sociology ¥

University of Limerick
Department of Sociology Working Paper Series

Working Paper WP2013-01
March 2013

Brendan Halpin
Department of Sociology

University of Limerick

Imputing Sequence Data: Extensions to initial and terminal gaps,
Stata’s ms

Available at http://www.ul.ie/sociology/pubs/wp2013-01.pdf

http://www.ul.ie/sociology/pubs/wp2013-01.pdf

Imputing Sequence Data: Extensions to
initial and terminal gaps, Stata’s mi*

Brendan Halpin, University of Limerick

Mar 6 2013

Contents
(1__Introduction| 1
2 Stata’s mi frameworkl 2
[3 Initial and terminal gaps| 3
[4 Imputation sequence| 3
[5 Parallel computing] 5
e Codel 6
6.1 Preparing the data, bsmiprep.do| 7
6.2 Carrying out the imputations, bsmi_it.do| 9
6.3 Programdefinitions|. 0 o 0oL 10
6.3.1 do_imputations forinternalgaps| 10
6.3.2 Predict initial and terminal gaps: do_imputations_it|. . 12
[.4 bsmicombit towrapitallup|. 14

1 Introduction

In a previous paper (Halpin, (downloadable) I have described a strategy
for multiple imputation for missing data in sequence data (that s, in categorical
time series), where missingness tends to be consecutive and take the form of
gaps. In this note I document two improvements made to the initial approach:
the use of Stata’s built-in mi multiple-imputation framework for prediction,
and the imputation of gaps at the beginning and end of the sequence (which
was allowed for, but not implemented, in the original version). I also document
the implementation of the algorithm in Stata, in more detail than previously

(see section [Code).

*Version: update.org,v 1.4 2013/03/10 15:30:42 brendan Exp

http://www.ul.ie/sociology/pubs/wp2012-01.pdf

The key innovation of the general approach is to handle the sequences or
time-series in “long” format (one observation per person per time-unit), and to
impute particular observations using lags and leads. The order of imputation
is carefully calculated to produce longitudinal consistency. In contrast, multi-
ple imputation by chained equations normally imputes all missings in a given
variable, using other variables from the same observation.

The previously documented version imputed only internal gaps. The exten-
sion to imputed initial and terminal gaps substantially increases the number of
whole sequences available for analysis, and the use of core Stata commands
makes the imputation more standard and reliable (but also in the current im-
plementation, distinctly slower: see section [Parallel computing| for a way of
mitigating this).

2 Stata’s mi framework

In the original version, imputations are based on simple predictions from a
multinomial logistic regression, where each imputation is drawn at random
according to the predicted probabilities of the states. This is not standard multi-
ple imputation practice, where the imputations are normally created by draw-
ing parameter estimates at random from their distribution (i.e. ~ N(B, O'B)),
calculating predicted probabilities from those, and then drawing at random
from the predicted probabilities. This is a more delicate operation, and since
it is handled in a robust fashion by Stata’s mi framework it is as well to ex-
ploit that. Additionally mi, on the example of the earlier user-written mice
framework, uses “augmented” logistic regression where “perfect prediction”
is encountered. Perfect prediction occurs where, for particular configurations
of explanatory variables, there is no variation in the observed state, and thus
parameter estimates tend to infinity. Stata usually deals with this problem by
dropping the relevant cases (with a warning). Augmented (binomial or multi-
nomial) logistic regression provides a valid prediction for such cases.

The present approach has a very particular structure that exploits the
strengths and constraints of the time-series structure. Rather than impute all
missings for a given variable, and then going on to use that variable and oth-
ers to impute in a further variable, we are imputing particular observations in
a single state variable that has multiple, time-indexed, observations per indi-
vidual. The imputed observations are indexed by where they fall in the miss-
ingness run or gap, rather than by where they fall in the overall sequence.
The procedure then goes on to impute other observations in the same variable
(which fall elsewhere in the gap). This makes it difficult to fit into the over-
all mi framework for handling chained imputations, so our use of the built-in
functionality is restricted to calling the core imputation code repeatedly to cre-
ate a single imputation, and accepting its values for the relevant observations.
Compared with the initial version of the algorithm documented in the pre-
vious paper (Halpin, [2012), where the prediction model was fitted once and
used repeatedly, and with standard mi where multiple imputations are drawn
at each pass, this is very slow (see[below]for a discussion of ameliorating this by
use of multiple parallel Stata jobs, exploiting multi-processor computers with-
out needing StataMP). It is possible that the standard mi framework permits
a more efficient solution, or that the imputation code can be adapted to save

the prediction model on the first run and re-use it for subsequent runs (in the
manner the original version of this code saved and re-used model estimates);
these possibilities are being investigated.

For the moment, while the approach is inefficient, it has the benefit of using
standard robust code to do the imputations, code which furthermore solves
problems such as perfect prediction.

3 Initial and terminal gaps

The original version of this procedure addressed only internal gaps, that is,
runs of one or more consecutive missing values for which there was at least
some prior and subsequent information. It was noted that extension to initial
and terminal gaps should be straightforward, with the proviso that the length-
limit for an imputable gap should be shorter for an edge gap than an internal
one. The structure of the imputation is also a little simpler, in that while for an
internal gap it is desirable that the imputation sequence alternates from end to
end, for an edge gap the process can go in one direction (starting with the miss-
ing case nearest the observed data and moving away). Furthermore, given that
there is only prior or subsequent information, the prediction model is of neces-
sity a little simpler. When imputing an element of a internal gap, the prediction
model uses the last known (or imputed) state, and the next known state, where
“state” can mean the value of the state variable but also other information like
cumulated duration (prior or subsequent) or other information known for that
time point. The edge-gap model has half of this information, and in my exam-
ple I limit its operation to edge gaps of length up to half the limit for internal
gaps (the intuition here is that the maximum distance to observed data will be
the same for both sorts of gaps).

Imputing edge gaps would be easier (than internal gaps) to handle in a con-
ventional chained-equation multiple-imputation framework (with the data in
wide rather than long format) as the sequence of operations is simpler than
for internal gaps. For instance, for initial gaps up to length 5, we first im-
pute element 5 using information from element 6 and later, then element 4
additionally using information (known and imputed) for element 5, and so on.
Moreover, for edge gaps the pattern of missingness is by definition monotone
(while the pattern of missingness across the whole data set for elements 1 to 5
may not be monotone, the non-monotone missingness will be due to internal
gaps that are near the edge). There is hence an argument for imputing edge
gaps in “wide” format using the conventional mi chained-equation approach
(however, it might be difficult or impossible to fit closely equivalent predictive
models, particularly in terms of predicting x; by x;_1) but for the moment I
present an approach as close as possible to the internal-gap algorithm.

4 Imputation sequence

The sequence of operations for internal gaps is described in the previous paper.
Essentially we begin with the, say, last element of the longest gap and impute
that, taking account of information available immediately afterwards (a lead
of 1) and before the start of the gap (a lag of the gap-length). Now the longest

gap is one shorter, and we impute the first element of that gap, using a lag of 1
and a lead of the new gap-length. Note that for some cases, the lead data will
now be imputed. In the current version the imputation model is fitted again
for each imputation, though it is almost surely sufficient to fit it once for each
element and predict repeatedly from the same model. This is because the ad-
ditional information we can bring in to subsequent estimations due to earlier
imputations is quite slight. In conventional multiple imputation by chained
equations, imputing missings in a variable allows the inclusion of all that vari-
able’s data in subsequent imputation models, but in this framework we can
already use nearly all observed data in the time-series state variable, and each
imputed observation brings in perhaps a single datum.

In the example implementation discussed in the previous paper, the impu-
tation model uses the prior (lag) and subsequent (lead) state, interacted with
a quadratic time-index, plus the interaction of prior and subsequent state with
an observation-type variable (see the previous paper; this uses structural in-
formation about the data collection which has a bearing on the probability of
a spell beginning or terminating on this date). It additionally uses information
on the proportion of time before and after spent in each state to allow “history”
to have an impact (since the concern is with the joint distribution of the past,
present and future states, rather than modelling a theoretical mechanism, it is
appropriate to consider the future as having a statistical impact on the present).
In Stata terms the model is as follows:

mlogit state i.next##fc.t##ic.t i.last##fc.t#t#tc.t ///
beforel before2 before3 ///
afterl after2 after3 ///
i.on##i.n2 i.ol##i.12

(Note that /// at the end of a line allows Stata commands to take more than
one line.) The variables last and next are prior and subsequent state, t is a
time-unit index (from 1 to 73 in this case), o1 and on are lags and leads of the
obstype variable, and 12 and n2 are collapsed versions of the 4-category prior
and subsequent state variables (collapsed due to sparseness in interaction with
observation-type). This model puts a lot of weight on the matrix of transition
rates, but allows its influence to change in a non-linear way along the time-axis.
The basic assumption of multiple imputation, that data are missing at random
given the model, is required here; the obstype variable is one way that relevant
parallel information can be brought in, but in general time-dependent values
of other variables could be used as well, if appropriate.

Because the model needs to fit over a range of gap-lengths, it is useful to
have a fall-back strategy in case of convergence difficulties. For instance, some-
times for shorter gaps there is very little difference between the last and next
variables. My approach is to limit estimation to 40 iterations and if the model
hasn’t converged to fit this simpler model:

mlogit state i.next i.last

This is a drastically simpler model, but it contains the two most important
predictor variables, and maintains longitudinal continuity. As long as its use
is triggered fairly rarely, it should have little detrimental effect on the imputa-
tions.

For the edge gaps, the imputation model is simpler. For initial gaps where
the next (lead) state is known:

mlogit state i.next##c.t##tc.t ///
afterl after2 after3 ///
i.obstype##i.n2

And for terminal gaps:

mlogit state i.last##c.t##c.t ///
beforel before2 before3 ///
i.obstype##i.12

Effectively, the model used is the relevant half of the internal-gap model.
The other key difference is that the process iterates simply (no need for alter-
nation) from the internal end of the gap to the end or start of the time-series.

5 Parallel computing

As a result of the way in which the Stata mi module is used, the procedure
is now much slower. While it is likely that more efficient ways can be found
to carry out the integration of mi, we can for the moment work around this
difficulty by taking advantage of the parallelisability of the algorithm. The
multi-processor version of Stata, StataMP, will do this automatically, and will
certainly be faster than single processor versions. However, StataMP is expen-
sive and many users have single-processor versions. The task itself is very
easy to parallelise: every imputation-sequence happens independently of all
others, and can be run simultaneously, on machines with multiple CPU cores
or on separate machines. Once the data is prepared for imputation, we can
run multiple separate jobs carrying out the imputation sequences. As long as
each job is fed a distinct random number generator seed, it will produce dis-
tinct imputations. Thus, on a 4-core machine, one can run parallel jobs creating
5 imputations each, and recombine them to have 20 imputations. Jobs can be
run in parallel either by opening multiple Stata instances and running the do-
files, or by using batch mode (in Windows from separate command windows,
in Unix by backgrounding the jobs).

For instance, if the file bsmi_it.do is set up to take three parameters (seed,
number of imputations, and number of imputations in previous files) we can
run four sessions generating three imputations each, by running these four
commands in four parallel Stata sessions:

Session 1:

. do bsmi_it 123451 3 0O
Session 2:

. do bsmi_it 123452 3 3
Session 3:

. do bsmi_it 123453 3 6

Session 4:
. do bsmi_it 123454 3 9

The actual value of the seed parameter is unimportant: if it is the same the
results will be the same (and thus reproducible), if different, different. The
Stata do-file will accept the parameters if the first line takes the form:

args seed nseq seqindex
The parameters will then be accessible as local macros:

set seed “seed'

forvalues i = 1/ nseq' {
[...do the imputations...]
}

save imputations_~seqindex', replace

Thus the fourth session will run 3 imputations (numbered 10, 11 and 12)
and save the file imputations_9.dta

We can also do this in batch. Stata’s batch mode will save the output from
running filename.do in filename.log, so it is necessary to make copies of
the bsmi_it.do file to run multiple instances simultaneously. Given copies as
bsmi_it_a.do and so on, in Unix the following commands will set four ses-
sions running simultaneously in the background:

$ stata -b bsmi_it_a 123451 3 0 &
$ stata -b bsmi_it_b 123452 3 3 &
$ stata -b bsmi_it_c 123453 3 6 &
$ stata -b bsmi_it_d 123454 3 9 &

The $ character represents the Unix prompt, and the & character makes the
commands run in the background. In Windows something similar can be done
in command windows, though as far as I know there is no equivalent of the
& character. Instead, open multiple command windows (press Windows key
and enter cmd in the search box, or press r, then cmd, then return) and run
commands like:

> stata /b bsmi_it_a 123451 3 0

where > represents the Windows command prompt. Itis assumed the stata
program is in the path. See the Stata FAQ on the topic for more detail.

6 Code

This section walks through the Stata code used to carry out the example impu-
tations. This is example code, not production quality, and has not been written
in a very general manner. However, it should be reasonably easy to adapt by
hand for other data sets.

http://www.stata.com/support/faqs/windows/batch-mode/

Important differences to handle will include the names of the state variable,
and any ancilliary variables such as obstype, the appropriate predictive mod-
els to fit, and to account for a state variable that has more or less than four
values.

To run the example, which uses 73 months of labour market history of
women who have a birth in month 25, there are three files, bsmiprep.do which
sets up the data, bsmi_it.do which runs the imputations (if in parallel, as
copies bsmi_it_a.do etc.), and bsmicombit.do which unites the parallel im-
putations.

Copies of these files are available at http:/ /teaching.sociology.ul.ie/seqanal /mi/.

6.1 Preparing the data, bsmiprep.do

The file bsmiprep.do takes the basic data and processes it for the imputations,
producing a set of variables that will be used by the imputation programs.

Begin by loading the data from bslong.dta which contains 73 observations
per person, with variables pid, t, state and obstype.

* pid is the person identifier, t the time index (1 to 73)
* state is employment state (4 values and system-missing)

® obstype is a categorical variable marking where the data collection struc-
ture suggests that the current month is particularly likely to be the start
or end of a spell:

use pid t state obstype using bslong
Save a copy of the unimputed state variable to compare later:
gen oldstate = state

Calculate the spell sequence number within individuals. A “spell” is a con-
secutive run of the same state within the individual trajectory:

gen spellno = 1

sort pid t

by pid: replace spellno = spellno[_n-1] + (state!=state[_n-1]) if _n>1
sort pid spellno t

Total number of spells per individual:
by pid: egen nspells = max(spellno)

Calculate gap length (note we keep sequences with gaps longer than the
maximum because they contribute to the prediction model):

gen 1lg = 0
by pid spellno: replace lg = _N if missing(state)

Index months within spells: this is needed to identify which missing
months to impute:

http://teaching.sociology.ul.ie/seqanal/mi/

gen tw=1
by pid spellno: replace tw = tw[_n-1] + (state==state[_n-1]) if _n>1

Identify gaps at beginning or end of the sequence, calculate their length:

by pid: gen initgap = missing(state[1])
by pid: gen termgap = missing(state[_N])

gen igapspell = initgap & spellno==
gen tgapspell = termgap & spellno==nspells

gen igl = 0
by pid spellno: replace igl = _N if igapspell
gen tgl = 0

by pid spellno: replace tgl = _N if tgapspell

Calculate prior and subsequent cumulated duration in each of the four
states, first as a count of months, then as a proportion of observed time. Note
that where state is missing the variable has valid values depending on what
went before or came after.

sort pid t
forvalues i=1/4 {

by pid: gen tb i'=state[1]=="1i'

by pid: replace tb’i' = tb i'[_n-1] + (state=="i') if _n>1
}
// Map between a count of months to a proportion of time
forvalues i=1/4 {

by pid: gen before i' = tb i'/(tbl+tb2+tb3+tb4)
}

// reverse-sort to look to the future
gsort pid -t

forvalues i=1/4 {
by pid: gen ta’i'=state[1]=="1'

by pid: replace ta’i' = ta i'[_n-1] + (state=="i') if _n>1
}

forvalues i=1/4 {
by pid: gen after i' = ta’i'/(tal+ta2+ta3+tad)
}

sort pid t
Save this data as we will use it repeatedly:

save bsmiprep, replace

6.2 Carrying out the imputations, bsmi_it.do

We invoke bsmi_it.do (or a copy of it) with command line parameters to set
the seed, the number of imputations to carry out, and the number of impu-
tations already carried out by earlier runs (or simultaneous, parallel runs, see
[above). For instance, from the Stata command-line:

. do bsmi_it 123455 4 8

will set the seed of the random number generator to 123455, and create four
imputations, numbering them from 9 to 12.

The code follows, with the first line accepting the command line parameters
as local macros, and the subsequent lines setting up some global macros

args seed maxreps repoffset
set seed “seed'

global longestgap 12 // Longest internal gap to impute
global longestgapit 6 // Longest initial/terminal gap to impute
global maxreps “maxreps' // How many imputations to do

At this point in the file, two “programs” are defined, but here I leave their
presentation for later (see and examine the main loop which carries out
the number of imputations given by the second command line parameter. It be-
gins by loading the prepared data file, determining the length of the sequences
(storing it in the global macro $totlen), and initialising two variables that will
be used and changed.

forvalues iter = 1/$maxreps {
use bsmiprep, clear

qui by pid: su t
global totlen “r(max)'

qui gen last
qui gen next

Then, with a loop within the main loop, it repeatedly calls the internal-gap
imputation program (as many times as the maximum permitted gap length):

forvalues i = 1/$longestgap {
sort pid t // needed beccause MI affects sort status (but not sort order)
do_imputations “i'

}

Analogously, for as many times as the longest initial or terminal gap per-
mitted, the edge-imputation program is called:

forvalues i = 1/$longestgapit {
sort pid t

do_imputations_it "i" “i'
sort pid t
do_imputations_it "t" i

}

Repeatedly calling these imputation programs will have created a single
complete imputation (apart from gaps whose length is greater than permitted).

To finish the loop, an iteration number is created, which is consistent across
the multiple runs of bsmi_it.do; all but the essential variables are dropped,
and the long-format data set is reshaped as wide. It is then saved to a tem-
porary file which will contain a single imputed data set. This ends the main
loop:

qui gen iter = “iter' + “repoffset'
keep pid iter state oldstate t
reshape wide oldstate state, i(pid) j(t)

tempfile mibo iter'
save ‘mibo iter'',replace

The do-file finishes by assembling the temporary files from each pass
through the main loop into a single file, saving to a filename distinguished
by number:

use “mibol'
forvalues i = 2/$maxreps {
append using “mibo~i''

}

save bsmi_it_"repoffset', replace

6.3 Program definitions

A large part of the code has been moved out of the main loop into two Stata
programs, do_imputations and do_imputations_it, which carry out the in-
ternal and edge imputations, respectively. The main work done in these is to
define the appropriate predictive variables, run the imputations, and assign
the imputed values to the correct observations of the state variable.

6.3.1 do_imputations for internal gaps

Begin the program definition, with one argument, i, which is the index of the
calling loop:

program define do_imputations
args i

10

Imputation of the internal gap alternates, imputing one end of the longest
gap, then the other end of the next shortest gap, and so on. If the value of
the i macro is an odd number, we impute the end of the gap, otherwise the
beginning. We define the last and next variables accordingly: if we are im-
puting the last element of the longest gap, then next is state with a lead of
1, and last is state with a lag of $longestgap. When imputing at the start
of a gap, then last is state lagged by 1, and next is state with a lead of
$longestgap + 1 - “i'. As the gap length shortens the longer of lead or lag
reduces by 1 each iteration. Note that we also pick up the lagged and lead
values of any other variables used at this point (here ol and on from obstype).
The local macro seqno indexes where in the gap the operation is focused, and
will be used to help identify which observations to impute:

if mod("i',2) == 1 {
// i is odd: imputing at the end of the gap
qui by pid: replace last = state[_n - $longestgap
qui by pid: replace next = state[_n + 1]
qui by pid: replace ol = obstypel[_n - $longestgap - 1 + “i']
qui by pid: replace on = obstypel_n + 1]
local seqno = $longestgap + 1 - int(("i'+1)/2)

1
[y
+

“i1]

}

else {
// i is even: imputing at the start of the gap
qui by pid: replace last = state[_n - 1]
qui by pid: replace next = state[_n + $longestgap + 1 - “i']
qui by pid: replace ol = obstypel_n - 1]
qui by pid: replace on = obstypel_n + $longestgap + 1 - “i'l]
local seqno = int(Ti'/2)

}

In the example, there is a variable obstype which should be interacted with
next and last. However, this causes problems with convergence, so we col-
lapse two categories. This is a specific requirement of the example data set, but
it illustrates how one might deal with modelling problems. Such problems are
likely to arise!

capture drop n2 12
qui recode next 3=2, generate(n2)
qui recode last 3=2, generate(12)

Set up the data set for imputation under Stata’s mi framework:

mi set wide
mi register imputed state

Carry out the mi imputation. Note that this is the unique location where
the main imputation model is defined, and if a different model is needed, the
change must be made here. The add (1) option creates one imputation, force
causes it to continue though some explanatory variables have missing values
(a problem for conventional imputation but not so here), and augment causes
it to use augmented multinomial logistic regression if perfect prediction is en-
countered. The iterate(40) option causes it to stop with an error if it exceeds

11

40 iterations, which is a good sign that it is never going to converge (numbers
other than 40 might be appropriate). The capture prefix allows the imputation
to fail without crashing the Stata job.

capture mi impute mlogit state i.next##c.t##c.t i.last##tc.t##c.t ///
beforel before2 before3 ///
afterl after2 after3 ///
i.on##i.n2 i.ol##i.12, ///
add(1) force augment noisily iterate(40)

If the imputation fails to converge, it will return an error code of 430. In this
case, fit a much simpler model, one that enforces longitudinal consistency but
not much more. If the imputation failed for any other reason, Stata will now
crash with the appropriate error.

if (_rc==430) {
di in red "NO CONVERGENCE, fitting minimal model"
mi impute mlogit state i.next i.last, ///
add(1) force augment noisily iterate(40)

}

else if _rc {
exit _rc

}

The mi procedure will have created the variable _1_state with predicted
values for every case. We want to use these values only for the gap element
to which this pass through the loop corresponds. The variable canassign will
be 1 for the appropriate cases, where tw, the month number within the gap,
corresponds to the element we should be imputing (which in turn depends on
the length of the current gap and the length of the longest gap permitted).

gen canassign = “seqno' - int(($longestgap - 1lg)/2) == tw
di "Putting imputed values in place in internal gap"

replace state = _1_state if missing(state) & canassign

We now drop unneeded variables, unset the mi state, and end the do_imputations
program:

drop canassign

drop _*_state

capture drop state_x*_

mi unset

end

6.3.2 Predict initial and terminal gaps: do_imputations_it

The program to predict initial and terminal gaps takes two arguments, one
distinguising initial vs terminal, the other the loop index:

12

program define do_imputations_it

args it i

if (n~it|n==niu) {
local gaptype "initial"
}

if (Il‘itlll==ll-tll) {

local gaptype "terminal"

As in the internal gap imputation, we re-define the relevant variables, but
here our lag or lead is always 1:

qui by pid: replace next = state[_n+1] if missing(next)
qui by pid: replace last = state[_n-1] if missing(last)
capture drop n2 12

qui recode next 3=2, generate(n2)

qui recode last 3=2, generate(12)

As before, we set up for mi and impute. The model used depends on which
end we are imputing, but they are symmetric. Again we accommodate a failure
to converge and provide a simpler alternative.

mi set wide
mi register imputed state

if ("Tigrr==rit) {
capture mi impute mlogit state i.next##c.t ///
afterl after2 after3 ///
i.obstype##i.n2, ///
add(1) force augment iterate(40)
if (_rc==430) {
di in red "NO CONVERGENCE, fitting minimal model"
mi impute mlogit state i.next, ///
add(1) force augment noisily iterate(40)

}
}
if ("it't=="t") {
capture mi impute mlogit state i.last##fc.t ///
beforel before2 before3d ///
i.obstype##i.12, ///
add(1) force augment iterate(40)
if (_rc==430) {
di in red "NO CONVERGENCE, fitting minimal model"
mi impute mlogit state i.last, ///
add(1) force augment noisily iterate(40)
}
}

13

We can assign the imputation to cases where, for initial gaps, the month
number t is equal to the actual gap length plus one decremented for each it-
eration, and for the terminal, the total length (73) minus the actual gap length
incremented for each iteration:

if ("tig'r=="i") {
gen canassign = t == igl + 1 - “i' & initgap & igl<=$longestgapit
}
else if (" it'"=="t") {
gen canassign = t == $totlen -tgl + “i' & termgap & tgl<=$longestgapit
b
replace state = _1_state if missing(state) & canassign

Finally, drop unneeded variables, unset mi and end.

drop canassign

drop _*_state
capture drop state_x*_
mi unset

di "Finished “gaptype
end

6.4 bsmicombit to wrap it all up

Concatenate the multiple files from the parallel invocation of bsmi_it.do:

use bsmi_it_0.dta

append using bsmi_it_3.dta
append using bsmi_it_6.dta
append using bsmi_it_9.dta

sort pid iter

The stripe command from SADI creates a useful string representation of
the sequence:

stripe statex*, gen(sl)
stripe oldstatex, gen(s2)

For convenience, create a record with iteration number 0 that is the orig-
inal data, by creating two versions of iteration 1, and copying the oldstate
information into state:

expand 2 if iter==1
sort pid iter

replace iter = 0 if iter==1 & iter[_n+1]==

14

http://teaching.sociology.ul.ie/sadi

replace sl = s2 if iter==0
forvalues x = 1/73 {
replace state x' = oldstate x' if iter==

}

Using “regular-expression” text-matching functions makes it a little easier
to differentiate between complete, imputed and incomplete cases, before sav-
ing the final file of imputations:

gen rectype = 0

by pid: replace rectype = 1 if !regexm(s1[1],"\.")

by pid: replace rectype = 2 if regexm(s1[1],"\.")

by pid: replace rectype = 3 if !regexm(s1[2],"\.") & rectype ==

label define rectype 1 "Complete" 2 "Incomplete" 3 "Imputed"
label values rectype rectype

save bsmicombit, replace
Finally, to look at some of the results:

list iter sl if rectype==3, sepby(pid)

References
Halpin, B. (2012). Multiple imputation for lifecourse sequence data (Working Pa-

per No. WP2012-01). Dept of Sociology, University of Limerick. Ireland.
Retrieved from http://www.ul.ie/sociology/pubs/wp2012-01.pdf

15

http://www.ul.ie/sociology/pubs/wp2012-01.pdf

