14 | 86.74 | | 14 | 68.70 | | 14 | 68.70 |

| 15 | 83.43 | | 15 | 64.38 | | 15 | 64.38 |

+---------------------------------+ +---------------------------+ +---------------------------------+

Table 3: Calculating the DH index using (a) calinski on the correct distance matrix, (b)
clustermat stop and (c)) calinski on the matrix of squared Euclidean distances between
the variables

. dudahart, dist(omd) id(id) . clustermat stop, . dudahart, dist(dd2) id(id)

variables(state1-state72) rule(duda)

+--------------------------------------+ +--------------------------------------+ +--------------------------------------+

| | Duda/Hart on distances | | | Duda/Hart | | | Duda/Hart on distances |

| Number of | | pseudo | | Number of | | pseudo | | Number of | | pseudo |

| clusters | Je(2)/Je(1) | T-squared | | clusters | Je(2)/Je(1) | T-squared | | clusters | Je(2)/Je(1) | T-squared |

|-----------+-------------+------------| |-----------+-------------+------------| |-----------+-------------+------------|

| 1 | 0.7976 | 180.15 | | 1 | 0.7717 | 210.03 | | 1 | 0.7717 | 210.03 |

| 2 | 0.7739 | 78.88 | | 2 | 0.8643 | 42.40 | | 2 | 0.8643 | 42.40 |

| 3 | 0.7619 | 136.88 | | 3 | 0.9326 | 31.65 | | 3 | 0.9326 | 31.65 |

| 4 | 0.7790 | 34.34 | | 4 | 0.8614 | 19.47 | | 4 | 0.8614 | 19.47 |

| 5 | 0.7519 | 67.96 | | 5 | 0.7882 | 55.36 | | 5 | 0.7882 | 55.36 |

| 6 | 0.7716 | 43.52 | | 6 | 0.7946 | 38.00 | | 6 | 0.7946 | 38.00 |

| 7 | 0.7505 | 76.48 | | 7 | 0.6492 | 124.27 | | 7 | 0.6492 | 124.27 |

| 8 | 0.8480 | 16.31 | | 8 | 0.7321 | 33.30 | | 8 | 0.7321 | 33.30 |

| 9 | 0.8091 | 33.96 | | 9 | 0.9077 | 14.65 | | 9 | 0.9077 | 14.65 |

| 10 | 0.7881 | 15.33 | | 10 | 0.9745 | 1.49 | | 10 | 0.9745 | 1.49 |

| 11 | 0.8366 | 26.76 | | 11 | 0.7982 | 34.65 | | 11 | 0.7982 | 34.65 |

| 12 | 0.8358 | 19.65 | | 12 | 0.9242 | 8.20 | | 12 | 0.9242 | 8.20 |

| 13 | 0.7454 | 12.64 | | 13 | 0.8129 | 8.52 | | 13 | 0.8129 | 8.52 |

| 14 | 0.8687 | 13.15 | | 14 | 0.9524 | 4.34 | | 14 | 0.9524 | 4.34 |

| 15 | 0.8383 | 6.37 | | 15 | 0.8456 | 6.02 | | 15 | 0.8456 | 6.02 |

+--------------------------------------+ +--------------------------------------+ +--------------------------------------+
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5 Do CH and DH make sense for other metrics?

The Calinski-Harabasz and Duda-Hart indices are conceived of in terms of ANOVA, so it

makes most sense to use them where the cluster analysis is in terms of squared Euclidean dis-

tances. This directly suits clustering using Ward’s linkage, because that is explicitly focused on

minimising sums of squares (centroid and median linkage also default to squared Euclidean

distances; do help cluster linkage in Stata for more detail). Other linkages and algorithms

use other distances, for instance L1 or city-block distance. If you use Stata’s cluster stop

after such a clustering, it will use squared Euclidean distances to calculate the indices. It may

make better sense to use calinski and dudahart on the appropriate distance matrix, since

though their logic may formally be in ANOVA terms, in practice the sum of squared distances

is related to the sum of distances to the centre of the cluster, and that makes a general sense.

For instance, the CH index for g clusters is based on the sum of distances to the centres of the

g clusters, compared to the sum of distances to the centre of the whole matrix, as laid out in

equation 2:

pF =
(SSt−

∑
SSg)/(g − 1)

(
∑
SSg)/(N − g)

As mentioned above (and appendix A), if the distances are squared Euclidean, we can

regard this as directly equivalent to ANOVA. However, for this to make intuitive sense, it is not

necessary that Euclidean logic applies. Comparing the sum of distances in the whole data set

to the cumulative sum of distances within partitions is arguably meaningful for any distance,

even if not for ANOVA. Thus calinski and dudahart may be useful when conducting cluster

analysis on variables, when using other distance measures.

To illustrate this, we go back to the NLSW88 example, and use a weighted average-linkage

cluster analysis with L1 distances (i.e., absolute value).

set matsize 2500

sysuse nlsw88

keep age grade wage ttl_exp

// Keep complete cases only

foreach var of varlist age-ttl_exp {

keep if !missing(`var')

}

// Generate an ID variable for calinski/dudahart commands

gen id = _n

sort id

10
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Table 4: Calculating the CH index after a waverage-linkage clustering with L1-distances, using
(a) cluster stop (b) calinski on the matrix of L1 distances between the variables and (c)
calinski on the matrix of squared Euclidean distances between the variables

. cluster stop . calinski, dist(pwd1) id(id) . calinski, dist(pwd2) id(id)

+-------------------------+

| | Calinski/ | +-------------------------------+ +-------------------------------+

| Number of | Harabasz | | Number of | Calinski-Harabasz | | Number of | Calinski-Harabasz |

| clusters | pseudo-F | | clusters | pseudo-F | | clusters | pseudo-F |

|-----------+-------------| |-----------+-------------------| |-----------+-------------------|

| 2 | 795.74 | | 2 | 382.38 | | 2 | 795.74 |

| 3 | 682.84 | | 3 | 244.31 | | 3 | 682.84 |

| 4 | 481.65 | | 4 | 168.61 | | 4 | 481.65 |

| 5 | 364.95 | | 5 | 127.96 | | 5 | 364.95 |

| 6 | 367.32 | | 6 | 116.39 | | 6 | 367.32 |

| 7 | 396.63 | | 7 | 121.97 | | 7 | 396.63 |

| 8 | 356.46 | | 8 | 109.33 | | 8 | 356.46 |

| 9 | 443.79 | | 9 | 132.76 | | 9 | 443.79 |

| 10 | 396.50 | | 10 | 118.43 | | 10 | 396.50 |

| 11 | 363.45 | | 11 | 109.78 | | 11 | 363.45 |

| 12 | 359.62 | | 12 | 109.38 | | 12 | 359.62 |

| 13 | 332.63 | | 13 | 101.03 | | 13 | 332.63 |

| 14 | 371.66 | | 14 | 111.03 | | 14 | 371.66 |

| 15 | 364.99 | | 15 | 108.77 | | 15 | 364.99 |

+-------------------------+ +-------------------------------+ +-------------------------------+

cluster waverage age-ttl_exp, measure(L1)

// Create matrices of the variables, Euclidean and squared Euclidean

matrix dissimilarity pwd1 = age-ttl_exp, L1

matrix dissimilarity pwd2 = age-ttl_exp, L2squared

cluster stop

calinski, dist(pwd1) id(id)

calinski, dist(pwd2) id(id)

Table 4 shows in panel (a) the results from cluster stop, in panel (b) the results using

calinski on the same distances (L1) that the clustering is carried out on, and in panel (c) the

results from calinski using squared Euclidean distances between the variables. As can be

seen, cluster stop evidently uses the squared Euclidean distances, while using the cluster

groupings generated on L1 or absolute distances. The calinski results using the L1 distances

are different. It does not seem intuitively reasonable to choose one metric to carry out a

clustering and another to assess its quality, so it would seem preferable to use the calinski

result on the correct distance matrix.

Note that the CH pseudo-F is exactly equal to the discrepancy pseudo-F of Studer et al.

(2011). The arguments those authors make about using the discrepancy measure with dis-
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tances other than squared Euclidean (in terms of association between the distance matrix

and observed categorical variables) apply equally to using pseudo-F and related measures to

examine the relationship between cluster solutions and the distance matrix (with the excep-

tion that the permutation-based p-values are not valid, given the cluster solution is derived

from the distance matrix).

6 Should we fetishise stopping rules?

Stopping rules provide a way to justify a particular cluster solution on the basis of the data,

providing guidance or an appearance of objectivity. However, depending on the problem at

hand, they should be taken with a grain of salt. The notion of a clear set of latent classes

might be inapplicable, or the stopping-rule-indicated cluster solution may be too detailed

or not detailed enough for analytical purposes. That is, a set of pairwise distances may con-

tain a great deal of information about relationships between objects without there being a

clear pattern of groups: the distribution within the space implied by the distances may not

be characterised by zones of density separated by zones of sparsity. In such cases, clustering

provides potentially useful data reduction without identifying clear latent classes, but will be

unstable. Indeed, stopping rules may be unhelpful, perhaps suggesting either 2 or an infea-

sibly large number of clusters. This is often the cases with sequence analysis of lifecourse

data (Halpin, 2014b), where the space implied by the distances between sequences is highly

structured but relatively evenly populated. The instability means that different settings or

algorithms will produce different clusterings, but they will all to a greater-or-lesser degree re-

duce the extensive data in the pairwise distance matrix into an informative classification. By

informative I mean that the partitions of the classification will contain objects that are mutu-

ally similar, and dissimilar to objects in other groups, in a way that is informatively associated

with other variables. Where that is the case, pragmatic approaches should carry more weight

than obedience to stopping rules.

7 Conclusion

The two utilities described in this paper, calinski and dudahart, replicate functionality pro-

vided by Stata’s built-in cluster stop command, in a manner that also works for clustering

based on distance matrices rather than variables. In particular, they provide functionality

that is hinted at but not provided by the existing clustermat stop command. In addition,

by allowing direct operation on the distance matrices, they allow the use of the Calinski-

Harabasz and Duda-Hart rules on distances other than squared Euclidean, thus making the

12
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rules applicable to a wider range of cluster linkages.

8 See also

A number of related utilities and packages are available from SSC:

• silhouette: calculates and graphs silhouette widths, illustrating the distribution of fit

of cases within clusters

• discrepancy: Implements the discrepancy measure of Studer et al. (2011)

• SADI: a set of tools for sequence analysis in Stata described in Halpin (2014a). In par-

ticular its cluster-related utilities:

– permtab: tabulate cluster solutions

– ari: Adjusted Rand Index for comparing cluster solutions

– corrsqm: Correlation between pairwise distance matrices
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A SS and distance to centre

There is a direct relationship between sum of squared deviations and the sum of distances

between variables, as given by this equation:

SS =

N∑
i=1

(xi − x̄)2 =
1

N

N∑
i=1

N∑
j=i+1

(xi − xj)
2 (3)

That is, the sum of squared deviations is equal to 1
N times the sum of the squared distances in

one triangle of the distance matrix (i.e., half of the symmetric matrix, containing each non-

redundant distance once). This generalises to multiple variables or dimensions.

We can test this with Stata code as follows, creating a set of random variables, the case-

wise distance matrix based on them (squared Euclidean), and calculating the conventional

sum of squares around each variable, and showing the cumulative sum of squares is equal to
1
N times the sum of one triangle (vech() returns a vector containing one triangle of a square

matrix) of the distance matrix.

set obs 100

gen x1 = rnormal(10,10)

gen x2 = rnormal(5,10)

gen x3 = rnormal(1,1)

matrix dissim dd2 = x1 x2 x3, L2squared

local rss = 0

reg x1

local rss = `rss' + e(rss)

reg x2

local rss = `rss' + e(rss)

reg x3

local rss = `rss' + e(rss)

mata: st_numscalar("ssd",sum((vech(st_matrix("dd2")))/100))

di "Sum of squared deviations: " `rss'

di "1/N Sum of triangle of squared distances: " ssd

B Installation

Both calinski and dudahart are available at SSC. The following Stata commands will install

them:

15
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ssc install calinski

ssc install dudahart

C Help pages

Stata help pages for calinski and dudahart follow.
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help calinski

Title

    calinski     Calinski−Harabasz cluster stopping index from distance matrix

Syntax

        calinski , DISTmat(string) IDvar(varname) [NGroups(integer 15) NAME(clname)
                 GRaph *]

    options                 Description
    
    Required
      distmat(matname)       names the distance matrix
      idvar(varname)         identifies the variable that links the sort−order of
                              the distance matrix to the sort−order of the data
    Optional
      ngroups                The number of cluster solutions to test (default 15)
      name                   Name of cluster analysis to use
      graph                  plot the index against cluster size
      twoway_options        options allowed with graph twoway
    

Description

    calinski calculates the Calinski−Harabasz pseudo−F for stopping rules in
    cluster analysis, from the pairwise distance matrix.  This is widely used to
    determine the optimum number of clusters. Stata’s default cluster stop does the
    same calculation on the basis of the original variables, but cannot operate on
    the distance matrix.  calinski is thus useful when the original variables are
    not available, or when the distances are created other than as squared
    Euclidean distances between variables (as is the case for instance with
    sequence analysis).

    NB: Stata’s built−in clustermat stop, variables(...) does not estimate the CH
    pseudo−F on the distance matrix used by clustermat. Rather, it creates a new
    temporary distance matrix based on the variables listed in the variables()
    option.

    calinski depends on discrepancy which can be installed from SSC:

    . ssc install discrepancy

    Returns:
      
    r(calinski_#) Calinski−Harabasz pseudo−F for # groups

Remarks

    While cluster stop and clustermat stop estimate the CH pseudo−F by cumulating
    the sum of squares from ANOVAs of the original variables on the cluster
    solution, and are therefore explicitly rooted in a squared−Euclidean distance
    point of view, calisnki takes the distances as they are found. If they are
    squared distances based on the original variables, the results will be
    identical to cluster stop.  If they are squared Euclidean distances from
    another source, the interpretation will be the same. If they are other sorts of
    differences (e.g., non−Euclidean) the interpretation is not necessarily the
    same, but can be understood to be analogous, in the same way as the discrepancy
    partitioning of the distance matrix (described by Studer et al 2011) is
    analogous to ANOVA.

    Because the order of the data and the order of the distance matrix must
    coincide, the dataset must be sorted by idvar. It is the user’s responsibility
    that this variable defines the correct order.
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Examples

    . calinski, dist(distances) id(id) graph

See Also

    cluster stop
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help dudahart

Title

    dudahart     Duda−Hart cluster stopping index from distance matrix

Syntax

        dudahart , DISTmat(string) IDvar(varname) [NGroups(integer 15) NAME(clname)
                 GRaph *]

    options                 Description
    
    Required
      distmat(matname)       names the distance matrix
      idvar(varname)         identifies the variable that links the sort−order of
                              the distance matrix to the sort−order of the data
    Optional
      ngroups                The number of cluster solutions to test (default 15)
      name                   Name of cluster analysis to use
      graph                  If "both" plot the DH index and T−squared against
                              cluster size, if "dh" the index only, if "dht" the
                              T−squared only.
      twoway_options        options allowed with graph twoway
    

Description

    dudahart calculates the Duda−Hart index for stopping rules in cluster analysis,
    from the pairwise distance matrix.  This is widely used to determine the
    optimum number of clusters. Stata’s default cluster stop does the same
    calculation on the basis of the original variables, but cannot operate on the
    distance matrix.  dudahart is thus useful when the original variables are not
    available, or when the distances are created other than as squared Euclidean
    distances between variables (as is the case for instance with sequence
    analysis).

    NB: Stata’s built−in{cmd:clustermat stop, variables(...) rule(duda)} does not
    estimate the DH index on the distance matrix used by clustermat. Rather, it
    creates a new temporary distance matrix based on the variables listed in the
    variables() option.

    Returns:
      
    r(duda_#) Duda−Hart Je(2)/Je(1) value for # groups
    r(dudat2_#) Duda−Hart pseudo−T−squared value for # groups

Remarks

    While cluster stop, rule(duda) and {cmd:clustermat stop, variables(...)
    rule(duda)} estimate the Duda−Hart index from the original variables of the
    cluster solution, and are therefore explicitly rooted in a squared−Euclidean
    distance point of view, dudahart takes the distances as they are found. If they
    are squared distances based on the original variables, the results will be
    identical to cluster stop. If they are squared Euclidean distances from another
    source, the interpretation will be the same. If there are other sorts of
    differences (e.g., non−Euclidean) the interpretation is not necessarily the
    same, but can be understood to be analogous, in the same way as the discrepancy
    partitioning of the distance matrix (described by Studer et al 2011) is
    analogous to ANOVA.

    Because the order of the data and the order of the distance matrix must
    coincide, the dataset must be sorted by idvar. It is the user’s responsibility
    that this variable defines the correct order.
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Examples
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See Also
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